#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass memoir \begin_preamble \input{tex/preamble.tex} \usepackage{ar} \end_preamble \options a4paper \use_default_options false \maintain_unincluded_children false \language american \language_package babel \inputencoding utf8 \fontencoding global \font_roman "default" "Linux Libertine O" \font_sans "default" "Courier New" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts true \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures false \graphics default \default_output_format default \output_sync 1 \output_sync_macro "\synctex=1" \bibtex_command biber \index_command default \paperfontsize default \spacing single \use_hyperref true \pdf_author "Dr.ir. J.A. de Jong - ASCEE" \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder true \pdf_colorlinks true \pdf_backref false \pdf_pdfusetitle true \papersize default \use_geometry true \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine biblatex \cite_engine_type authoryear \biblio_style plain \biblatex_bibstyle authoryear \biblatex_citestyle authoryear \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 0 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \leftmargin 3cm \topmargin 3cm \rightmargin 2.5cm \bottommargin 3.5cm \headsep 1cm \secnumdepth 3 \tocdepth 3 \paragraph_separation skip \defskip smallskip \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash pagestyle{fancy} \end_layout \begin_layout Plain Layout \backslash setlength{ \backslash headheight}{2cm} \end_layout \begin_layout Plain Layout \backslash thispagestyle{empty} \end_layout \end_inset \end_layout \begin_layout Title LRFTubes documentation - v1.1 \end_layout \begin_layout Author Dr.ir. J.A. de Jong \begin_inset Newline newline \end_inset Ir. C. Jansen \end_layout \begin_layout Standard \align center \begin_inset Graphics filename img/LRFTubes.pdf width 65text% \end_inset \end_layout \begin_layout Standard \begin_inset VSpace vfill \end_inset \end_layout \begin_layout Standard \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout ASCEE \begin_inset Newline newline \end_inset Nikola Teslastraat 1-11 \begin_inset Newline newline \end_inset 7442 PC Nijverdal \begin_inset Newline newline \end_inset The Netherlands \begin_inset Newline newline \end_inset \end_layout \begin_layout Plain Layout T: \begin_inset space \hspace{} \length -1.8cm \end_inset \begin_inset ERT status open \begin_layout Plain Layout \backslash phantom{info@ascee.nl} \end_layout \end_inset +31 6 18971622 \begin_inset Newline newline \end_inset E: \begin_inset space \hspace{} \length -1.8cm \end_inset \begin_inset ERT status open \begin_layout Plain Layout \backslash phantom{+31 6 18971622} \end_layout \end_inset info@ascee.nl \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Internal document ID: \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 628318 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Document status: \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Draft / Under constant improvement \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Document revision: \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Revision history: \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2023-01-10: rev. 2 \begin_inset Newline newline \end_inset 2018-02-21: rev. 1 \end_layout \end_inset \end_inset \end_layout \begin_layout Standard Copyright ( \begin_inset ERT status open \begin_layout Plain Layout \backslash textcopyright \end_layout \end_inset ) \begin_inset ERT status open \begin_layout Plain Layout \backslash the \backslash year \backslash \end_layout \end_inset ASCEE. All rights reserved. \end_layout \begin_layout Standard \begin_inset Newpage clearpage \end_inset \end_layout \begin_layout Standard \begin_inset CommandInset toc LatexCommand tableofcontents \end_inset \end_layout \begin_layout Standard \begin_inset Newpage clearpage \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout % \backslash cleardoublepage \end_layout \begin_layout Plain Layout % \backslash markboth{ \backslash nomname}{ \backslash nomname}% maybe with \backslash MakeUppercase \end_layout \begin_layout Plain Layout \backslash addcontentsline{toc}{chapter}{List of symbols} \end_layout \begin_layout Plain Layout \backslash setlength{ \backslash nomitemsep}{-0.2pt} \end_layout \begin_layout Plain Layout \backslash thispagestyle{empty} \end_layout \begin_layout Plain Layout % Roman (A) \end_layout \begin_layout Plain Layout \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Note Note status collapsed \begin_layout Plain Layout Unused: \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{e}_x$" description "Unit vector in $x$-direction\\nomunit{-}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$H$" description "Total enthalpy per unit mass \\nomunit{\\si{\\joule\\per\\kilogram}}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{I}$" description "Identity tensor\\nomunit{-}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$h_\\nu$" description "Viscothermal shape function for the velocity\\nomunit{-}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$h_\\kappa$" description "Viscothermal shape function for the temperature\\nomunit{-}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$E$" description "Total energy per unit mass \\nomunit{\\si{\\joule\\per\\kilogram}}" literal "true" \end_inset \end_layout \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$c$" description "Speed of sound\\nomunit{\\si{\\metre\\per\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$c_p$" description "Specific heat at constant pressure \\nomunit{\\si{\\joule\\per\\kilogram\\kelvin}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$c_s$" description "Specific heat of the solid\\nomunit{\\si{\\joule\\per\\kilogram\\kelvin}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$c_v$" description "Specific heat at constant density \\nomunit{\\si{\\joule\\per\\kilogram\\kelvin}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$D$" description "Diameter\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$f_\\kappa$" description "Thermal Rott function \\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$f_\\nu$" description "Viscous Rott function \\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$f$" description "Frequency\\nomunit{\\si{\\hertz}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$i$" description "Imaginary unit\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$J_\\alpha$" description "Bessel function of the first kind and order $\\alpha$\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$k$" description "Wave number\\nomunit{\\si{\\radian\\per\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$L$" description "Length\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\ell$" description "Characteristic length scale of a fluid space \\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$N$" description "Number of\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{n}$" description "Normal vector pointing from the solid into the fluid\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$p$" description "Pressure, acoustic pressure \\nomunit{\\si{\\pascal}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$r_h$" description "Hydraulic radius \\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{r}$" description "Transverse position vector\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$S$" description "Cross-sectional area, surface area\\nomunit{\\si{\\square\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$t$" description "Time \\nomunit{\\si{\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$T$" description "Temperature\\nomunit{\\si{\\kelvin}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{u}$" description "Velocity vector\\nomunit{\\si{\\metre\\per\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$u$" description "Velocity in wave propagation direction\\nomunit{\\si{\\metre\\per\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$U$" description "Volume flow\\nomunit{\\si{\\cubic\\metre\\per\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$V$" description "Volume \\nomunit{\\si{\\cubic\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{x}$" description "Position vector \\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$z$" description "Specific acoustic impedance\\nomunit{\\si{\\pascal\\second\\per\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$Z$" description "Volume flow impedance\\nomunit{\\si{\\pascal\\second\\per\\cubic\\metre}}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout % Greek (G) \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Plain Layout \begin_inset Note Note status collapsed \begin_layout Plain Layout Unused: \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\Delta$" description "Difference\\nonomunit" literal "true" \end_inset \end_layout \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\gamma$" description "Ratio of specific heats\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\Gamma$" description "Viscothermal wave number for a prismatic duct \\nomunit{\\si{\\radian\\per\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\delta_{\\kappa}$" description "Thermal penetration depth\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\delta_{\\nu}$" description "Viscous penetration depth\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\epsilon_s$" description "Ideal stack correction factor \\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\lambda$" description "Wavelength \\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\pi$" description "Ratio of the circumference to the diameter of a circle \\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\Pi$" description "Wetted perimeter (contact length between solid and fluid) \\nomunit{\\si{\\metre}}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout % Miscellaneous symbols and operators (M) \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Plain Layout \begin_inset Note Note status collapsed \begin_layout Plain Layout Unused: \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\otimes$" description "Dyadic product\\nonomunit" literal "true" \end_inset \end_layout \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\Re$" description "Real part\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\Im$" description "Imaginary part\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\nabla$" description "Gradient \\nomunit{\\si{\\per\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\nabla^2$" description "Laplacian\\nomunit{\\si{\\per\\square\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\sim$" description "Same order of magnitude\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\left\\Vert \\bullet \\right\\Vert $" description "Eucledian norm\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "d" description "Infinitesimal\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\partial$" description "Infinitesimal\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\bullet$" description "Placeholder for an operand\\nonomunit" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout % Subscripts (S) \end_layout \begin_layout Plain Layout \end_layout \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "wall" description "At the wall" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "0" description "Evaluated at the reference condition" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$f$" description "Fluid" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$s$" description "Solid" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$w$" description "Wall" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$R$" description "Right side" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$L$" description "Left side" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$s$" description "Solid" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$s$" description "Squeeze" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$i$" description "Inner" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$o$" description "Outer" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$t$" description "Tube" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout % Often used abbreviations (O) \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "O" symbol "Sec(s)." description "Section(s)" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "O" symbol "Eq(s)." description "Equation(s)" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "O" symbol "LRF" description "Low Reduced Frequency" literal "true" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash printnomenclature[1.8cm] \end_layout \end_inset \end_layout \begin_layout Chapter Overview of \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset \end_layout \begin_layout Section Introduction \end_layout \begin_layout Standard Welcome to the documentation of \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset . \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubes \backslash \end_layout \end_inset is a numerical code to solve one-dimensional acoustic duct systems using the transfer matrix method. Segments can be connected to generate simple one-dimensional acoustic systems to model acoustic propagation problems in ducts in the frequency domain. Viscothermal dissipation mechanisms are taken into account such that the damping effects can be modeled accurately, below the cut-on frequency of the duct. For more information regarding the models and the theory behind the models, the reader is referred to the work of \begin_inset CommandInset citation LatexCommand cite key "van_der_eerden_noise_2000" literal "true" \end_inset , \begin_inset CommandInset citation LatexCommand cite key "kampinga_viscothermal_2010" literal "true" \end_inset and \begin_inset CommandInset citation LatexCommand cite key "ward_deltaec_2017" literal "true" \end_inset . \end_layout \begin_layout Standard This documentation serves as a reference for the implemented models. For examples on how to use the code, please take a look at the example models as worked out in the IPython Notebooks. For installation instructions, please refer the the \begin_inset CommandInset href LatexCommand href name "README" target "https://code.ascee.nl/ASCEE/lrftubes/raw/branch/master/LICENSE" literal "false" \end_inset in the main repository. \end_layout \begin_layout Standard This document is very brief on the theory and it is assumed that the reader has some knowledge on the basics of acoustics in general and viscothermal acoustics as well. If you are not falling in this category, I would please refer you first to the book of Swift \begin_inset CommandInset citation LatexCommand cite key "swift_thermoacoustics:_2003" literal "true" \end_inset . A more detailed introduction to the notation used in this documentation can be found in the PhD thesis of de Jong \begin_inset CommandInset citation LatexCommand cite key "de_jong_numerical_2015" literal "true" \end_inset . \end_layout \begin_layout Standard Besides that, if you find the work interesting, but you are not sure how to apply it, please contact ASCEE for more information. \end_layout \begin_layout Section License and disclaimer \end_layout \begin_layout Standard Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials related to such distribution and use acknowledge that the software was developed by the ASCEE. The name of the ASCEE may not be used to endorse or promote products derived from this software without specific prior written permission. \begin_inset Newline newline \end_inset \end_layout \begin_layout Standard THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIE S, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. \end_layout \begin_layout Section Features \end_layout \begin_layout Standard Currently the \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \backslash \end_layout \end_inset code provides acoustic models for the following physical entities: \end_layout \begin_layout Itemize Prismatic ducts with circular cross section, \end_layout \begin_layout Itemize Prismatic ducts with triangular cross section, \end_layout \begin_layout Itemize Prismatic ducts with parallel plate cross section, \end_layout \begin_layout Itemize Prismatic ducts with square cross section, \end_layout \begin_layout Itemize Acoustic compliance volumes \end_layout \begin_layout Itemize Discontinuity correction \end_layout \begin_layout Itemize End correction for a baffled piston \end_layout \begin_layout Itemize Lumped series impedance \end_layout \begin_layout Standard These segments can be connected to form one-dimensional acoustic systems to model wave propagation below the cut-on frequency of higher order modes. For a circular cross section, the cut-on frequency is \begin_inset CommandInset citation LatexCommand cite key "van_der_eerden_noise_2000" literal "true" \end_inset : \begin_inset Formula \begin{equation} f_{c}\approx\frac{c_{0}}{3.4r}, \end{equation} \end_inset where \begin_inset Formula $r$ \end_inset is the tube radius and \begin_inset Formula $c_{o}$ \end_inset is the speed of sound. Above the cut-on frequency, besides evanescent waves, there are also propagatin g waves with a non-constant pressure distribution along the cross section of the duct. \end_layout \begin_layout Subsection Limitations and future features \end_layout \begin_layout Standard The current version of has some limitations that will be resolved in a future release. These are: \end_layout \begin_layout Subsubsection Ducts with (turbulent) flow \end_layout \begin_layout Standard For thermoacoustic and HVAC (Heating, ventilation and Air Conditioning) duct modeling it is imperative that mean flows can be taken into account. An acoustic wave superimposed on a mean flow results in asymmetric wave propagation. More specifically, the phase velocity is higher in the direction of the mean flow, and slower in the opposite direction. In a future release, we will provide models for ducts including a mean flow. \end_layout \begin_layout Subsubsection Porous acoustic absorbers \end_layout \begin_layout Standard To model absorption of sound, a one-dimensional porous material model should be implemented. This work has been postponed to a later stage. \end_layout \begin_layout Standard Prismatic and spherical ducts filled with porous material are defined in dbmduct.py. These