Merge branch 'master' of ssh://code.ascee.nl:12001/ASCEE/lrftubes_doc
This commit is contained in:
commit
daab881884
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
||||
.ipynb_checkpoints
|
||||
.spyproject
|
||||
.pdf
|
||||
|
Binary file not shown.
BIN
img/Bruel_Kjaer_fig1.png
Normal file
BIN
img/Bruel_Kjaer_fig1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 57 KiB |
499
lrftubes.lyx
499
lrftubes.lyx
@ -5553,7 +5553,7 @@ p=\frac{C_{1}\exp\left(-i\Gamma x\right)+C_{1}\exp\left(-i\Gamma x\right)}{r_{0}
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
If we assume
|
||||
@ -6258,6 +6258,33 @@ Z_{c,0}=\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f,0}\Gamma_{0}}
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
and
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
is defined in eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:Gamma"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
and can be approximated as
|
||||
\begin_inset Formula $\Gamma\approx k$
|
||||
\end_inset
|
||||
|
||||
under some undefined and guessed circumstances AANVULLEN, in which
|
||||
\begin_inset Formula $k=\frac{\omega}{c_{0}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Prismatic lined circular duct
|
||||
\end_layout
|
||||
@ -7918,7 +7945,7 @@ Radiation impedance of a baffled piston
|
||||
\begin_inset Formula $\pi a^{2}$
|
||||
\end_inset
|
||||
|
||||
|
||||
cross sectional area [m^2]
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
@ -8269,6 +8296,19 @@ in which
|
||||
can be 'measured' by averaging it over the port's boundary.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TO DO: redraw image and list what approximations are used
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
@ -8345,10 +8385,6 @@ Electrical and mechanical model of the speaker
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
@ -10925,7 +10961,7 @@ T_{21} & T_{22}
|
||||
\end{array}\right]\left\{ \begin{array}{c}
|
||||
p_{o}\\
|
||||
Q_{o}
|
||||
\end{array}\right\} ,
|
||||
\end{array}\right\} ,\label{eq:transfer_matrix_COMSOL}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
@ -10977,6 +11013,455 @@ LookupModel
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Chapter
|
||||
Measuring the transmission matrix using the four microphone method
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Based on Brüel Kjaer - Transmission loss in impedance tube.pdf in /home/anne/next
|
||||
cloud/wip_redusone/2021-Steegmuller/measurement_setup
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Modifications: volume flow U instead of velocity v; impedance Z instead
|
||||
of characteristic impedance z; transfer functions Hir instead of cross
|
||||
correlations (?).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TO DO:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
draw own image image
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
fix citation
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Transfer matrix according to our own definition instead of the definition
|
||||
of Bruel & Kjaer = definition of COMSOL
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Consistently use Q or U for volume flow? Also in text above about COMSOL.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The transfer matrix of a device can be measured using a four microphone
|
||||
setup as shown in figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:meas_transmatrix_4mic"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The microphones record acoustic pressure and plane waves are assumed.
|
||||
In the following equations, time dependency
|
||||
\begin_inset Formula $\exp(+j*\omega*t)$
|
||||
\end_inset
|
||||
|
||||
is not shown.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename img/Bruel_Kjaer_fig1.png
|
||||
lyxscale 50
|
||||
width 80text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Experimental setup to measure the transfer matrix, using the four microphone
|
||||
method
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:meas_transmatrix_4mic"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The transfer matrix coefficients are calculated based on sound pressure
|
||||
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
and volume velocity
|
||||
\begin_inset Formula $U$
|
||||
\end_inset
|
||||
|
||||
, as related by equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:transfer_matrix_COMSOL"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Note that this definition is different than the definition used in LRFtubes
|
||||
and therefore
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
should be inverted for further use.
|
||||
Subscrips
|
||||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
refer to
|
||||
\begin_inset Formula $x=0$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $x=d$
|
||||
\end_inset
|
||||
|
||||
respectively.
|
||||
There are two equations and four unknowns, so two sets of measurements
|
||||
are required.
|
||||
The second set, indicated by superscript
|
||||
\begin_inset Formula $*$
|
||||
\end_inset
|
||||
|
||||
, must be performed with a different acoustic termination.
