use crate::config::*; use ndarray::parallel::prelude::*; use num::pow::Pow; use reinterpret::reinterpret_slice; use std::sync::Arc; use std::usize; use crate::Dcol; use super::window::*; use super::fft::FFT; use std::mem::MaybeUninit; use realfft::{RealFftPlanner, RealToComplex}; /// Cross power spectra, which is a 3D array, with the following properties: /// /// - The first index is the frequency index, starting at DC, ending at nfft/2. /// - The second, and third index result in `[i,j]` = C_ij = p_i * conj(p_j) /// pub type CPSResult = Array3; /// Extra typical methods that are of use for 3D-arrays of complex numbers, that /// are typically implemented as cross-power spectra. pub trait CrossPowerSpecra { /// Returns the autopower for a single channel, as a array of real values /// (imaginary part is zero and is stripped off). /// /// # Args /// /// - `ch` - The channel number to compute autopower for. fn ap(&self, ch: usize) -> Array1; /// Returns the transfer function from `chi` to `chj`, that is ~ Pj/Pi a /// single channel, as a array of complex numbers. /// /// # Args /// /// - `chi` - The channel number of the *denominator* /// - `chj` - The channel number of the *numerator* /// - `chRef` - Optional, a reference channel that has the lowest noise. If /// not given, the average of the two autopowers is used, which gives /// always a worse result than when two a low noise reference channel is /// used. /// fn tf(&self, chi: usize, chj: usize, chRef: Option) -> Array1; } impl CrossPowerSpecra for CPSResult { fn ap(&self, ch: usize) -> Array1 { // Slice out one value for all frequencies, map to only real part, and // return. self.slice(s![.., ch, ch]).mapv(|f| f.re) } // fn apsp fn tf(&self, chi: usize, chj: usize, chRef: Option) -> Array1 { match chRef { None => { let cij = self.slice(s![.., chi, chj]); let cii = self.slice(s![.., chi, chi]); let cjj = self.slice(s![.., chj, chj]); Zip::from(cij) .and(cii) .and(cjj) .par_map_collect(|cij, cii, cjj| 0.5 * (cij.conj() / cii + cjj / cij)) } Some(chr) => { let cir = self.slice(s![.., chi, chr]); let cjr = self.slice(s![.., chj, chr]); Zip::from(cir) .and(cjr) .par_map_collect(|cir, cjr| cjr / cir) } } } } /// Single-sided (cross)power spectra estimator, that uses a Windowed FFT to estimate cross-power /// spectra. Window functions are documented in the `window` module. Note that /// directly using this power spectra estimator is generally not useful as it is /// basically the periodogram estimator, with its high variance. /// /// This power spectrum estimator is instead used as a building block for for /// example the computations of spectrograms, or Welch' method of spectral /// estimation. /// pub struct PowerSpectra { /// Window used in estimator pub window: Window, /// The window power, is corrected for in power spectra estimants pub sqrt_win_pwr: Flt, ffts: Vec, // Time-data buffer used for multiplying signals with Window timedata: Array2, // Frequency domain buffer used for storage of signal FFt's in inbetween stage freqdata: Array2, } impl PowerSpectra { /// Returns the FFT length used in power spectra computations pub fn nfft(&self) -> usize { self.window.win.len() } /// Create new power spectra estimator. Uses FFT size from window length /// /// # Panics /// /// - If win.len() != nfft /// - if nfft == 0 /// /// # Args /// /// - `window` - A `Window` struct, from which NFFT is also used. /// pub fn newFromWindow(window: Window) -> PowerSpectra { let nfft = window.win.len(); let win_pwr = window.win.mapv(|w| w.powi(2)).sum() / (nfft as Flt); assert!(nfft > 0); assert!(nfft % 2 == 0); let mut planner = RealFftPlanner::::new(); let fft = planner.plan_fft_forward(nfft); let Fft = FFT::new(fft); PowerSpectra { window, sqrt_win_pwr: Flt::sqrt(win_pwr), ffts: vec![Fft], timedata: Array2::zeros((nfft, 1)), freqdata: Array2::zeros((nfft / 2 + 1, 1)), } } /// Compute FFTs of input channel data. Stores the scaled FFT data in /// self.freqdata. fn compute_ffts(&mut self, timedata: ArrayView2) -> &Array2 { let (n, nch) = timedata.dim(); let nfft = self.nfft(); assert!