use the Delaney-Bazley-Miki model. \end_layout \begin_layout Section Overview of this documentation \end_layout \begin_layout Standard The next chapter of this documentation will describe the basic framework of the \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset code: the transfer matrix method. After that, in Chapter \begin_inset CommandInset ref LatexCommand ref reference "chap:Provided-acoustic-models" \end_inset , an overview of the provided acoustic models is given, with which acoustic networks can be built. For each of the segments, the resulting transfer matrix model is derived. \end_layout \begin_layout Chapter Material properties \end_layout \begin_layout Section Air \end_layout \begin_layout Standard Nonlinearity parameter: \end_layout \begin_layout Section Exhaust gas \end_layout \begin_layout Subsection Composition \end_layout \begin_layout Standard Definitions: \end_layout \begin_layout Itemize \begin_inset Formula $\omega_{i}$ \end_inset mass fraction of species \begin_inset Formula $i$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $x_{i}$ \end_inset molar / volume fraction of species \begin_inset Formula $i$ \end_inset (assuming ideal gas behavior) \end_layout \begin_layout Itemize \begin_inset Formula $\overline{M}$ \end_inset average molar mass of (exhaust gas) mixture \end_layout \begin_layout Itemize \begin_inset Formula $M_{i}$ \end_inset molar mass of species \begin_inset Formula $i$ \end_inset \end_layout \begin_layout Standard The following equations hold in a mixture: \begin_inset Formula \begin{align} \sum_{i}\omega_{i} & =1\\ \sum_{i}x_{i} & =1\\ \overline{M} & =\sum\nolimits _{i}x_{i}M_{i}\label{eq:molar_mass_comp} \end{align} \end_inset We can convert mass fractions to mole fractions with the following rule: \begin_inset Note Note status collapsed \begin_layout Plain Layout The total mass is ( \begin_inset Formula $N$ \end_inset ) is the total number of moles \begin_inset Formula \[ m=x_{i}M_{i}N \] \end_inset \end_layout \begin_layout Plain Layout The total number of moles is: \begin_inset Formula \[ N=\frac{m}{\overline{M}} \] \end_inset \end_layout \begin_layout Plain Layout The average molar mass is: \end_layout \begin_layout Plain Layout \begin_inset Formula \[ \overline{M}=\frac{m}{N}=\sum_{i}x_{i}M_{i} \] \end_inset \end_layout \begin_layout Plain Layout The mass fraction to mole fraction is: \end_layout \end_inset \begin_inset Formula \begin{equation} \omega_{i}=x_{i}\frac{M_{i}}{\overline{M}}\qquad\Longleftrightarrow\qquad x_{i}=\omega_{i}\frac{\overline{M}}{M_{i}}\label{eq:massfr_to_molarfr_viceversa} \end{equation} \end_inset Henceforth, what is often used, is to compute the average molar mass given only the mass fractions: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\omega_{i}m=N_{i}M_{i}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{\omega_{i}}{M_{i}}=\frac{N_{i}}{m}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\sum_{i}\frac{\omega_{i}}{M_{i}}=\frac{N}{m}=\frac{1}{\overline{M}}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \overline{M}=\frac{1}{\sum\nolimits _{i}\frac{\omega_{i}}{M_{i}}}\label{eq:molar_mass_vs_massfr} \end{equation} \end_inset \end_layout \begin_layout Subsection Mixing of mixtures \end_layout \begin_layout Standard Suppose we mix two mixtures of substances, mixture 1, and mixture 2. We want to know the final concentrations / mass fraction in the mixed mixture. Mix 1 comprises mass fractions \begin_inset Formula $\omega_{1,i}$ \end_inset , and mix 2 comprises mass fractions \begin_inset Formula $\omega_{2,j}$ \end_inset . We assume that \begin_inset Formula $i$ \end_inset and \begin_inset Formula $j$ \end_inset can interfere. For example, mixing air with Dutch natural gas, both contain nitrogen. The first step is to determine the mass flow of the two, called \begin_inset Formula $m_{1}$ \end_inset and \begin_inset Formula $m_{2}$ \end_inset . Then, assuming mass conservation under chemically inert conditions: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} m_{1}\omega_{1,i}+m_{2}\omega_{2,i}=m\omega_{i}. \end{equation} \end_inset \end_layout \begin_layout Subsubsection* Mixing air with natural gas \end_layout \begin_layout Standard The air factor \begin_inset Formula $\lambda$ \end_inset (not to be confused with wavelength in an acoustic context), is defined as the ratio of air to the stoichiometric ratio. The stoichiometric ratio can be determined by calculating the required moles of oxygen such that all carbon atoms can become CO \begin_inset Formula $_{2}$ \end_inset , and \emph on half of \emph default all hydrogen