lasprs/src/ps/ps.rs

421 lines
15 KiB
Rust

use crate::config::*;
use ndarray::parallel::prelude::*;
use num::pow::Pow;
use reinterpret::reinterpret_slice;
use std::sync::Arc;
use std::usize;
use crate::Dcol;
use super::fft::FFT;
use super::window::*;
use std::mem::MaybeUninit;
use realfft::{RealFftPlanner, RealToComplex};
/// Cross power spectra, which is a 3D array, with the following properties:
///
/// - The first index is the frequency index, starting at DC, ending at nfft/2.
/// - The second, and third index result in `[i,j]` = C_ij = p_i * conj(p_j)
///
pub type CPSResult = Array3<Cflt>;
/// Extra typical methods that are of use for 3D-arrays of complex numbers, that
/// are typically implemented as cross-power spectra.
pub trait CrossPowerSpecra {
/// Returns the autopower for a single channel, as a array of real values
/// (imaginary part is zero and is stripped off).
///
/// # Args
///
/// - `ch` - The channel number to compute autopower for.
fn ap(&self, ch: usize) -> Array1<Flt>;
/// Returns the transfer function from `chi` to `chj`, that is ~ Pj/Pi a
/// single channel, as a array of complex numbers.
///
/// # Args
///
/// - `chi` - The channel number of the *denominator*
/// - `chj` - The channel number of the *numerator*
/// - `chRef` - Optional, a reference channel that has the lowest noise. If
/// not given, the average of the two autopowers is used, which gives
/// always a worse result than when two a low noise reference channel is
/// used.
///
fn tf(&self, chi: usize, chj: usize, chRef: Option<usize>) -> Array1<Cflt>;
}
impl CrossPowerSpecra for CPSResult {
fn ap(&self, ch: usize) -> Array1<Flt> {
// Slice out one value for all frequencies, map to only real part, and
// return.
self.slice(s![.., ch, ch]).mapv(|f| f.re)
}
// fn apsp
fn tf(&self, chi: usize, chj: usize, chRef: Option<usize>) -> Array1<Cflt> {
match chRef {
None => {
let cij = self.slice(s![.., chi, chj]);
let cii = self.slice(s![.., chi, chi]);
let cjj = self.slice(s![.., chj, chj]);
Zip::from(cij)
.and(cii)
.and(cjj)
.par_map_collect(|cij, cii, cjj| 0.5 * (cij.conj() / cii + cjj / cij))
}
Some(chr) => {
let cir = self.slice(s![.., chi, chr]);
let cjr = self.slice(s![.., chj, chr]);
Zip::from(cir)
.and(cjr)
.par_map_collect(|cir, cjr| cjr / cir)
}
}
}
}
/// Single-sided (cross)power spectra estimator, that uses a Windowed FFT to estimate cross-power
/// spectra. Window functions are documented in the `window` module. Note that
/// directly using this power spectra estimator is generally not useful as it is
/// basically the periodogram estimator, with its high variance.
///
/// This power spectrum estimator is instead used as a building block for for
/// example the computations of spectrograms, or Welch' method of spectral
/// estimation.
///
#[derive(Debug)]
pub struct PowerSpectra {
/// Window used in estimator. The actual Window in here is normalized with
/// the square root of the Window power. This safes one division when
/// processing time data.
pub window_normalized: Window,
ffts: Vec<FFT>,
// Time-data buffer used for multiplying signals with Window
timedata: Array2<Flt>,
// Frequency domain buffer used for storage of signal FFt's in inbetween stage
freqdata: Array2<Cflt>,
}
impl PowerSpectra {
/// Returns the FFT length used in power spectra computations
pub fn nfft(&self) -> usize {
self.window_normalized.win.len()
}
/// Create new power spectra estimator. Uses FFT size from window length
///
/// # Panics
///
/// - If win.len() != nfft
/// - if nfft == 0
///
/// # Args
///
/// - `window` - A `Window` struct, from which NFFT is also used.
///
pub fn newFromWindow(mut window: Window) -> PowerSpectra {
let nfft = window.win.len();
let win_pwr = window.win.mapv(|w| w.powi(2)).sum() / (nfft as Flt);
let sqrt_win_pwr = Flt::sqrt(win_pwr);
window.win.mapv_inplace(|v| v / sqrt_win_pwr);
assert!(nfft > 0);
assert!(nfft % 2 == 0);
let mut planner = RealFftPlanner::<Flt>::new();
let fft = planner.plan_fft_forward(nfft);
let Fft = FFT::new(fft);
PowerSpectra {
window_normalized: window,
ffts: vec![Fft],
timedata: Array2::zeros((nfft, 1)),
freqdata: Array2::zeros((nfft / 2 + 1, 1)),
}
}
/// Compute FFTs of input channel data. Stores the scaled FFT data in
/// self.freqdata.
