diff --git a/lrftubes.lyx b/lrftubes.lyx index b40aacb..6a8edbd 100644 --- a/lrftubes.lyx +++ b/lrftubes.lyx @@ -7922,6 +7922,239 @@ Z_{cpm}\left(f\right)=\frac{1}{i2\pi fC_{dyn}\left(f\right)} \end_inset +\end_layout + +\begin_layout Section +Exponential horn +\end_layout + +\begin_layout Standard +hon.py/class ExpHorn(Duct) +\end_layout + +\begin_layout Standard +An exponential horn can be modelled using ExpHorn. + The transfer matrix is derived from Webster's horn equation. + The solution for an exponential horn is +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +p\left(x\right)=C_{1}e^{E_{1}x}+C_{2}e^{E_{2}x},\qquad U\left(x\right)=i\frac{S\left(x\right)}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}x}+C_{2}E_{2}e^{E_{2}x}\right) +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +in which +\begin_inset Formula $S(x)$ +\end_inset + + is the local cross-sectional area, +\begin_inset Formula $\rho$ +\end_inset + + is the air density, +\begin_inset Formula $\omega$ +\end_inset + + is the angular frequency. + The exponent terms +\begin_inset Formula $E_{1}$ +\end_inset + + and +\begin_inset Formula $E_{2}$ +\end_inset + + are given by +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +E_{1}=\frac{-m+\sqrt{-4k^{2}+m^{2}}}{2},\qquad E_{2}=-\frac{m+\sqrt{-4k^{2}+m^{2}}}{2} +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +in which +\begin_inset Formula $k$ +\end_inset + + is the wave number and +\begin_inset Formula $m$ +\end_inset + + is the flare rate, which is defined as +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +m=\frac{1}{L}\ln\left(\frac{S_{R}}{S_{L}}\right) +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +with +\begin_inset Formula $L$ +\end_inset + + being the horn length and +\begin_inset Formula $S_{R}$ +\end_inset + + and +\begin_inset Formula $S_{L}$ +\end_inset + + being the cross-sectional areas on the right-hand and left-hand side of + the horn respectively. + +\begin_inset Newline newline +\end_inset + + +\begin_inset Newline newline +\end_inset + +By setting the solutions on +\begin_inset Formula $x=0$ +\end_inset + + to +\begin_inset Formula $p_{L}$ +\end_inset + + and +\begin_inset Formula $U_{L}$ +\end_inset + + and those on +\begin_inset Formula $x=L$ +\end_inset + + to +\begin_inset Formula $p_{R}$ +\end_inset + + and +\begin_inset Formula $U_{R}$ +\end_inset + +, the following transfer matrix can be derived: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{equation} +T_{ExpHorn}=\frac{1}{E_{2}-E_{1}}\left[\begin{array}{cc} +E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L} & i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)\\ +i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right) & -\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right) +\end{array}\right] +\end{equation} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Formula $p_{L}=p\left(0\right)=C_{1}+C_{2}$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Formula $U_{L}=U\left(0\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}+C_{2}E_{2}\right)$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Formula $p_{R}=p\left(L\right)=C_{1}e^{E_{1}L}+C_{2}e^{E_{2}L}$ +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Formula $U_{R}=U\left(L\right)=i\frac{S_{L}}{\rho\omega}\left(C_{1}E_{1}e^{E_{1}L}+C_{2}E_{2}e^{E_{2}L}\right)$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Newline newline +\end_inset + +Solve for constants +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $C_{1}=P_{L}-C_{2}\rightarrow U_{L}=i\frac{S_{L}}{\rho\omega}\left[E_{1}p_{L}+\left(E_{2}-E_{1}\right)C_{2}\right]$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $C_{1}=\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{2}P_{L}\right),\qquad C_{2}=-\frac{1}{E_{2}-E_{1}}\left(i\frac{\rho\omega}{S_{L}}U_{L}+E_{1}P_{L}\right)$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Newline newline +\end_inset + +Fill in in solution: +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $p_{R}=\frac{1}{E_{2}E_{1}}\left[\left(E_{2}e^{E_{1}L}-E_{1}e^{E_{2}L}\right)P_{L}+i\frac{\rho\omega}{S_{L}}\left(e^{E_{1}L}-e^{E_{2}L}\right)U_{L}\right]$ +\end_inset + + +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $U_{R}=\frac{1}{E_{2}E_{1}}\left[i\frac{S_{R}}{\rho\omega}E_{1}E_{2}\left(e^{E_{1}L}-e^{E_{2}L}\right)P_{L}-\frac{S_{R}}{S_{L}}\left(E_{1}e^{E_{1}L}-E_{2}e^{E_{2}L}\right)U_{L}\right]$ +\end_inset + + +\end_layout + +\end_inset + + \end_layout \begin_layout Section