atoms can become H \begin_inset Formula $_{2}$ \end_inset . \end_layout \begin_layout Subsection Ideal gas mixtures \end_layout \begin_layout Standard For an ideal gas, the components of a gas mixture can be represented by their \begin_inset Quotes eld \end_inset partial pressure \begin_inset Quotes erd \end_inset , which is the total pressure times the volume fraction of the component in the mixture. For an ideal gas, the volume fraction equals to mole fraction. Hence: \begin_inset Formula \begin{equation} \frac{V_{i}}{V}\overset{\mathrm{ideal\,gas}}{=}x_{i}=\frac{p_{i}}{R_{u}T} \end{equation} \end_inset \end_layout \begin_layout Standard The mass fraction can be computed from the mole fraction. \end_layout \begin_layout Subsection Transport properties \end_layout \begin_layout Standard \begin_inset Float table wide false sideways false status open \begin_layout Plain Layout \noindent \align center \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout Substance \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $M$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $T_{c}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $G$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $C_{r}$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Carbon dioxide \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash SI{44.01e-3}{kg \backslash per \backslash mole} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash SI{304}{ \backslash K} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 44.6 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0.766 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Oxygen \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash SI{32.00e-3}{kg \backslash per \backslash mole} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash SI{154}{ \backslash K} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 32.8 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0.712 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Nitrogen \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash SI{28.02e-3}{kg \backslash per \backslash mole} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash SI{126}{ \backslash K} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 24.6 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0.881 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Water vapor \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash SI{18.02e-3}{kg \backslash per \backslash mole} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash SI{647}{ \backslash K} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 52.2 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1.018 \end_layout \end_inset \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Critical values and constants of common diatomic gases \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "tab:crit_values_diatom_gas" \end_inset \end_layout \end_inset \end_layout \begin_layout Subsubsection Dynamic viscosity of pure gases \end_layout \begin_layout Standard Here we assume the dynamic viscosity of a pure substance can be modeled using Sutherland's equation: \begin_inset Formula \begin{equation} \mu=\mu_{c}\left(\frac{T_{0}+C}{T+C}\right)\left(\frac{T}{T_{0}}\right)^{3/2}, \end{equation} \end_inset where the subscript \begin_inset Formula $c$ \end_inset denotes the value at its \begin_inset Quotes eld \end_inset critical point \begin_inset Quotes erd \end_inset . In convenient form we solve: \begin_inset Formula \begin{equation} \mu=\mu_{c}\mu_{r}, \end{equation} \end_inset where \begin_inset Formula $\mu_{c}$ \end_inset is the critical viscosity and \begin_inset Formula $\mu_{r}$ \end_inset is the \begin_inset Quotes eld \end_inset reduced viscosity defined as \begin_inset Formula $\mu/\mu_{c}$ \end_inset . For \begin_inset Formula $\mu_{c}$ \end_inset we have the reduced form of Sutherland's equation: \begin_inset Formula \begin{equation} \mu_{c}=\frac{1+C_{r}}{T_{r}+C_{r}}T_{r}^{3/2} \end{equation} \end_inset The value for \begin_inset Formula $\mu_{c}$ \end_inset can be calculated as: \begin_inset Formula \begin{equation} \mu_{c}=\num{3.5e-6}G \end{equation} \end_inset \end_layout \begin_layout Standard Values for \begin_inset Formula $T_{r}$ \end_inset , \begin_inset Formula $C_{r}$ \end_inset and \begin_inset Formula $G$ \end_inset are listed in Table \begin_inset CommandInset ref LatexCommand ref reference "tab:crit_values_diatom_gas" \end_inset \begin_inset CommandInset citation LatexCommand cite key "licht_variation_1944" literal "false" \end_inset . \end_layout \begin_layout Subsubsection Dynamic viscosity