State as of 20240501
This commit is contained in:
parent
1bfe4e185f
commit
1052ec3b0d
@ -1,3 +1,6 @@
|
||||
# LRFTubes mathematical documentation
|
||||
|
||||
[![Build Status](https://drone.ascee.nl/api/badges/ASCEE/lrftubes_doc/status.svg)](https://drone.ascee.nl/ASCEE/lrftubes_doc)
|
||||
|
||||
This repository is the source code of the LRFTubes mathematical documentation.
|
||||
Releases are automatically build and pushed at:
|
||||
|
474
lrftubes.lyx
474
lrftubes.lyx
@ -5600,6 +5600,235 @@ literal "true"
|
||||
Exponential duct (horn)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
hor.py/class ExpHorn(Duct)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
An exponential horn can be modelled using ExpHorn.
|
||||
The transfer matrix is derived from Webster's horn equation.
|
||||
The solution for an exponential horn is
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p\left(x\right)=C_{1}e^{E_{1}x}+C_{2}e^{E_{2}x},\qquad U\left(x\right)=i\frac{S\left(x\right)}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}x}+C_{2}E_{2}e^{E_{2}x}\right)
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $S(x)$
|
||||
\end_inset
|
||||
|
||||
is the local cross-sectional area,
|
||||
\begin_inset Formula $\rho$
|
||||
\end_inset
|
||||
|
||||
is the air density,
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
is the angular frequency.
|
||||
The exponent terms
|
||||
\begin_inset Formula $E_{1}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $E_{2}$
|
||||
\end_inset
|
||||
|
||||
are given by
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
E_{1}=\frac{-m+\sqrt{-4k^{2}+m^{2}}}{2},\qquad E_{2}=-\frac{m+\sqrt{-4k^{2}+m^{2}}}{2}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $k$
|
||||
\end_inset
|
||||
|
||||
is the wave number and
|
||||
\begin_inset Formula $m$
|
||||
\end_inset
|
||||
|
||||
is the flare rate, which is defined as
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
m=\frac{1}{L}\ln\left(\frac{S_{R}}{S_{L}}\right)
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
with
|
||||
\begin_inset Formula $L$
|
||||
\end_inset
|
||||
|
||||
being the horn length and
|
||||
\begin_inset Formula $S_{R}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $S_{L}$
|
||||
\end_inset
|
||||
|
||||
being the cross-sectional areas on the right-hand and left-hand side of
|
||||
the horn respectively.
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
By setting the solutions on
|
||||
\begin_inset Formula $x=0$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $p_{L}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $U_{L}$
|
||||
\end_inset
|
||||
|
||||
and those on
|
||||
\begin_inset Formula $x=L$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $p_{R}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $U_{R}$
|
||||
\end_inset
|
||||
|
||||
, the following transfer matrix can be derived:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
T_{ExpHorn}=\frac{1}{E_{2}-E_{1}}\left[\begin{array}{cc}
|
||||
E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L} & i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)\\
|
||||
i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right) & -\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)
|
||||
\end{array}\right]
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $p_{L}=p\left(0\right)=C_{1}+C_{2}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $U_{L}=U\left(0\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}+C_{2}E_{2}\right)$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $p_{R}=p\left(L\right)=C_{1}e^{E_{1}L}+C_{2}e^{E_{2}L}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $U_{R}=U\left(L\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}L}+C_{2}E_{2}e^{E_{2}L}\right)$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
Solve for constants
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $C_{1}=P_{L}-C_{2}\rightarrow U_{L}=i\frac{S_{L}}{\rho\omega}\left[E_{1}p_{L}+\left(E_{2}-E_{1}\right)C_{2}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $C_{1}=\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{2}P_{L}\right),\qquad C_{2}=-\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{1}P_{L}\right)$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
Fill in in solution:
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $p_{R}=\frac{1}{E_{2}E_{1}}\left[\left(E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L}\right)P_{L}+i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)U_{L}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $U_{R}=\frac{1}{E_{2}E_{1}}\left[i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right)P_{L}-\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)U_{L}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
@ -5610,7 +5839,7 @@ S_{f}=\exp\left(\alpha x\right)
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\frac{\mathrm{d}^{2}p}{\mathrm{d}x^{2}}+\alpha\frac{\mathrm{d}p}{\mathrm{d}x}+\Gamma^{2}p=0$
|
||||
@ -7922,239 +8151,6 @@ Z_{cpm}\left(f\right)=\frac{1}{i2\pi fC_{dyn}\left(f\right)}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Exponential horn
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
hon.py/class ExpHorn(Duct)
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
An exponential horn can be modelled using ExpHorn.