fn compute_ffts(&mut self, timedata: ArrayView2<Flt>) -> ArrayView2<Cflt> {
assert!(timedata.nrows() > 0);
let (n, nch) = timedata.dim();
let nfft = self.nfft();
assert!(n == nfft);
// Make sure enough fft engines are available
while nch > self.ffts.len() {
self.ffts
.push(self.ffts.last().expect("FFT's should not be empty").clone());
self.freqdata
.push_column(Ccol::from_vec(vec![Cflt::new(0., 0.); nfft / 2 + 1]).view())
.unwrap();
self.timedata.push_column(Dcol::zeros(nfft).view()).unwrap();
}
assert!(n == self.nfft());
assert!(n == self.window_normalized.win.len());
// Multiply signals with window function, and compute fft's for each channel
Zip::from(timedata.axis_iter(Axis(1)))
.and(self.timedata.axis_iter_mut(Axis(1)))
.and(&mut self.ffts)
.and(self.freqdata.axis_iter_mut(Axis(1)))
.par_for_each(|time_in, mut time_tmp_storage, fft, mut freq| {
let DC = time_in.mean().unwrap();
azip!((t in &mut time_tmp_storage, &tin in time_in, &win in &self.window_normalized.win) {
// Substract DC value from time data, as this leaks into
// positive frequencies due to windowing.
// Multiply with window and copy over to local time data buffer
*t=(tin-DC)*win});
fft.process(&time_tmp_storage, &mut freq);
freq[0] = DC + 0. * I;
});
self.freqdata.view()
}
/// Compute cross power spectra from input time data. First axis is
/// frequency, second axis is channel i, third axis is channel j.
///
/// # Panics
///
/// - When `timedata.nrows() != self.nfft()`
///
/// # Args
///
/// * `tdata` - Input time data. This is a 2D array, where the first axis is
/// time and the second axis is the channel number.
///
/// # Returns
///
/// - 3D complex array of signal cross-powers with the following shape
/// (nfft/2+1,timedata.ncols(), timedata.ncols()). Its content is:
/// [freq_index, chi, chj] = crosspower: chi*conj(chj)
///
pub fn compute<'a, T>(&mut self, tdata: T) -> CPSResult
where
T: AsArray<'a, Flt, Ix2>,
{
let tdata = tdata.into();
let nfft = self.nfft();
let clen = nfft / 2 + 1;
if tdata.nrows() != nfft {
panic!("Invalid timedata length! Should be equal to nfft={nfft}");
}
let nchannels = tdata.ncols();
// Compute fft of input data, and store in self.freqdata
let fd = self.compute_ffts(tdata);
let fdconj = fd.mapv(|c| c.conj());
let result = Array3::uninit((clen, nchannels, nchannels));
let mut result: Array3<Cflt> = unsafe { result.assume_init() };
// Loop over result axis one and channel i IN PARALLEL
Zip::from(result.axis_iter_mut(Axis(1)))
.and(fd.axis_iter(Axis(1)))
.par_for_each(|mut out, chi| {
// out: channel i of output 3D array, channel j all
// chi: channel i
Zip::from(out.axis_iter_mut(Axis(1)))
.and(fdconj.axis_iter(Axis(1)))
.for_each(|mut out, chj| {
// out: channel i, j
// chj: channel j conjugated
Zip::from(&mut out)
.and(chi)
.and(chj)
.for_each(|out, chi, chjc| {
// Loop over frequency components
*out = 0.5 * chi * chjc;
});
// The DC component has no 0.5 correction, as it only
// occurs ones in a (double-sided) power spectrum. So
// here we undo the 0.5 of 4 lines above here.
out[0] *= 2.;
out[clen - 1] *= 2.;
});
});
result
}
}
#[cfg(test)]
mod test {
use approx::{abs_diff_eq, assert_relative_eq, assert_ulps_eq, ulps_eq};
// For absolute value
use num::complex::ComplexFloat;
/// Generate a sine wave at the order i
fn generate_sinewave(nfft: usize, order: usize) -> Dcol {
Dcol::from_iter(
(0..nfft).map(|i| Flt::sin(i as Flt / (nfft) as Flt * order as Flt * 2. * pi)),
)
}
/// Generate a sine wave at the order i
fn generate_cosinewave(nfft: usize, order: usize) -> Dcol {
Dcol::from_iter(
(0..nfft).map(|i| Flt::cos(i as Flt / (nfft) as Flt * order as Flt * 2. * pi)),
)
}
use crate::math::randNormal;
use super::*;
#[test]
/// Test whether DC part of single-sided FFT has right properties
fn test_fft_DC() {
const nfft: usize = 10;
let rect = Window::new(WindowType::Rect, nfft);
let mut ps = PowerSpectra::newFromWindow(rect);
let td = Dmat::ones((nfft, 1));
let fd = ps.compute_ffts(td.view());
// println!("{:?}", fd);
assert_relative_eq!(fd[(0, 0)].re, 1.);
assert_relative_eq!(fd[(0, 0)].im, 0.);
let abs_fneq0 = fd.slice(s![1.., 0]).sum();
assert_relative_eq!(abs_fneq0.re, 0.);
assert_relative_eq!(abs_fneq0.im, 0.);
}
/// Test whether AC part of single-sided FFT has right properties
#[test]
fn test_fft_AC() {
const nfft: usize = 256;
let rect = Window::new(WindowType::Rect, nfft);
let mut ps = PowerSpectra::newFromWindow(rect);
// Start with a time signal
let mut t: Dmat = Dmat::default((nfft, 0));
t.push_column(generate_sinewave(nfft, 1).view()).unwrap();
// println!("{:?}", t);
let fd = ps.compute_ffts(t.view());
// println!("{:?}", fd);
assert_relative_eq!(fd[(0, 0)].re, 0., epsilon = Flt::EPSILON * nfft as Flt);
assert_relative_eq!(fd[(0, 0)].im, 0., epsilon = Flt::EPSILON * nfft as Flt);
assert_relative_eq!(fd[(1, 0)].re, 0., epsilon = Flt::EPSILON * nfft as Flt);
assert_ulps_eq!(fd[(1, 0)].im, -1., epsilon = Flt::EPSILON * nfft as Flt);
// Sum of all terms at frequency index 2 to ...
