Moved apsmode and apssettings to their own files
This commit is contained in:
parent
08ecdf6dc4
commit
826266b8ee
@ -26,7 +26,8 @@ cfg_if::cfg_if! {
|
||||
|
||||
cfg_if::cfg_if! {
|
||||
if #[cfg(feature = "python-bindings")] {
|
||||
pub use numpy::{IntoPyArray,PyArray, PyArray1, PyArrayDyn, PyArrayLike1, PyReadonlyArrayDyn};
|
||||
pub use numpy::{IntoPyArray,PyArray, PyArray1, PyArray2, PyArray3, PyArrayDyn, PyArrayLike1,
|
||||
PyArrayLike2,PyArrayLike3,PyReadonlyArrayDyn, convert::ToPyArray};
|
||||
pub use pyo3::prelude::*;
|
||||
pub use pyo3::exceptions::PyValueError;
|
||||
pub use pyo3::{pymodule, types::PyModule, PyResult};
|
||||
|
@ -64,6 +64,9 @@ fn lasprs(m: &Bound<'_, PyModule>) -> PyResult<()> {
|
||||
m.add_class::<slm::SLM>()?;
|
||||
m.add_class::<ps::WindowType>()?;
|
||||
m.add_class::<ps::Overlap>()?;
|
||||
m.add_class::<ps::ApsMode>()?;
|
||||
m.add_class::<ps::ApsSettings>()?;
|
||||
m.add_class::<ps::AvPowerSpectra>()?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
209
src/ps/aps.rs
209
src/ps/aps.rs
@ -1,198 +1,25 @@
|
||||
use super::timebuffer::TimeBuffer;
|
||||
use super::CrossPowerSpecra;
|
||||
use super::*;
|
||||
use super::{timebuffer::TimeBuffer, CrossPowerSpecra};
|
||||
use crate::{config::*, TransferFunction, ZPKModel};
|
||||
use anyhow::{bail, Error, Result};
|
||||
use derive_builder::Builder;
|
||||
use freqweighting::FreqWeighting;
|
||||
|
||||
/// All settings used for computing averaged power spectra using Welch' method.
|
||||
#[derive(Builder, Clone)]
|
||||
#[builder(build_fn(validate = "Self::validate", error = "Error"))]
|
||||
pub struct ApsSettings {
|
||||
/// Mode of computation, see [ApsMode].
|
||||
#[builder(default)]
|
||||
mode: ApsMode,
|
||||
/// Overlap in time segments. See [Overlap].
|
||||
#[builder(default)]
|
||||
overlap: Overlap,
|
||||
/// Window applied to time segments. See [WindowType].
|
||||
#[builder(default)]
|
||||
windowType: WindowType,
|
||||
/// Kind of freqency weighting. Defaults to Z
|
||||
#[builder(default)]
|
||||
freqWeightingType: FreqWeighting,
|
||||
/// FFT Length
|
||||
nfft: usize,
|
||||
/// Sampling frequency
|
||||
fs: Flt,
|
||||
}
|
||||
|
||||
impl ApsSettingsBuilder {
|
||||
fn validate(&self) -> Result<()> {
|
||||
if !self.fs.is_some() {
|
||||
bail!("Sampling frequency not given");
|
||||
}
|
||||
let fs = self.fs.unwrap();
|
||||
|
||||
if !fs.is_normal() {
|
||||
bail!("Sampling frequency not a normal number")
|
||||
}
|
||||
if fs <= 0.0 {
|
||||
bail!("Invalid sampling frequency given as parameter");
|
||||
}
|
||||
|
||||
if self.nfft.is_none() {
|
||||
bail!("nfft not specified")
|
||||
};
|
||||
let nfft = self.nfft.unwrap();
|
||||
if nfft % 2 != 0 {
|
||||
bail!("NFFT should be even")
|
||||
}
|
||||
if nfft == 0 {
|
||||
bail!("Invalid NFFT, should be > 0.")
