Some docs improvements. Added Zwikker Kosten explicit in bibtex
This commit is contained in:
parent
b00e3e2b57
commit
c0e014ae71
44
lrftubes.bib
44
lrftubes.bib
@ -275,28 +275,6 @@ The full solution of the problem has been obtained by Kirchhoff (1868) in the fo
|
||||
file = {Karal - 1953 - The analogous acoustical impedance for discontinui.pdf:/home/anne/.literature/storage/ZSJSCHMS/Karal - 1953 - The analogous acoustical impedance for discontinui.pdf:application/pdf}
|
||||
}
|
||||
|
||||
@article{keefe_acoustical_1984,
|
||||
title = {Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions},
|
||||
volume = {75},
|
||||
pages = {58--62},
|
||||
number = {1},
|
||||
journaltitle = {The Journal of the Acoustical Society of America},
|
||||
author = {Keefe, Douglas H},
|
||||
date = {1984},
|
||||
file = {Keefe - 1984 - Acoustical wave propagation in cylindrical ducts .pdf:/home/anne/.literature/storage/WPM2TBDL/Keefe - 1984 - Acoustical wave propagation in cylindrical ducts .pdf:application/pdf}
|
||||
}
|
||||
|
||||
@article{thompson_analog_2014,
|
||||
title = {Analog model for thermoviscous propagation in a cylindrical tube},
|
||||
volume = {135},
|
||||
pages = {585--590},
|
||||
number = {2},
|
||||
journaltitle = {The Journal of the Acoustical Society of America},
|
||||
author = {Thompson, Stephen C and Gabrielson, Thomas B and Warren, Daniel M},
|
||||
date = {2014},
|
||||
file = {Thompson e.a. - 2014 - Analog model for thermoviscous propagation in a cy.pdf:/home/anne/.literature/storage/ZGSV8RWF/Thompson e.a. - 2014 - Analog model for thermoviscous propagation in a cy.pdf:application/pdf}
|
||||
}
|
||||
|
||||
@article{benade_propagation_1968,
|
||||
title = {On the propagation of sound waves in a cylindrical conduit},
|
||||
volume = {44},
|
||||
@ -383,19 +361,11 @@ The full solution of the problem has been obtained by Kirchhoff (1868) in the fo
|
||||
file = {Kino et al. - 2009 - Investigation of non-acoustical parameters of comp.pdf:/home/anne/.literature/storage/I9P5SZAE/Kino et al. - 2009 - Investigation of non-acoustical parameters of comp.pdf:application/pdf}
|
||||
}
|
||||
|
||||
@article{leniowska_plate_resonance_1999,
|
||||
title = {Vibrations of circular plate interacting with an ideal compressible fluid},
|
||||
volume = {24},
|
||||
url = {https://acoustics.ippt.pan.pl/index.php/aa/article/viewFile/1117/952},
|
||||
pages = {427--441},
|
||||
number = {4},
|
||||
journaltitle = {Archives of acoustics},
|
||||
author = {Leniowska, L.},
|
||||
date = {1999}
|
||||
}
|
||||
|
||||
@misc{calcdevice,
|
||||
title = {Natural frequency calculators (web page)},
|
||||
url = {https://calcdevice.com/natural-frequency-of-circular-plate-id224.html},
|
||||
urldate = {2022-05-25}
|
||||
@book{zwikker_sound_1949,
|
||||
title = {Sound Absorbing Materials},
|
||||
url = {https://books.google.com/books?id=ezUOnQEACAAJ},
|
||||
publisher = {Elsevier Publishing Company},
|
||||
author = {Zwikker, C. and Kosten, C.W.},
|
||||
date = {1949},
|
||||
lccn = {50006127}
|
||||
}
|
114
lrftubes.lyx
114
lrftubes.lyx
@ -3436,6 +3436,8 @@ status open
|
||||
|
||||
\backslash
|
||||
lrftubes
|
||||
\backslash
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
@ -4509,9 +4511,10 @@ C_{2} & =\frac{J_{0}\left(\alpha_{0}\right)-J_{0}\left(\alpha_{1}\right)}{J_{0}\
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