(n == nfft); // Make sure enough fft engines are available while nch > self.ffts.len() { self.ffts.push(self.ffts.last().unwrap().clone()); self.freqdata .push_column(Ccol::from_vec(vec![Cflt::new(0., 0.); nfft / 2 + 1]).view()) .unwrap(); self.timedata.push_column(Dcol::zeros(nfft).view()).unwrap(); } assert!(n == self.nfft()); assert!(n == self.window.win.len()); let sqrt_win_pwr = self.sqrt_win_pwr; // Multiply signals with window function, and compute fft's for each channel Zip::from(timedata.axis_iter(Axis(1))) .and(self.timedata.axis_iter_mut(Axis(1))) .and(&mut self.ffts) .and(self.freqdata.axis_iter_mut(Axis(1))) .par_for_each(|time_in,mut time, fft, mut freq| { // Multiply with window and copy over to local time data buffer azip!((t in &mut time, &tin in time_in, &win in &self.window.win) *t=tin*win/sqrt_win_pwr); let tslice = time.as_slice().unwrap(); let fslice = freq.as_slice_mut().unwrap(); fft.process(tslice, fslice); }); &self.freqdata } /// Compute cross power spectra from input time data. First axis is /// frequency, second axis is channel i, third axis is channel j. /// /// # Panics /// /// - When `timedata.nrows() != self.nfft()` /// /// # Args /// /// * `tdata` - Input time data. This is a 2D array, where the first axis is /// time and the second axis is the channel number. /// /// # Returns /// /// - 3D complex array of signal cross-powers with the following shape /// (nfft/2+1,timedata.ncols(), timedata.ncols()). Its content is: /// [freq_index, chi, chj] = crosspower: chi*conj(chj) /// pub fn compute<'a, T>(&mut self, tdata: T) -> CPSResult where T: AsArray<'a, Flt, Ix2>, { let tdata = tdata.into(); let nfft = self.nfft(); let clen = nfft / 2 + 1; if tdata.nrows() != nfft { panic!("Invalid timedata length! Should be equal to nfft={nfft}"); } let nchannels = tdata.ncols(); // Compute fft of input data, and store in self.freqdata let fd = self.compute_ffts(tdata); let fdconj = fd.mapv(|c| c.conj()); let result = Array3::uninit((clen, nchannels, nchannels)); let mut result: Array3 = unsafe { result.assume_init() }; // Loop over result axis one and channel i IN PARALLEL Zip::from(result.axis_iter_mut(Axis(1))) .and(fd.axis_iter(Axis(1))) .par_for_each(|mut out, chi| { // out: channel i of output 3D array, channel j all // chi: channel i Zip::from(out.axis_iter_mut(Axis(1))) .and(fdconj.axis_iter(Axis(1))) .for_each(|mut out, chj| { // out: channel i, j // chj: channel j conjugated Zip::from(&mut out) .and(chi) .and(chj) .for_each(|out, chi, chjc| { // Loop over frequency components *out = 0.5 * chi * chjc; }); // The DC component has no 0.5 correction, as it only // occurs ones in a (double-sided) power spectrum. So // here we undo the 0.5 of 4 lines above here. out[0] *= 2.; out[clen - 1] *= 2.; }); }); result } } #[cfg(test)] mod test { use approx::{abs_diff_eq, assert_relative_eq, assert_ulps_eq, ulps_eq}; // For absolute value use num::complex::ComplexFloat; use rand_distr::StandardNormal; /// Generate a sine wave at the order i fn generate_sinewave(nfft: usize, order: usize) -> Dcol { Dcol::from_iter( (0..nfft).map(|i| Flt::sin(i as Flt / (nfft) as Flt * order as Flt * 2. * pi)), ) } /// Generate a sine wave at the order i fn generate_cosinewave(nfft: usize, order: usize) -> Dcol { Dcol::from_iter( (0..nfft).map(|i| Flt::cos(i as Flt / (nfft) as Flt * order as Flt * 2. * pi)), ) } use super::*; #[test] /// Test whether DC part of single-sided FFT has right properties fn test_fft_DC() { const nfft: usize = 10; let rect = Window::new(WindowType::Rect, nfft); let mut ps = PowerSpectra::newFromWindow(rect); let td = Dmat::ones((nfft, 1)); let fd = ps.compute_ffts(td.view()); // println!("{:?