State as of Jan. 20, 2023
This commit is contained in:
parent
2be8df8c4b
commit
b0522b84c2
@ -2241,7 +2241,7 @@ Sample time is
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
y[n]=\sum_{m=1}^{M}b_{m}y[n-m]+\sum_{p=0}^{P}a_{p}x[n-p]
|
||||
y[n]=\sum_{m=1}^{M}a_{m}y[n-m]+\sum_{p=0}^{P}b_{p}x[n-p]
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -2253,7 +2253,7 @@ In the
|
||||
-domain, this equation can be written as
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
Y[z]=\frac{\sum\limits _{p=0}^{P}a_{p}z^{-p}}{1-\sum\limits _{m=1}^{M}b_{m}z^{-m}}X[z]=H[z]\cdot X[z]
|
||||
Y[z]=\frac{\sum\limits _{p=0}^{P}b_{p}z^{-p}}{1-\sum\limits _{m=1}^{M}a_{m}z^{-m}}X[z]=H[z]\cdot X[z]
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -4513,7 +4513,7 @@ So we assume that we can fit
|
||||
, we find:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\underbrace{\sum\limits _{n=1}^{N}\frac{c_{n}}{s-a_{n}}+d+sh}_{\left(\sigma f\right)_{\mathrm{fit}}}=\underbrace{\left(\sum_{n=1}^{N}\frac{\tilde{c}_{n}}{s-a_{n}}+1\right)f(s)}_{\sigma_{\mathrm{fit}}(s)f(s)},
|
||||
\underbrace{\sum\limits _{n=1}^{N}\frac{c_{n}}{s-a_{n}}+d+sh}_{\left(\sigma f\right)_{\mathrm{fit}}}=\underbrace{\left(\sum_{n=1}^{N}\frac{\tilde{c}_{n}}{s-a_{n}}+1\right)f(s)}_{\sigma_{\mathrm{fit}}(s)f(s)},\label{eq:sigmaf_eq_sigma_f}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -4523,10 +4523,22 @@ So we assume that we can fit
|
||||
|
||||
\begin_layout Standard
|
||||
For a certain set of starting poles
|
||||
\begin_inset Formula $a_{n}$
|
||||
\begin_inset Formula $\overline{a}_{n}$
|
||||
\end_inset
|
||||
|
||||
, we are able to fit the zeros.
|
||||
Eq.
|
||||
\begin_inset space ~
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:sigmaf_eq_sigma_f"
|
||||
|
||||
\end_inset
|
||||
|
||||
is a linear least squares problem, which is used to fit
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
@ -4579,7 +4591,7 @@ G[z]=\frac{\alpha}{1+\left(\alpha-1\right)z^{-1}}G_{\mathrm{required}}(z),
|
||||
|
||||
which is an approximate first order digital low-pass filter:
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Filling in for
|
||||
|
Loading…
Reference in New Issue
Block a user