f_{i}=\delta_{i}\left(1+i\right)\frac{\left\{ H_{0}^{(1)}\left(\alpha_{0}\right)-H_{0}^{(1)}\left(\alpha_{1}\right)\right\} \left[r_{0}H_{-1}^{(2)}\left(\alpha_{0}\right)-r_{1}H_{-1}^{(2)}\left(\alpha_{1}\right)\right]+\left\{ H_{0}^{(2)}\left(\alpha_{0}\right)-H_{0}^{(2)}\left(\alpha_{1}\right)\right\} \left[r_{1}H_{-1}^{(1)}\left(\alpha_{1}\right)-r_{0}H_{-1}^{(1)}\left(\alpha_{0}\right)\right]}{\left(r_{1}^{2}-r_{0}^{2}\right)\left[H_{0}^{(1)}\left(\alpha_{0}\right)H_{0}^{(2)}\left(\alpha_{1}\right)-H_{0}^{(1)}\left(\alpha_{1}\right)H_{0}^{(2)}\left(\alpha_{0}\right)\right]}
|
||||
\end{equation}
|
||||
\begin{align}
|
||||
f_{i} & =\delta_{i}\left(1+i\right)\left[\frac{\left\{ H_{0}^{(1)}\left(\alpha_{0}\right)-H_{0}^{(1)}\left(\alpha_{1}\right)\right\} \left[r_{0}H_{-1}^{(2)}\left(\alpha_{0}\right)-r_{1}H_{-1}^{(2)}\left(\alpha_{1}\right)\right]}{\left(r_{1}^{2}-r_{0}^{2}\right)\left[H_{0}^{(1)}\left(\alpha_{0}\right)H_{0}^{(2)}\left(\alpha_{1}\right)-H_{0}^{(1)}\left(\alpha_{1}\right)H_{0}^{(2)}\left(\alpha_{0}\right)\right]}+\right.\\
|
||||
& \qquad\qquad\qquad\left.\frac{\left\{ H_{0}^{(2)}\left(\alpha_{0}\right)-H_{0}^{(2)}\left(\alpha_{1}\right)\right\} \left[r_{1}H_{-1}^{(1)}\left(\alpha_{1}\right)-r_{0}H_{-1}^{(1)}\left(\alpha_{0}\right)\right]}{\left(r_{1}^{2}-r_{0}^{2}\right)\left[H_{0}^{(1)}\left(\alpha_{0}\right)H_{0}^{(2)}\left(\alpha_{1}\right)-H_{0}^{(1)}\left(\alpha_{1}\right)H_{0}^{(2)}\left(\alpha_{0}\right)\right]}\right]
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
@ -5198,7 +5201,7 @@ S_{f}=\exp\left(\alpha x\right)
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\frac{\mathrm{d}^{2}p}{\mathrm{d}x^{2}}+\alpha\frac{\mathrm{d}p}{\mathrm{d}x}+\Gamma^{2}p=0$
|
||||
@ -5559,7 +5562,7 @@ p=\frac{C_{1}\exp\left(-i\Gamma x\right)+C_{1}\exp\left(-i\Gamma x\right)}{r_{0}
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
If we assume
|
||||
@ -7682,7 +7685,8 @@ Both tubes on either side of the discontinuity are cylindrical.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
The wavelength is larger than transverse characteristic length scale.
|
||||
The wavelength is larger than transverse characteristic length scale (no
|
||||
propagating modes expect for the plane waves).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
@ -8428,9 +8432,16 @@ noprefix "false"
|
||||
It would be beneficial for computing time to replace the outside world
|
||||
by a boundary condition on the port.
|
||||
Here it is approached as a scattering problem.
|
||||
More information is described in 'Sound absorbing materials' (1949) Zwikker
|
||||
et al., pp.
|
||||
132-134.
|
||||
More information is described in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "p. 132-134"
|
||||
key "zwikker_sound_1949"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The pressure field can be written as:
|
||||
\end_layout
|
||||
|
||||
@ -8454,23 +8465,24 @@ in which
|
||||
\begin_inset Formula $p_{i}$
|
||||
\end_inset
|
||||
|
||||
the incident pressure field and
|
||||
the incident pressure field (the field as if there were only an infinite
|
||||
wall) and
|
||||
\begin_inset Formula $p_{s}$
|
||||
\end_inset
|
||||
|
||||
the scattered pressure field.
|
||||
All depend on both position and time.
|
||||
The combination of the incident and scattered field combined result in
|
||||
the total pressure field.
|
||||
All depend on both position and time (or frequency).