|
||||
}
|
||||
// Perform some checks on ApsMode
|
||||
if let Some(ApsMode::ExponentialWeighting { tau }) = self.mode {
|
||||
if tau <= 0.0 {
|
||||
bail!("Invalid time weighting constant [s]. Should be > 0 if given.");
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
impl ApsSettings {
|
||||
/// Returns nfft
|
||||
pub fn nfft(&self) -> usize {
|
||||
self.nfft
|
||||
}
|
||||
fn get_overlap_keep(&self) -> usize {
|
||||
self.validate_get_overlap_keep().unwrap()
|
||||
}
|
||||
/// Returns the amount of samples to `keep` in the time buffer when
|
||||
/// overlapping time segments using [TimeBuffer].
|
||||
fn validate_get_overlap_keep(&self) -> Result<usize> {
|
||||
let nfft = self.nfft;
|
||||
let overlap_keep = match self.overlap {
|
||||
Overlap::Number { N } if N >= nfft => {
|
||||
bail!("Invalid overlap number of samples. Should be < nfft, which is {nfft}.")
|
||||
}
|
||||
// Keep 1 sample, if overlap is 1 sample etc.
|
||||
Overlap::Number { N } if N < nfft => N,
|
||||
|
||||
// If overlap percentage is >= 100, or < 0.0 its an error
|
||||
Overlap::Percentage { pct } if !(0.0..100.).contains(&pct) => {
|
||||
bail!("Invalid overlap percentage. Should be >= 0. And < 100.")
|
||||
}
|
||||
// If overlap percentage is 0, this gives
|
||||
Overlap::Percentage { pct } => ((pct * nfft as Flt) / 100.) as usize,
|
||||
Overlap::NoOverlap {} => 0,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
if overlap_keep >= nfft {
|
||||
bail!("Computed overlap results in invalid number of overlap samples. Please make sure the FFT length is large enough, when high overlap percentages are required.");
|
||||
}
|
||||
Ok(overlap_keep)
|
||||
}
|
||||
|
||||
/// Return a reasonable acoustic default with a frequency resolution around
|
||||
/// ~ 10 Hz, where nfft is still an integer power of 2.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If `fs` is something odd, i.e. < 1 kHz, or higher than 1 MHz.
|
||||
///
|
||||
pub fn reasonableAcousticDefault(fs: Flt, mode: ApsMode) -> Result<ApsSettings> {
|
||||
if fs < 1e3 || fs > 1e6 {
|
||||
bail!("Sampling frequency for reasonable acoustic data is >= 1 kHz and <= 1 MHz.");
|
||||
}
|
||||
let fs_div_10_rounded = (fs / 10.) as u32;
|
||||
|
||||
// 2^30 is about 1 million. We search for a two-power of an nfft that is
|
||||
// the closest to fs/10. The frequency resolution is about fs/nfft.
|
||||
let nfft = (0..30).map(|i| 2u32.pow(i) - fs_div_10_rounded).fold(
|
||||
// Start wth a value that is always too large
|
||||
fs as u32 * 10,
|
||||
|cur, new| cur.min(new),
|
||||
) as usize;
|
||||
|
||||
Ok(ApsSettings {
|
||||
mode,
|
||||
fs,
|
||||
nfft,
|
||||
windowType: WindowType::default(),
|
||||
overlap: Overlap::default(),
|
||||
freqWeightingType: FreqWeighting::default(),
|
||||
})
|
||||
}
|
||||
|
||||
/// Return sampling frequency
|
||||
pub fn fs(&self) -> Flt {
|
||||
self.fs
|
||||
}
|
||||
|
||||
/// Return Nyquist frequency
|
||||
pub fn fnyq(&self) -> Flt {
|
||||
self.fs() / 2.
|
||||
}
|
||||
|
||||
/// Returns a single-sided frequency array corresponding to points in Power
|
||||
/// spectra computation.
