State as of 20240501

This commit is contained in:
Anne de Jong 2024-05-01 11:01:07 +02:00
parent 1bfe4e185f
commit 1052ec3b0d
2 changed files with 239 additions and 238 deletions

View File

@ -1,3 +1,6 @@
# LRFTubes mathematical documentation # LRFTubes mathematical documentation
[![Build Status](https://drone.ascee.nl/api/badges/ASCEE/lrftubes_doc/status.svg)](https://drone.ascee.nl/ASCEE/lrftubes_doc) [![Build Status](https://drone.ascee.nl/api/badges/ASCEE/lrftubes_doc/status.svg)](https://drone.ascee.nl/ASCEE/lrftubes_doc)
This repository is the source code of the LRFTubes mathematical documentation.
Releases are automatically build and pushed at:

View File

@ -5600,6 +5600,235 @@ literal "true"
Exponential duct (horn) Exponential duct (horn)
\end_layout \end_layout
\begin_layout Standard
hor.py/class ExpHorn(Duct)
\end_layout
\begin_layout Standard
An exponential horn can be modelled using ExpHorn.
The transfer matrix is derived from Webster's horn equation.
The solution for an exponential horn is
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
p\left(x\right)=C_{1}e^{E_{1}x}+C_{2}e^{E_{2}x},\qquad U\left(x\right)=i\frac{S\left(x\right)}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}x}+C_{2}E_{2}e^{E_{2}x}\right)
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
in which
\begin_inset Formula $S(x)$
\end_inset
is the local cross-sectional area,
\begin_inset Formula $\rho$
\end_inset
is the air density,
\begin_inset Formula $\omega$
\end_inset
is the angular frequency.
The exponent terms
\begin_inset Formula $E_{1}$
\end_inset
and
\begin_inset Formula $E_{2}$
\end_inset
are given by
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
E_{1}=\frac{-m+\sqrt{-4k^{2}+m^{2}}}{2},\qquad E_{2}=-\frac{m+\sqrt{-4k^{2}+m^{2}}}{2}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
in which
\begin_inset Formula $k$
\end_inset
is the wave number and
\begin_inset Formula $m$
\end_inset
is the flare rate, which is defined as
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
m=\frac{1}{L}\ln\left(\frac{S_{R}}{S_{L}}\right)
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
with
\begin_inset Formula $L$
\end_inset
being the horn length and
\begin_inset Formula $S_{R}$
\end_inset
and
\begin_inset Formula $S_{L}$
\end_inset
being the cross-sectional areas on the right-hand and left-hand side of
the horn respectively.
\begin_inset Newline newline
\end_inset
\begin_inset Newline newline
\end_inset
By setting the solutions on
\begin_inset Formula $x=0$
\end_inset
to
\begin_inset Formula $p_{L}$
\end_inset
and
\begin_inset Formula $U_{L}$
\end_inset
and those on
\begin_inset Formula $x=L$
\end_inset
to
\begin_inset Formula $p_{R}$
\end_inset
and
\begin_inset Formula $U_{R}$
\end_inset
, the following transfer matrix can be derived:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
T_{ExpHorn}=\frac{1}{E_{2}-E_{1}}\left[\begin{array}{cc}
E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L} & i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)\\
i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right) & -\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)
\end{array}\right]
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula $p_{L}=p\left(0\right)=C_{1}+C_{2}$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $U_{L}=U\left(0\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}+C_{2}E_{2}\right)$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $p_{R}=p\left(L\right)=C_{1}e^{E_{1}L}+C_{2}e^{E_{2}L}$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $U_{R}=U\left(L\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}L}+C_{2}E_{2}e^{E_{2}L}\right)$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Newline newline
\end_inset
Solve for constants
\begin_inset Newline newline
\end_inset
\begin_inset Formula $C_{1}=P_{L}-C_{2}\rightarrow U_{L}=i\frac{S_{L}}{\rho\omega}\left[E_{1}p_{L}+\left(E_{2}-E_{1}\right)C_{2}\right]$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Formula $C_{1}=\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{2}P_{L}\right),\qquad C_{2}=-\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{1}P_{L}\right)$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Newline newline
\end_inset
Fill in in solution:
\begin_inset Newline newline
\end_inset
\begin_inset Formula $p_{R}=\frac{1}{E_{2}E_{1}}\left[\left(E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L}\right)P_{L}+i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)U_{L}\right]$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Formula $U_{R}=\frac{1}{E_{2}E_{1}}\left[i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right)P_{L}-\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)U_{L}\right]$
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard \begin_layout Standard
\begin_inset Formula \begin_inset Formula
\begin{equation} \begin{equation}
@ -5610,7 +5839,7 @@ S_{f}=\exp\left(\alpha x\right)
\begin_inset Note Note \begin_inset Note Note
status collapsed status open
\begin_layout Plain Layout \begin_layout Plain Layout
\begin_inset Formula $\frac{\mathrm{d}^{2}p}{\mathrm{d}x^{2}}+\alpha\frac{\mathrm{d}p}{\mathrm{d}x}+\Gamma^{2}p=0$ \begin_inset Formula $\frac{\mathrm{d}^{2}p}{\mathrm{d}x^{2}}+\alpha\frac{\mathrm{d}p}{\mathrm{d}x}+\Gamma^{2}p=0$
