Numerical solution of the (Stokes) viscous boundary layer

J.A. de Jong¹

December 16, 2018

¹ASCEE, Máximastraat 1, 7442 NW Nijverdal, info@ascee.nl

Internal document ID:	
External document ID:	
Document status:	Draft

Contents

1	Differential equation	1
2	Harmonic solution	2
3	Forward Euler time, central in space	2

1 Differential equation

The Stokes layer of the velocity satisfies the following differential equation:

$$\frac{\partial \hat{u}}{\partial t} - \frac{\mu}{\rho_0} \nabla_{\mathrm{T}}^2 \hat{u} = \hat{K}(t), \tag{1}$$

where

- *t* is time,
- ∇_{T}^2 is the Laplacian in *transverse* direction.
- \hat{u} is the *axial* velocity,
- $\hat{K}(t)$ is the forcing function as a function of time, which in acoustics equals minus the gradient of the pressure,
- μ is the dynamic viscosity,
- ρ_0 the density.

2 Harmonic solution

If we assume harmonic motion, we may write

$$\hat{u} = \Re \left(u e^{i\omega t} \right) \quad ; \quad K = \Re \left(\hat{K} e^{i\omega t} \right) \quad \text{etc}$$
(2)

where

- \Re is the operator taking the real part of its argument,
- $i = \sqrt{-1}$,
- ω is the frequency in rad/s.

For flow close to a plate and unbounded in the +y-direction, the solution for u yields:

$$u = \frac{1}{i\omega\rho_0} K \left(1 - \exp\left(-\left(1 + i\right) y / \delta_\nu \right) \right),\tag{3}$$

where

$$\delta_{
u} = \sqrt{rac{2\mu}{
ho_0 \omega}}$$

For oscillating flow between two parallel plates, separated at distances $2y_0$, and y = 0 at the center between the two plates:

$$u = \frac{1}{i\omega\rho_0} \frac{1 - h_\nu}{1 - f_\nu} K,\tag{4}$$

where

•
$$h_{\nu} = \frac{\cosh((1+i)y/\delta_{\nu})}{\cosh((1+i)y_0/\delta_{\nu})},$$

•
$$f_{\nu} = \frac{\tanh((1+i)y_0/\delta_{\nu})}{(1+i)y_0/\delta_{\nu}}.$$

3 Forward Euler time, central in space

For $\nabla_T^2 \equiv \frac{\partial^2}{\partial y^2}$, the forward Euler time, central in space (uniform grid) formulation of Eq. 1 is

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} - \frac{\mu}{\rho_0} \frac{u_{i+1}^n - 2u_i^n - u_{i-1}^n}{\Delta y^2} = K^n,\tag{5}$$

where upper index *n* denotes a discrete time instance and lower index *i* denotes a discrete position index. This is an explicit form for the velocity at the next time index n + 1. Solving for u_i^{n+1} yields:

$$u_i^{n+1} = u_i^n + \Delta t K^n + \frac{\mu \Delta t}{\rho_0 \Delta y^2} \left(u_{i+1}^n - 2u_i^n - u_{i-1}^n \right)$$
(6)