|
||||
If only the infinite wall is taken into account and the port and system
|
||||
behind it are ignored, the amplitude of the incident plane wave and its
|
||||
reflection can be described as:
|
||||
behind it are ignored, the amplitude of the incident plane wave is:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{i}(x,t)=\begin{cases}
|
||||
P_{i}\cdot\cos(kx) & x<0\\
|
||||
undefined & x=0\\
|
||||
p_{i}(x,\omega)=\begin{cases}
|
||||
P_{i}\cdot\cos(kx) & x<=0\\
|
||||
0 & x>0
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
@ -8485,8 +8497,8 @@ in which
|
||||
\begin_inset Formula $P_{i}$
|
||||
\end_inset
|
||||
|
||||
is half the amplitude of the incident plane wave (resulting in sound pressure
|
||||
|
||||
is the amplitude of the incident plane wave at the wall (resulting in sound
|
||||
pressure
|
||||
\family roman
|
||||
\series medium
|
||||
\shape up
|
||||
@ -8520,7 +8532,7 @@ in which
|
||||
\begin_inset Formula $k$
|
||||
\end_inset
|
||||
|
||||
is the wavenumber and
|
||||
is the wave number and
|
||||
\begin_inset Formula $x$
|
||||
\end_inset
|
||||
|
||||
@ -8528,7 +8540,7 @@ in which
|
||||
There is no scattered pressure field, so this is the total pressure field
|
||||
right away.
|
||||
When the port and system behind it are added, the total pressure field
|
||||
no longer is equal to the incident pressure field: a correction must be
|
||||
is no longer equal to the incident pressure field: a correction must be
|
||||
added, which is captured in
|
||||
\begin_inset Formula $p_{s}$
|
||||
\end_inset
|
||||
@ -8539,7 +8551,7 @@ in which
|
||||
\begin_inset Formula $x<0$
|
||||
\end_inset
|
||||
|
||||
, this has the same effect als a baffled piston.
|
||||
, this has the same effect as a baffled piston.
|
||||
On the condition that the wavelength is much larger than the port size,
|
||||
the scattered field near the boundary (but still outside of the port) is
|
||||
given by:
|
||||
@ -8548,7 +8560,7 @@ in which
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{s}(x=0^{-})=-Z_{rad}U
|
||||
p_{s}(x=0^{-})=-Z_{\mathrm{rad}}U
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -8558,10 +8570,10 @@ p_{s}(x=0^{-})=-Z_{rad}U
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $Z_{rad}$
|
||||
\begin_inset Formula $Z_{\mathrm{rad}}$
|
||||
\end_inset
|
||||
|
||||
is the radiation impedance of a baffled piston and
|
||||
is the radiation impedance of a baffled piston and
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
@ -8642,7 +8654,7 @@ velocities
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{t}(x=0)=P_{i}-z_{rad}v\label{eq:bc-planewave-port-pressure}
|
||||
p_{t}(x=0)=P_{i}-z_{\mathrm{rad}}v\label{eq:bc-planewave-port-pressure}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -8652,10 +8664,10 @@ p_{t}(x=0)=P_{i}-z_{rad}v\label{eq:bc-planewave-port-pressure}
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $z_{rad}$
|
||||
\begin_inset Formula $z_{\mathrm{rad}}$
|
||||
\end_inset
|
||||
|
||||
is the specific radiation impedance of a baffled piston and
|
||||
is the specific radiation impedance of a baffled piston and
|
||||
\begin_inset Formula $v$
|
||||
\end_inset
|
||||
|
||||
@ -8669,8 +8681,16 @@ boundary condition in COMSOL.
|
||||
\begin_inset Formula $v$
|
||||
\end_inset
|
||||
|
||||
can be 'measured' by averaging the normal component of the velocity and
|
||||
adding a minus sign to make it inwards.
|
||||
can be
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
measured
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
by averaging the normal component of the velocity and adding a minus sign
|
||||
to make it inwards.
|
||||
Alternatively, the equation can be solved for
|
||||
\begin_inset Formula $v$
|
||||
\end_inset
|
||||
@ -8698,7 +8718,39 @@ in which
|
||||
\begin_inset Formula $p_{t}(x=0)$
|
||||
\end_inset
|
||||
|
||||
can be 'measured' by averaging it over the port's boundary.
|
||||
can be
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
measured
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
by averaging it over the port's boundary.
|
||||
The LRFTubes implementation of this
|
||||
\emph on
|
||||
mixed
|
||||
\emph default
|
||||
boundary condition is for a left wall:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{L}+Z_{\mathrm{rad}}U_{L}=P_{i},
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
and the same on a right wall:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{R}-Z_{\mathrm{rad}}U_{R}=P_{i}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -9294,7 +9346,7 @@ reference "eq:U_vs_V"
|
||||
|
||||
a bit:
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l}=p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$
|
||||
|
Loading…
Reference in New Issue
Block a user