|
||||
The transfer matrix is derived from Webster's horn equation.
|
||||
The solution for an exponential horn is
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p\left(x\right)=C_{1}e^{E_{1}x}+C_{2}e^{E_{2}x},\qquad U\left(x\right)=i\frac{S\left(x\right)}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}x}+C_{2}E_{2}e^{E_{2}x}\right)
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $S(x)$
|
||||
\end_inset
|
||||
|
||||
is the local cross-sectional area,
|
||||
\begin_inset Formula $\rho$
|
||||
\end_inset
|
||||
|
||||
is the air density,
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
is the angular frequency.
|
||||
The exponent terms
|
||||
\begin_inset Formula $E_{1}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $E_{2}$
|
||||
\end_inset
|
||||
|
||||
are given by
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
E_{1}=\frac{-m+\sqrt{-4k^{2}+m^{2}}}{2},\qquad E_{2}=-\frac{m+\sqrt{-4k^{2}+m^{2}}}{2}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $k$
|
||||
\end_inset
|
||||
|
||||
is the wave number and
|
||||
\begin_inset Formula $m$
|
||||
\end_inset
|
||||
|
||||
is the flare rate, which is defined as
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
m=\frac{1}{L}\ln\left(\frac{S_{R}}{S_{L}}\right)
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
with
|
||||
\begin_inset Formula $L$
|
||||
\end_inset
|
||||
|
||||
being the horn length and
|
||||
\begin_inset Formula $S_{R}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $S_{L}$
|
||||
\end_inset
|
||||
|
||||
being the cross-sectional areas on the right-hand and left-hand side of
|
||||
the horn respectively.
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
By setting the solutions on
|
||||
\begin_inset Formula $x=0$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $p_{L}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $U_{L}$
|
||||
\end_inset
|
||||
|
||||
and those on
|
||||
\begin_inset Formula $x=L$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $p_{R}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $U_{R}$
|
||||
\end_inset
|
||||
|
||||
, the following transfer matrix can be derived:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
T_{ExpHorn}=\frac{1}{E_{2}-E_{1}}\left[\begin{array}{cc}
|
||||
E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L} & i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)\\
|
||||
i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right) & -\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)
|
||||
\end{array}\right]
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $p_{L}=p\left(0\right)=C_{1}+C_{2}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $U_{L}=U\left(0\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}+C_{2}E_{2}\right)$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $p_{R}=p\left(L\right)=C_{1}e^{E_{1}L}+C_{2}e^{E_{2}L}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $U_{R}=U\left(L\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}L}+C_{2}E_{2}e^{E_{2}L}\right)$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
Solve for constants
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $C_{1}=P_{L}-C_{2}\rightarrow U_{L}=i\frac{S_{L}}{\rho\omega}\left[E_{1}p_{L}+\left(E_{2}-E_{1}\right)C_{2}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $C_{1}=\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{2}P_{L}\right),\qquad C_{2}=-\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{1}P_{L}\right)$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
Fill in in solution:
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $p_{R}=\frac{1}{E_{2}E_{1}}\left[\left(E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L}\right)P_{L}+i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)U_{L}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $U_{R}=\frac{1}{E_{2}E_{1}}\left[i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right)P_{L}-\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)U_{L}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
@ -8686,6 +8682,7 @@ The wavelength is much larger than the thermal penetration depth (
|
||||
).
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
\begin_layout Standard
|
||||
We can derive the following impedance boundary condition
|
||||
\begin_inset CommandInset citation
|
||||
@ -8698,7 +8695,7 @@ literal "true"
|
||||
|
||||
:
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Delta EC User guide:
|
||||
@ -8770,6 +8767,7 @@ Hence the impedance of a hard wall scales with
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\end_deeper
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
@ -9727,7 +9725,7 @@ V_{\mathrm{in}}-V_{\mathrm{bemf}}=Z_{\mathrm{el}}I,
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
where
|
||||
\begin_inset Formula $Z_{\mathrm{el}}$
|
||||
\end_inset
|
||||
|
||||
@ -15015,8 +15013,8 @@ literal "true"
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Assuming axial symmetrySuch that the acoustic pressure in for example tube
|
||||
|
||||
Assuming axial symmetry, such that the acoustic pressure in for example
|
||||
tube
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user