|
||||
pub fn getFreq(&self) -> Array1<Flt> {
|
||||
let df = self.fs / self.nfft as Flt;
|
||||
let K = self.nfft / 2 + 1;
|
||||
Array1::linspace(0., (K - 1) as Flt * df, K)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// The 'mode' used in computing averaged power spectra. When providing data in
|
||||
/// blocks to the [AvPowerSpectra] the resulting 'current estimate' responds
|
||||
/// differently, depending on the model.
|
||||
#[derive(Copy, Clone, PartialEq)]
|
||||
#[cfg_attr(feature = "python-bindings", pyclass)]
|
||||
pub enum ApsMode {
|
||||
/// Averaged over all data provided. New averages can be created by calling
|
||||
/// `AvPowerSpectra::reset()`
|
||||
AllAveraging {},
|
||||
/// In this mode, the `AvPowerSpectra` works a bit like a sound level meter,
|
||||
/// where new data is weighted with old data, and old data exponentially
|
||||
/// backs off. This mode only makes sense when `tau >> nfft/fs`
|
||||
ExponentialWeighting {
|
||||
/// Time weighting constant, follows convention of Sound Level Meters.
|
||||
/// Means the data is approximately low-pass filtered with a cut-off
|
||||
/// frequency f_c of s/tau ≅ 1 → f_c = (2 * pi * tau)^-1.
|
||||
tau: Flt,
|
||||
},
|
||||
/// Spectrogram mode. Only returns the latest estimate(s).
|
||||
Spectrogram {},
|
||||
}
|
||||
impl Default for ApsMode {
|
||||
fn default() -> Self {
|
||||
ApsMode::AllAveraging {}
|
||||
}
|
||||
}
|
||||
#[cfg(feature = "python-bindings")]
|
||||
#[cfg_attr(feature = "python-bindings", pymethods)]
|
||||
impl ApsMode {
|
||||
#[inline]
|
||||
fn __eq__(&self, other: &Self) -> bool {
|
||||
self == other
|
||||
}
|
||||
}
|
||||
|
||||
/// Averaged power spectra computing engine
|
||||
/// Used to compute power spectra estimations on
|
||||
/// long datasets, where nfft << length of data. This way, the variance of a
|
||||
/// single periodogram is suppressed with increasing number of averages.
|
||||
///
|
||||
/// For more information, see the book on numerical recipes.
|
||||
///
|
||||
|
||||
#[cfg(feature = "python-bindings")]
|
||||
#[cfg_attr(feature = "python-bindings", pyclass)]
|
||||
#[derive(Debug)]
|
||||
|
||||
pub struct AvPowerSpectra {
|
||||
// Power spectra estimator for single block
|
||||
ps: PowerSpectra,
|
||||
|
||||
// Settings for computing power spectra, see [ApsSettings]
|
||||
settings: ApsSettings,
|
||||
|
||||
// The number of samples to keep in the time buffer when overlapping time
|
||||
@ -454,6 +281,28 @@ impl AvPowerSpectra {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "python-bindings")]
|
||||
#[cfg_attr(feature = "python-bindings", pymethods)]
|
||||
impl AvPowerSpectra {
|
||||
#[new]
|
||||
fn new_py(s: ApsSettings) -> AvPowerSpectra {
|
||||
AvPowerSpectra::new(s)
|
||||
}
|
||||
|
||||
#[pyo3(name = "compute")]
|
||||
fn compute_py<'py>(
|
||||
&mut self,
|
||||
py: Python<'py>,
|
||||
dat: PyArrayLike2<Flt>,
|
||||
) -> Bound<'py, PyArray3<Cflt>> {
|
||||
let dat = dat.as_array();
|
||||
if let Some(res) = self.compute_last(dat) {
|
||||
let res = res.clone();
|
||||
return res.to_pyarray_bound(py);
|
||||
}
|
||||
panic!("No data!");
|
||||
}
|
||||
}
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use approx::assert_abs_diff_eq;
|
||||
|
35
src/ps/apsmode.rs
Normal file
35
src/ps/apsmode.rs
Normal file
@ -0,0 +1,35 @@
|
||||
use crate::config::*;
|
||||
/// The 'mode' used in computing averaged power spectra. When providing data in
|
||||
/// blocks to the [AvPowerSpectra] the resulting 'current estimate' responds
|
||||
/// differently, depending on the model.