}", fd); assert_relative_eq!(fd[(0, 0)].re, 1.); assert_relative_eq!(fd[(0, 0)].im, 0.); let abs_fneq0 = fd.slice(s![1.., 0]).sum(); assert_relative_eq!(abs_fneq0.re, 0.); assert_relative_eq!(abs_fneq0.im, 0.); } /// Test whether AC part of single-sided FFT has right properties #[test] fn test_fft_AC() { const nfft: usize = 256; let rect = Window::new(WindowType::Rect, nfft); let mut ps = PowerSpectra::newFromWindow(rect); // Start with a time signal let mut t: Dmat = Dmat::default((nfft, 0)); t.push_column(generate_sinewave(nfft, 1).view()).unwrap(); // println!("{:?}", t); let fd = ps.compute_ffts(t.view()); // println!("{:?}", fd); assert_relative_eq!(fd[(0, 0)].re, 0., epsilon = Flt::EPSILON * nfft as Flt); assert_relative_eq!(fd[(0, 0)].im, 0., epsilon = Flt::EPSILON * nfft as Flt); assert_relative_eq!(fd[(1, 0)].re, 0., epsilon = Flt::EPSILON * nfft as Flt); assert_ulps_eq!(fd[(1, 0)].im, -1., epsilon = Flt::EPSILON * nfft as Flt); // Sum of all terms at frequency index 2 to ... let sum_higher_freqs_abs = Cflt::abs(fd.slice(s![2.., 0]).sum()); assert_ulps_eq!( sum_higher_freqs_abs, 0., epsilon = Flt::EPSILON * nfft as Flt ); } /// Thest whether power spectra scale properly. Signals with amplitude of 1 /// should come back with a power of 0.5. DC offsets should come in as /// value^2 at frequency index 0. #[test] fn test_ps_scale() { const nfft: usize = 124; let rect = Window::new(WindowType::Rect, nfft); let mut ps = PowerSpectra::newFromWindow(rect); // Start with a time signal let mut t: Dmat = Dmat::default((nfft, 0)); t.push_column(generate_cosinewave(nfft, 1).view()).unwrap(); let dc_component = 0.25; let dc_power = dc_component.pow(2); t.mapv_inplace(|t| t + dc_component); let power = ps.compute(t.view()); assert_relative_eq!( power[(0, 0, 0)].re, dc_power, epsilon = Flt::EPSILON * nfft as Flt ); assert_relative_eq!( power[(1, 0, 0)].re, 0.5, epsilon = Flt::EPSILON * nfft as Flt ); assert_relative_eq!( power[(1, 0, 0)].im, 0.0, epsilon = Flt::EPSILON * nfft as Flt ); } use ndarray_rand::RandomExt; // Test parseval's theorem for some random data #[test] fn test_parseval() { const nfft: usize = 512; let rect = Window::new(WindowType::Rect, nfft); let mut ps = PowerSpectra::newFromWindow(rect); // Start with a time signal let t: Dmat = Dmat::random((nfft, 1), StandardNormal); let tavg = t.sum() / (nfft as Flt); let t_dc_power = tavg.powi(2); // println!("dc power in time domain: {:?}", t_dc_power); let signal_pwr = t.mapv(|t| t.powi(2)).sum() / (nfft as Flt); // println!("Total signal power in time domain: {:?} ", signal_pwr); let power = ps.compute(t.view()); // println!("freq domain power: {:?}", power); let fpower = power.sum().abs(); assert_ulps_eq!( t_dc_power, power[(0, 0, 0)].abs(), epsilon = Flt::EPSILON * (nfft as Flt).powi(2) ); assert_ulps_eq!( signal_pwr, fpower, epsilon = Flt::EPSILON * (nfft as Flt).powi(2) ); } // Test parseval's theorem for some random data #[test] fn test_parseval_with_window() { // A sufficiently high value is required here, to show that it works. const nfft: usize = 2usize.pow(20); let window = Window::new(WindowType::Hann, nfft); // let window = Window::new(WindowType::Rect, nfft); let mut ps = PowerSpectra::newFromWindow(window); // Start with a time signal let t: Dmat = 2. * Dmat::random((nfft, 1), StandardNormal); let tavg = t.sum() / (nfft as Flt); let t_dc_power = tavg.powi(2); // println!("dc power in time domain: {:?}", t_dc_power); let signal_pwr = t.mapv(|t| t.powi(2)).sum() / (nfft as Flt); // println!("Total signal power in time domain: {:?} ", signal_pwr); let power = ps.compute(t.view()); // println!("freq domain power: {:?}", power); let fpower = power.sum().abs(); assert_ulps_eq!( t_dc_power, power[(0, 0, 0)].abs(), epsilon = Flt::EPSILON * (nfft as Flt).powi(2) ); // This one fails when nfft is too short. assert_ulps_eq!(signal_pwr, fpower, epsilon = 2e-2); } }