let sum_higher_freqs_abs = Cflt::abs(fd.slice(s![2.., 0]).sum());
assert_ulps_eq!(
sum_higher_freqs_abs,
0.,
epsilon = Flt::EPSILON * nfft as Flt
);
}
/// Thest whether power spectra scale properly. Signals with amplitude of 1
/// should come back with a power of 0.5. DC offsets should come in as
/// value^2 at frequency index 0.
#[test]
fn test_ps_scale() {
const nfft: usize = 124;
let rect = Window::new(WindowType::Rect, nfft);
let mut ps = PowerSpectra::newFromWindow(rect);
// Start with a time signal
let mut t: Dmat = Dmat::default((nfft, 0));
t.push_column(generate_cosinewave(nfft, 1).view()).unwrap();
let dc_component = 0.25;
let dc_power = dc_component.pow(2);
t.mapv_inplace(|t| t + dc_component);
let power = ps.compute(t.view());
assert_relative_eq!(
power[(0, 0, 0)].re,
dc_power,
epsilon = Flt::EPSILON * nfft as Flt
);
assert_relative_eq!(
power[(1, 0, 0)].re,
0.5,
epsilon = Flt::EPSILON * nfft as Flt
);
assert_relative_eq!(
power[(1, 0, 0)].im,
0.0,
epsilon = Flt::EPSILON * nfft as Flt
);
}
// Test parseval's theorem for some random data
#[test]
fn test_parseval() {
const nfft: usize = 512;
let rect = Window::new(WindowType::Rect, nfft);
let mut ps = PowerSpectra::newFromWindow(rect);
// Start with a time signal
let t: Dmat = randNormal((nfft,1));
let tavg = t.sum() / (nfft as Flt);
let t_dc_power = tavg.powi(2);
// println!("dc power in time domain: {:?}", t_dc_power);
let signal_pwr = t.mapv(|t| t.powi(2)).sum() / (nfft as Flt);
// println!("Total signal power in time domain: {:?} ", signal_pwr);
let power = ps.compute(t.view());
// println!("freq domain power: {:?}", power);
let fpower = power.sum().abs();
assert_ulps_eq!(
t_dc_power,
power[(0, 0, 0)].abs(),
epsilon = Flt::EPSILON * (nfft as Flt).powi(2)
);
assert_ulps_eq!(
signal_pwr,
fpower,
epsilon = Flt::EPSILON * (nfft as Flt).powi(2)
);
}
// Test parseval's theorem for some random data
#[test]
fn test_parseval_with_window() {
// A sufficiently high value is required here, to show that it works.
const nfft: usize = 2usize.pow(20);
let window = Window::new(WindowType::Hann, nfft);
// let window = Window::new(WindowType::Rect, nfft);
let mut ps = PowerSpectra::newFromWindow(window);
// Start with a time signal
let t: Dmat = randNormal((nfft,1));
let tavg = t.sum() / (nfft as Flt);
let t_dc_power = tavg.powi(2);
// println!("dc power in time domain: {:?}", t_dc_power);
let signal_pwr = t.mapv(|t| t.powi(2)).sum() / (nfft as Flt);
// println!("Total signal power in time domain: {:?} ", signal_pwr);
let power = ps.compute(t.view());
// println!("freq domain power: {:?}", power);
let fpower = power.sum().abs();
assert_ulps_eq!(
t_dc_power,
power[(0, 0, 0)].abs(),
epsilon = Flt::EPSILON * (nfft as Flt).powi(2)
);
// This one fails when nfft is too short.
assert_ulps_eq!(signal_pwr, fpower, epsilon = 2e-2);
}
}