|
||||
#[derive(Copy, Clone, PartialEq, Debug)]
|
||||
#[cfg_attr(feature = "python-bindings", pyclass)]
|
||||
pub enum ApsMode {
|
||||
/// Averaged over all data provided. New averages can be created by calling
|
||||
/// `AvPowerSpectra::reset()`
|
||||
AllAveraging {},
|
||||
/// In this mode, the `AvPowerSpectra` works a bit like a sound level meter,
|
||||
/// where new data is weighted with old data, and old data exponentially
|
||||
/// backs off. This mode only makes sense when `tau >> nfft/fs`
|
||||
ExponentialWeighting {
|
||||
/// Time weighting constant, follows convention of Sound Level Meters.
|
||||
/// Means the data is approximately low-pass filtered with a cut-off
|
||||
/// frequency f_c of s/tau ≅ 1 → f_c = (2 * pi * tau)^-1.
|
||||
tau: Flt,
|
||||
},
|
||||
/// Spectrogram mode. Only returns the latest estimate(s).
|
||||
Spectrogram {},
|
||||
}
|
||||
impl Default for ApsMode {
|
||||
fn default() -> Self {
|
||||
ApsMode::AllAveraging {}
|
||||
}
|
||||
}
|
||||
#[cfg(feature = "python-bindings")]
|
||||
#[cfg_attr(feature = "python-bindings", pymethods)]
|
||||
impl ApsMode {
|
||||
#[inline]
|
||||
fn __eq__(&self, other: &Self) -> bool {
|
||||
self == other
|
||||
}
|
||||
}
|
168
src/ps/apssettings.rs
Normal file
168
src/ps/apssettings.rs
Normal file
@ -0,0 +1,168 @@
|
||||
use super::*;
|
||||
use crate::config::*;
|
||||
use anyhow::{bail, Error, Result};
|
||||
use derive_builder::Builder;
|
||||
|
||||
/// All settings used for computing averaged power spectra using Welch' method.
|
||||
#[derive(Builder, Clone, Debug)]
|
||||
#[cfg_attr(feature = "python-bindings", pyclass)]
|
||||
#[builder(build_fn(validate = "Self::validate", error = "Error"))]
|
||||
pub struct ApsSettings {
|
||||
/// Mode of computation, see [ApsMode].
|
||||
#[builder(default)]
|
||||
pub mode: ApsMode,
|
||||
/// Overlap in time segments. See [Overlap].
|
||||
#[builder(default)]
|
||||
pub overlap: Overlap,
|
||||
/// Window applied to time segments. See [WindowType].
|
||||
#[builder(default)]
|
||||
pub windowType: WindowType,
|
||||
/// Kind of freqency weighting. Defaults to Z
|
||||
#[builder(default)]
|
||||
pub freqWeightingType: FreqWeighting,
|
||||
/// FFT Length
|
||||
pub nfft: usize,
|
||||
/// Sampling frequency
|
||||
pub fs: Flt,
|
||||
}
|
||||
|
||||
impl ApsSettingsBuilder {
|
||||
fn validate(&self) -> Result<()> {
|
||||
if !self.fs.is_some() {
|
||||
bail!("Sampling frequency not given");
|
||||
}
|
||||
let fs = self.fs.unwrap();
|
||||
|
||||
if !fs.is_normal() {
|
||||
bail!("Sampling frequency not a normal number")
|
||||
}
|
||||
if fs <= 0.0 {
|
||||
bail!("Invalid sampling frequency given as parameter");
|
||||
}
|
||||
|
||||
if self.nfft.is_none() {
|
||||
bail!("nfft not specified")
|
||||
};
|
||||
let nfft = self.nfft.unwrap();
|
||||
if nfft % 2 != 0 {
|
||||
bail!("NFFT should be even")
|
||||
}
|
||||
if nfft == 0 {
|
||||
bail!("Invalid NFFT, should be > 0.")