|
||||
Together this results in four equations for four unknowns.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\align left
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left\{ \begin{array}{c}
|
||||
p_{i}\\
|
||||
Q_{i}
|
||||
\end{array}\begin{array}{c}
|
||||
p_{i}^{*}\\
|
||||
Q_{i}^{*}
|
||||
\end{array}\right\} =\left[\begin{array}{cc}
|
||||
T_{11} & T_{12}\\
|
||||
T_{21} & T_{22}
|
||||
\end{array}\right]\left\{ \begin{array}{c}
|
||||
p_{o}\\
|
||||
Q_{o}
|
||||
\end{array}\begin{array}{c}
|
||||
p_{o}^{*}\\
|
||||
Q_{o}^{*}
|
||||
\end{array}\right\} ,\label{eq:transfer_matrix-double}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Solving for
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
yields:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left[\begin{array}{cc}
|
||||
T_{11} & T_{12}\\
|
||||
T_{21} & T_{22}
|
||||
\end{array}\right]=\frac{1}{p_{d}Q_{d}^{*}-p_{d}^{*}Q_{d}}\left[\begin{array}{cc}
|
||||
p_{i}Q_{d}^{*}-p_{i}^{*}Q_{d} & -p_{i}p_{d}^{*}+p_{i}^{*}p_{d}\\
|
||||
Q_{i}Q_{d}^{*}-Q_{i}^{*}Q_{d} & -p_{d}^{*}Q_{i}+p_{d}Q_{i}^{*}
|
||||
\end{array}\right]
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $Q$
|
||||
\end_inset
|
||||
|
||||
at
|
||||
\begin_inset Formula $x=0$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $x=d$
|
||||
\end_inset
|
||||
|
||||
can be calculated from travelling
|
||||
\begin_inset Formula $A$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $C$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $D$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The calculation of their second measurement counterparts
|
||||
\begin_inset Formula $*$
|
||||
\end_inset
|
||||
|
||||
goes analogously and uses
|
||||
\begin_inset Formula $A^{*}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $B^{*}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $C^{*}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $D^{*}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{i}=A+B
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
Q_{i}=\frac{A-B}{Z_{0}}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
p_{d}=C\cdot e^{-jkd}+D\cdot e^{jkd}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
Q_{d}=\frac{C\cdot e^{-jkd}-D\cdot e^{jkd}}{Z_{0}}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
in which
|
||||
\begin_inset Formula $Z_{0}=\frac{z_{0}}{S}$
|
||||
\end_inset
|
||||
|
||||
is the impedance of an infinite duct, with
|
||||
\begin_inset Formula $z_{0}$
|
||||
\end_inset
|
||||
|
||||
the characteristic impedance and
|
||||
\begin_inset Formula $S$
|
||||
\end_inset
|
||||
|
||||
the cross-sectional area,
|
||||
\begin_inset Formula $j=\sqrt{-1}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $k$
|
||||
\end_inset
|
||||
|
||||
the wavenumber.
|
||||
Travelling waves
|
||||
\begin_inset Formula $A$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $B$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $C$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $D$
|
||||
\end_inset
|
||||
|
||||
can be calculated from transfer functions
|
||||
\begin_inset Formula $H_{ir}$
|
||||
\end_inset
|
||||
|
||||
from reference signal
|
||||
\begin_inset Formula $r$
|
||||
\end_inset
|
||||
|
||||
, as sent to the loudspeaker, to the recorded signal of microphone
|
||||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The calculation of their second measurement counterparts
|
||||
\begin_inset Formula $*$
|
||||
\end_inset
|
||||
|
||||
goes analogously and uses
|
||||
\begin_inset Formula $H_{ir}^{*}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
A=\frac{j\left(H_{1r}\cdot e^{jkx_{2}}-H_{2r}\cdot e^{jkx_{1}}\right)}{2\sin\left(k\left(x_{1}-x_{2}\right)\right)}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
B=\frac{j\left(H_{2r}\cdot e^{-jkx_{1}}-H_{1r}\cdot e^{-jkx_{2}}\right)}{2\sin\left(k\left(x_{1}-x_{2}\right)\right)}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
C=\frac{j\left(H_{3r}\cdot e^{jkx_{4}}-H_{4r}\cdot e^{jkx_{3}}\right)}{2\sin\left(k\left(x_{3}-x_{4}\right)\right)}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
D=\frac{j\left(H_{4r}\cdot e^{-jkx_{3}}-H_{3r}\cdot e^{-jkx_{4}}\right)}{2\sin\left(k\left(x_{3}-x_{4}\right)\right)}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula $\sqrt{G_{rr}}$
|
||||
\end_inset
|
||||
|
||||
has been removed from the equations because Caspers thinks that
|
||||
\begin_inset Formula $H_{ir}$
|
||||
\end_inset
|
||||
|
||||
refers to the cross spectrum instead of the transfer function.
|
||||
If the transfer function is used, then
|
||||
\begin_inset Formula $\sqrt{G_{rr}}$
|
||||
\end_inset
|
||||
|
||||
shall be left out.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Note: if no reference signal has been recorded, the reference signal can
|
||||
be set to the signal captured by microphone 1.
|
||||
The equations have no way to figure out whether the loudspeaker really
|
||||
was driven by such a signal.
|
||||
Then a requirement is that all microphones are recorded simultaneously
|
||||
and with synchronized ADC clocks.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Chapter
|
||||
IEC Coupler impedances
|
||||
\end_layout
|
||||
|
BIN
lrftubes.pdf
BIN
lrftubes.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user