diff --git a/lasp/filter/__init__.py b/lasp/filter/__init__.py index f354314..3ee2d04 100644 --- a/lasp/filter/__init__.py +++ b/lasp/filter/__init__.py @@ -2,4 +2,4 @@ from .soundpressureweighting import * from .filterbank_design import * from .fir_design import * from .colorednoise import * - +from .biquad import * diff --git a/lasp/lasp_imptube.py b/lasp/lasp_imptube.py index cda9725..56d471d 100644 --- a/lasp/lasp_imptube.py +++ b/lasp/lasp_imptube.py @@ -107,11 +107,27 @@ class TwoMicImpedanceTube: # Microphone transfer function G_AB = self.K*C[:,1,0]/C[:,0,0] return self.getFreq(), self.cut_to_limits(G_AB) + + def k(self, freq): + """ + Wave number, or thermoviscous wave number + """ + if self.thermoviscous: + D = self.D_imptube + S = pi/4*D**2 + d = PrsDuct(0, S=S, rh=D/4, cs='circ') + d.mat = self.mat + omg = 2*pi*freq + G, Z = d.GammaZc(omg) + return G + else: + return 2*pi*freq/self.mat.c0 + def R(self, meas): freq, G_AB = self.G_AB(meas) s = self.s - k = 2*pi*freq/self.mat.c0 + k = self.k(freq) d1 = self.d1 RpA = (G_AB - exp(-1j*k*s))/(exp(1j*k*s)-G_AB) diff --git a/lasp/lasp_measurement.py b/lasp/lasp_measurement.py index 5b598f2..4858afb 100644 --- a/lasp/lasp_measurement.py +++ b/lasp/lasp_measurement.py @@ -152,9 +152,11 @@ class IterRawData: stop_offset = self.lastblock_stop_offset else: stop_offset = self.blocksize + # print(f'block: {block}, starto: {start_offset}, stopo {stop_offset}') self.i +=1 - return self.fa[block,start_offset:stop_offset,self.channels] + return self.fa[block,start_offset:stop_offset,:][:,self.channels] + class IterData(IterRawData): """ @@ -362,25 +364,38 @@ class Measurement: """Returns the measurement time in seconds since the epoch.""" return self._time - @property - def rms(self, channels=None): + def rms(self, channels=None, substract_average=False): """Returns the root mean square values for each channel + Args: + channels: list of channels + substract_average: If set to true, computes the rms of only the + oscillating component of the signal, which is in fact the signal + variance. + Returns: 1D array with rms values for each channel """ - # - try: - return self._rms - except AttributeError: - pass - - meansquare = 0. + meansquare = 0. # Mean square of the signal, including its average + sum_ = 0. # Sumf of the values of the signal, used to compute average + N = 0 with self.file() as f: for block in self.iterData(channels): + Nblock = block.shape[0] + sum_ += np.sum(block, axis=0) + N += Nblock meansquare += np.sum(block**2, axis=0) / self.N - self._rms = np.sqrt(meansquare) - return self._rms + + avg = sum_/N + # In fact, this is not the complete RMS, as in includes the DC + # If p = p_dc + p_osc, then rms(p_osc) = sqrt(ms(p)-ms(p_dc)) + if substract_average: + meansquare -= avg**2 + rms = np.sqrt(meansquare) + return rms + + def variance(self, channels=None): + return self.rms(substract_average=True) def rawData(self, channels=None, **kwargs): """Returns the raw data as stored in the measurement file, @@ -406,7 +421,6 @@ class Measurement: return np.concatenate(rawdata, axis=0) - def iterData(self, channels, **kwargs): sensitivity = kwargs.pop('sensitivity', self.sensitivity) if channels is None: @@ -484,21 +498,26 @@ class Measurement: blocks = [signal[i*N:(i+1)*N] for i in range(Nblocks)] if noiseCorrection: - enp1 = [blocks[i+1] - blocks[i] for i in range(Nblocks-1)] - noise_est_np1 = [np.average(enp1[i+1]*enp1[i]) for i in range(Nblocks-2)] + # The difference between the measured signal in the previous block and + # the current block + en = [None] + [blocks[i] - blocks[i-1] for i in range(1,Nblocks)] + + noise_est = [None] + [-np.average(en[i]*en[i+1]) for i in range(1,len(en)-1)] # Create weighting coefficients - sum_inverse_noise = sum([1/n for n in noise_est_np1]) - c_np1 = [1/(ni*sum_inverse_noise) for ni in noise_est_np1] + sum_inverse_noise = sum([1/n for n in noise_est[1:]]) + c_n = [1/(ni*sum_inverse_noise) for ni in noise_est[1:]] else: - c_np1 = [1/(Nblocks-2)]*(Nblocks-2) + c_n = [1/(Nblocks-2)]*(Nblocks-2) - assert np.isclose(sum(c_np1), 1.0) + assert np.isclose(sum(c_n), 1.0) + assert Nblocks-2 == len(c_n) # Average signal over blocks avg = np.zeros((blocks[0].shape), dtype=float) - for i in range(0, Nblocks-2): - avg += c_np1[i]*blocks[i+1] + for n in range(0, Nblocks-2): + avg += c_n[n]*blocks[n+1] + return avg def periodicCPS(self, N, channels=None, **kwargs): @@ -514,7 +533,7 @@ class Measurement: window = Window.rectangular ps = PowerSpectra(N, window) - avg = self.periodicAverage(N, channels, **kwargs) + avg = np.asfortranarray(self.periodicAverage(N, channels, **kwargs)) CS = ps.compute(avg) freq = getFreq(self.samplerate, N) @@ -554,24 +573,23 @@ class Measurement: f.attrs['sensitivity'] = sens self._sens = sens - def checkOverflow(self): + def checkOverflow(self, channels): """Coarse check for overflow in measurement. Return: True if overflow is possible, else False """ - with self.file() as f: - for block in self.iterBlocks(f): - dtype = block.dtype - if dtype.kind == 'i': - # minvalue = np.iinfo(dtype).min - maxvalue = np.iinfo(dtype).max - if np.max(np.abs(block)) >= 0.9*maxvalue: - return True - else: - # Cannot check for floating point values. - return False + for block in self.iterData(channels): + dtype = block.dtype + if dtype.kind == 'i': + # minvalue = np.iinfo(dtype).min + maxvalue = np.iinfo(dtype).max + if np.max(np.abs(block)) >= 0.9*maxvalue: + return True + else: + # Cannot check for floating point values. + return False return False