|
||||
}
|
||||
// Perform some checks on ApsMode
|
||||
if let Some(ApsMode::ExponentialWeighting { tau }) = self.mode {
|
||||
if tau <= 0.0 {
|
||||
bail!("Invalid time weighting constant [s]. Should be > 0 if given.");
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "python-bindings")]
|
||||
#[cfg_attr(feature = "python-bindings", pymethods)]
|
||||
impl ApsSettings {
|
||||
#[new]
|
||||
fn new(
|
||||
mode: ApsMode,
|
||||
overlap: Overlap,
|
||||
windowType: WindowType,
|
||||
freqWeightingType: FreqWeighting,
|
||||
nfft: usize,
|
||||
fs: Flt,
|
||||
) -> ApsSettings {
|
||||
ApsSettings {
|
||||
mode,
|
||||
overlap,
|
||||
windowType,
|
||||
freqWeightingType,
|
||||
nfft,
|
||||
fs,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ApsSettings {
|
||||
/// Returns the amount of samples to keep in overlapping blocks of power
|
||||
/// spectra.
|
||||
pub fn get_overlap_keep(&self) -> usize {
|
||||
self.validate_get_overlap_keep().unwrap()
|
||||
}
|
||||
|
||||
/// Returns the amount of samples to `keep` in the time buffer when
|
||||
/// overlapping time segments using [TimeBuffer].
|
||||
fn validate_get_overlap_keep(&self) -> Result<usize> {
|
||||
let nfft = self.nfft;
|
||||
let overlap_keep = match self.overlap {
|
||||
Overlap::Number { N } if N >= nfft => {
|
||||
bail!("Invalid overlap number of samples. Should be < nfft, which is {nfft}.")
|
||||
}
|
||||
// Keep 1 sample, if overlap is 1 sample etc.
|
||||
Overlap::Number { N } if N < nfft => N,
|
||||
|
||||
// If overlap percentage is >= 100, or < 0.0 its an error
|
||||
Overlap::Percentage { pct } if !(0.0..100.).contains(&pct) => {
|
||||
bail!("Invalid overlap percentage. Should be >= 0. And < 100.")
|
||||
}
|
||||
// If overlap percentage is 0, this gives
|
||||
Overlap::Percentage { pct } => ((pct * nfft as Flt) / 100.) as usize,
|
||||
Overlap::NoOverlap {} => 0,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
if overlap_keep >= nfft {
|
||||
bail!("Computed overlap results in invalid number of overlap samples. Please make sure the FFT length is large enough, when high overlap percentages are required.");
|
||||
}
|
||||
Ok(overlap_keep)
|
||||
}
|
||||
|
||||
/// Return a reasonable acoustic default with a frequency resolution around
|
||||
/// ~ 10 Hz, where nfft is still an integer power of 2.
|
||||
///
|
||||
/// # Errors
|
||||
///
|
||||
/// If `fs` is something odd, i.e. < 1 kHz, or higher than 1 MHz.
|
||||
///
|
||||
pub fn reasonableAcousticDefault(fs: Flt, mode: ApsMode) -> Result<ApsSettings> {
|
||||
if fs < 1e3 || fs > 1e6 {
|
||||
bail!("Sampling frequency for reasonable acoustic data is >= 1 kHz and <= 1 MHz.");
|
||||
}
|
||||
let fs_div_10_rounded = (fs / 10.) as u32;
|
||||
|
||||
// 2^30 is about 1 million. We search for a two-power of an nfft that is
|
||||
// the closest to fs/10. The frequency resolution is about fs/nfft.