@ -7922,239 +8151,6 @@ Z_{cpm}\left(f\right)=\frac{1}{i2\pi fC_{dyn}\left(f\right)}
\end_inset \end_inset
\end_layout
\begin_layout Section
Exponential horn
\end_layout
\begin_layout Standard
hon.py/class ExpHorn(Duct)
\end_layout
\begin_layout Standard
An exponential horn can be modelled using ExpHorn.
The transfer matrix is derived from Webster's horn equation.
The solution for an exponential horn is
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
p\left(x\right)=C_{1}e^{E_{1}x}+C_{2}e^{E_{2}x},\qquad U\left(x\right)=i\frac{S\left(x\right)}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}x}+C_{2}E_{2}e^{E_{2}x}\right)
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
in which
\begin_inset Formula $S(x)$
\end_inset
is the local cross-sectional area,
\begin_inset Formula $\rho$
\end_inset
is the air density,
\begin_inset Formula $\omega$
\end_inset
is the angular frequency.
The exponent terms
\begin_inset Formula $E_{1}$
\end_inset
and
\begin_inset Formula $E_{2}$
\end_inset
are given by
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
E_{1}=\frac{-m+\sqrt{-4k^{2}+m^{2}}}{2},\qquad E_{2}=-\frac{m+\sqrt{-4k^{2}+m^{2}}}{2}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
in which
\begin_inset Formula $k$
\end_inset
is the wave number and
\begin_inset Formula $m$
\end_inset
is the flare rate, which is defined as
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
m=\frac{1}{L}\ln\left(\frac{S_{R}}{S_{L}}\right)
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
with
\begin_inset Formula $L$
\end_inset
being the horn length and
\begin_inset Formula $S_{R}$
\end_inset
and
\begin_inset Formula $S_{L}$
\end_inset
being the cross-sectional areas on the right-hand and left-hand side of
the horn respectively.
\begin_inset Newline newline
\end_inset
\begin_inset Newline newline
\end_inset
By setting the solutions on
\begin_inset Formula $x=0$
\end_inset
to
\begin_inset Formula $p_{L}$
\end_inset
and
\begin_inset Formula $U_{L}$
\end_inset
and those on
\begin_inset Formula $x=L$
\end_inset
to
\begin_inset Formula $p_{R}$
\end_inset
and
\begin_inset Formula $U_{R}$
\end_inset
, the following transfer matrix can be derived:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
T_{ExpHorn}=\frac{1}{E_{2}-E_{1}}\left[\begin{array}{cc}
E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L} & i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)\\
i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right) & -\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)
\end{array}\right]
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula $p_{L}=p\left(0\right)=C_{1}+C_{2}$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $U_{L}=U\left(0\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}+C_{2}E_{2}\right)$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $p_{R}=p\left(L\right)=C_{1}e^{E_{1}L}+C_{2}e^{E_{2}L}$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Formula $U_{R}=U\left(L\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}L}+C_{2}E_{2}e^{E_{2}L}\right)$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Newline newline
\end_inset
Solve for constants
\begin_inset Newline newline
\end_inset
\begin_inset Formula $C_{1}=P_{L}-C_{2}\rightarrow U_{L}=i\frac{S_{L}}{\rho\omega}\left[E_{1}p_{L}+\left(E_{2}-E_{1}\right)C_{2}\right]$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Formula $C_{1}=\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{2}P_{L}\right),\qquad C_{2}=-\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{1}P_{L}\right)$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Newline newline
\end_inset
Fill in in solution:
\begin_inset Newline newline
\end_inset
\begin_inset Formula $p_{R}=\frac{1}{E_{2}E_{1}}\left[\left(E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L}\right)P_{L}+i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)U_{L}\right]$
\end_inset
\begin_inset Newline newline
\end_inset
\begin_inset Formula $U_{R}=\frac{1}{E_{2}E_{1}}\left[i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right)P_{L}-\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)U_{L}\right]$
\end_inset
\end_layout
\end_inset
\end_layout \end_layout
\begin_layout Section \begin_layout Section
@ -8686,6 +8682,7 @@ The wavelength is much larger than the thermal penetration depth (
). ).
\end_layout \end_layout
\begin_deeper
\begin_layout Standard \begin_layout Standard
We can derive the following impedance boundary condition We can derive the following impedance boundary condition
\begin_inset CommandInset citation \begin_inset CommandInset citation
@ -8698,7 +8695,7 @@ literal "true"
: :
\begin_inset Note Note \begin_inset Note Note
status collapsed status open
\begin_layout Plain Layout \begin_layout Plain Layout
Delta EC User guide: Delta EC User guide:
@ -8770,6 +8767,7 @@ Hence the impedance of a hard wall scales with
. .
\end_layout \end_layout
\end_deeper
\begin_layout Standard \begin_layout Standard
\begin_inset Float figure \begin_inset Float figure
wide false wide false
@ -15015,8 +15013,8 @@ literal "true"
\end_inset \end_inset
. .
Assuming axial symmetrySuch that the acoustic pressure in for example tube Assuming axial symmetry, such that the acoustic pressure in for example
tube
\begin_inset Formula $B$ \begin_inset Formula $B$
\end_inset \end_inset