State as of Jan. 20, 2023

This commit is contained in:
Anne de Jong 2023-01-20 13:29:35 +01:00
parent 2be8df8c4b
commit b0522b84c2

View File

@ -2241,7 +2241,7 @@ Sample time is
\begin_layout Standard
\begin_inset Formula
\begin{equation}
y[n]=\sum_{m=1}^{M}b_{m}y[n-m]+\sum_{p=0}^{P}a_{p}x[n-p]
y[n]=\sum_{m=1}^{M}a_{m}y[n-m]+\sum_{p=0}^{P}b_{p}x[n-p]
\end{equation}
\end_inset
@ -2253,7 +2253,7 @@ In the
-domain, this equation can be written as
\begin_inset Formula
\begin{equation}
Y[z]=\frac{\sum\limits _{p=0}^{P}a_{p}z^{-p}}{1-\sum\limits _{m=1}^{M}b_{m}z^{-m}}X[z]=H[z]\cdot X[z]
Y[z]=\frac{\sum\limits _{p=0}^{P}b_{p}z^{-p}}{1-\sum\limits _{m=1}^{M}a_{m}z^{-m}}X[z]=H[z]\cdot X[z]
\end{equation}
\end_inset
@ -4513,7 +4513,7 @@ So we assume that we can fit
, we find:
\begin_inset Formula
\begin{equation}
\underbrace{\sum\limits _{n=1}^{N}\frac{c_{n}}{s-a_{n}}+d+sh}_{\left(\sigma f\right)_{\mathrm{fit}}}=\underbrace{\left(\sum_{n=1}^{N}\frac{\tilde{c}_{n}}{s-a_{n}}+1\right)f(s)}_{\sigma_{\mathrm{fit}}(s)f(s)},
\underbrace{\sum\limits _{n=1}^{N}\frac{c_{n}}{s-a_{n}}+d+sh}_{\left(\sigma f\right)_{\mathrm{fit}}}=\underbrace{\left(\sum_{n=1}^{N}\frac{\tilde{c}_{n}}{s-a_{n}}+1\right)f(s)}_{\sigma_{\mathrm{fit}}(s)f(s)},\label{eq:sigmaf_eq_sigma_f}
\end{equation}
\end_inset
@ -4523,10 +4523,22 @@ So we assume that we can fit
\begin_layout Standard
For a certain set of starting poles
\begin_inset Formula $a_{n}$
\begin_inset Formula $\overline{a}_{n}$
\end_inset
, we are able to fit the zeros.
Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:sigmaf_eq_sigma_f"
\end_inset
is a linear least squares problem, which is used to fit
\end_layout
\begin_layout Section
@ -4579,7 +4591,7 @@ G[z]=\frac{\alpha}{1+\left(\alpha-1\right)z^{-1}}G_{\mathrm{required}}(z),
which is an approximate first order digital low-pass filter:
\begin_inset Note Note
status open
status collapsed
\begin_layout Plain Layout
Filling in for