|
||||
let nfft = (0..30).map(|i| 2u32.pow(i) - fs_div_10_rounded).fold(
|
||||
// Start wth a value that is always too large
|
||||
fs as u32 * 10,
|
||||
|cur, new| cur.min(new),
|
||||
) as usize;
|
||||
|
||||
Ok(ApsSettings {
|
||||
mode,
|
||||
fs,
|
||||
nfft,
|
||||
windowType: WindowType::default(),
|
||||
overlap: Overlap::default(),
|
||||
freqWeightingType: FreqWeighting::default(),
|
||||
})
|
||||
}
|
||||
|
||||
/// Return sampling frequency
|
||||
pub fn fs(&self) -> Flt {
|
||||
self.fs
|
||||
}
|
||||
|
||||
/// Return Nyquist frequency
|
||||
pub fn fnyq(&self) -> Flt {
|
||||
self.fs / 2.
|
||||
}
|
||||
|
||||
/// Returns a single-sided frequency array corresponding to points in Power
|
||||
/// spectra computation.
|
||||
pub fn getFreq(&self) -> Array1<Flt> {
|
||||
let df = self.fs / self.nfft as Flt;
|
||||
let K = self.nfft / 2 + 1;
|
||||
Array1::linspace(0., (K - 1) as Flt * df, K)
|
||||
}
|
||||
}
|
@ -14,6 +14,11 @@ pub struct FFT {
|
||||
// nfft stored as float, this is how it is required most often
|
||||
nfftF: Flt,
|
||||
}
|
||||
impl Debug for FFT {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("Forward FFT engine, lenfth: {self.nfftF}").finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl FFT {
|
||||
/// Create new FFT from given nfft
|
||||
|
@ -25,6 +25,9 @@ impl FreqWeighting {
|
||||
fn all() -> Vec<Self> {
|
||||
Self::iter().collect()
|
||||
}
|
||||
fn __str__(&self) -> String {
|
||||
format!("{self}-weighting")
|
||||
}
|
||||
#[staticmethod]
|
||||
#[pyo3(name = "default")]
|
||||
fn default_py() -> Self {
|
||||
|
@ -10,12 +10,16 @@ mod ps;
|
||||
mod timebuffer;
|
||||
mod window;
|
||||
mod freqweighting;
|
||||
mod apssettings;
|
||||
mod overlap;
|
||||
mod apsmode;
|
||||
use crate::config::*;
|
||||
|
||||
|
||||
pub use freqweighting::FreqWeighting;
|
||||
pub use overlap::Overlap;
|
||||
pub use aps::{ApsSettings, ApsSettingsBuilder,ApsMode, AvPowerSpectra};
|
||||
pub use apssettings::{ApsSettings, ApsSettingsBuilder};
|
||||
pub use apsmode::ApsMode;
|
||||
pub use aps::AvPowerSpectra;
|
||||
pub use ps::{CrossPowerSpecra, PowerSpectra, CPSResult};
|
||||
pub use window::{Window, WindowType};
|
||||
|
@ -85,6 +85,7 @@ impl CrossPowerSpecra for CPSResult {
|
||||
/// example the computations of spectrograms, or Welch' method of spectral
|
||||
/// estimation.
|
||||
///
|
||||
#[derive(Debug)]
|
||||
pub struct PowerSpectra {
|
||||
/// Window used in estimator. The actual Window in here is normalized with
|
||||
/// the square root of the Window power. This safes one division when
|
||||
|
@ -8,7 +8,7 @@ use std::collections::VecDeque;
|
||||
/// TimeBuffer, storage to add blocks of data in a ring buffer, that can be
|
||||
/// extracted by blocks of other size. Also, we can keep samples in a buffer to
|
||||
/// create, for example, overlapping windows of time data.
|
||||
#[derive(Default)]
|
||||
#[derive(Default, Debug)]
|
||||
pub struct TimeBuffer {
|
||||
data: Vec<VecDeque<Flt>>,
|
||||
}
|
||||
|
@ -108,7 +108,7 @@ impl WindowType {
|
||||
|
||||
|
||||
/// Window (taper) computed from specified window type.
|
||||
#[derive(Clone)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Window {
|
||||
/// The enum from which it is generated
|
||||
pub w: WindowType,
|
||||
|
Loading…
Reference in New Issue
Block a user