of a gas mixture \end_layout \begin_layout Standard The dynamic viscosity of a gas mixture can be derived from the dynamic viscositi es of pure gases as \begin_inset CommandInset citation LatexCommand cite after "p. 27" key "bird_transport_2007" literal "false" \end_inset : \begin_inset Formula \begin{equation} \mu_{\mathrm{mix}}=\sum_{α=0}^{N-1}\frac{x_{α}\mu_{α}}{\sum_{β=0}^{N-1}\Phi_{αβ}x_{β}},\label{eq:mumix} \end{equation} \end_inset where \begin_inset Formula $\mu_{α}$ \end_inset is the dynamic viscosity of pure chemical species \begin_inset Formula $α$ \end_inset and \begin_inset Formula $x_{α}$ \end_inset denotes its mole fraction in the mixture. \begin_inset Formula $\Phi_{αβ}$ \end_inset is defined as: \begin_inset Formula \begin{equation} \Phi_{αβ}=\frac{1}{\sqrt{8}}\left(1+\frac{M_{α}}{M_{β}}\right)^{-1/2}\left[1+\left(\frac{\mu_{α}}{\mu_{β}}\right)^{1/2}\left(\frac{M_{β}}{M_{α}}\right)^{1/4}\right]^{2},\label{eq:Phi_mn} \end{equation} \end_inset where \begin_inset Formula $M_{α}$ \end_inset is the molar mass of species \begin_inset Formula $α$ \end_inset . The denominator of Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:mumix" \end_inset can efficiently be solved by noting that \begin_inset Formula $d_{α}=\sum_{β=0}^{N-1}\Phi_{αβ}x_{β}$ \end_inset is a matrix-vector product, which can be written as \begin_inset Formula $\boldsymbol{d}=\boldsymbol{\Phi}\cdot\boldsymbol{x}$ \end_inset . \end_layout \begin_layout Subsubsection Thermal conductivity of a gas mixture \end_layout \begin_layout Standard The thermal conductivity of a gas mixture can be derived from the thermal conductivities of pure gases as \begin_inset CommandInset citation LatexCommand cite after "p. 276" key "bird_transport_2007" literal "false" \end_inset : \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} k_{\mathrm{mix}}=\sum_{α=0}^{N-1}\frac{x_{α}k_{α}}{\sum_{β=0}^{N-1}\Phi_{αβ}x_{β}}\label{eq:kappamix} \end{equation} \end_inset \end_layout \begin_layout Standard where \begin_inset Formula $k_{α}$ \end_inset is the thermal conductivity of pure chemical species \begin_inset Formula $α$ \end_inset and \begin_inset Formula $x_{α}$ \end_inset denotes its mole fraction in the mixture and \begin_inset Formula $\Phi_{αβ}$ \end_inset is identical to that appearing in the viscosity equation, see \begin_inset CommandInset ref LatexCommand ref reference "eq:Phi_mn" plural "false" caps "false" noprefix "false" \end_inset . \end_layout \begin_layout Subsection Combustion \end_layout \begin_layout Standard To compute the gas constant, first the mixture components of the exhaust gas need to be computed. We assume that the oxidizer is air with 79% vol of nitrogen (molecules) and 21% oxygen molecules. The tiny part of argon and other components is ignored. Then, the gross formula for combustion is: \begin_inset Formula \begin{equation} \underbrace{x_{f,C}C+x_{f,O}O+x_{H,f}H+x_{f,N}N}_{\mathrm{fuel}}+\underbrace{y_{\mathrm{ox}}\left(0.79N_{2}+0.21O_{2}\right)}_{\mathrm{oxidizer}}\rightarrow\underbrace{y_{g,\mathrm{water}}H_{2}O+y_{g,CO_{2}}CO_{2}+y_{g,N_{2}}N_{2}}_{\mathrm{exhaust\,gas}}.\label{eq:combustion} \end{equation} \end_inset Above reaction formula can be read as: \begin_inset Quotes eld \end_inset take \begin_inset Formula $x_{f,C}$ \end_inset moles of carbon in the fuel, add \begin_inset Formula $y_{\mathrm{ox}}$ \end_inset moles of air, and it should result in \begin_inset Formula $y_{g,CO_{2}}$ \end_inset moles of \begin_inset Formula $CO_{2}$ \end_inset \begin_inset Quotes erd \end_inset And so on for the other elements. The mole fractions in the fuel composition can be derived from its mass fractions, upon utilizing Eqs. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:massfr_to_molarfr_viceversa" \end_inset and \begin_inset CommandInset ref LatexCommand ref reference "eq:molar_mass_vs_massfr" \end_inset . From Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:combustion" \end_inset , the following system of equations can be created: \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} x_{f,C}\\ x_{f,O}\\ x_{f,H}\\ x_{f,N} \end{array}\right\} +\left[\begin{array}{cccc} 0 & 0 & -1 & 0\\ 2\times0.21 & -1 & -2 & 0\\ 0 & -2 & 0 & 0\\ 2\times0.79 & 0 & 0 & -2 \end{array}\right]\left\{ \begin{array}{c} y_{\mathrm{ox}}\\ y_{g,\mathrm{water}}\\ y_{g,CO_{2}}\\ y_{g,N_{2}} \end{array}\right\} =\left\{ \begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array}\right\} \end{equation} \end_inset \end_layout \begin_layout Standard Solving this results in: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $x_{f,O}+2\times0.21y_{\mathrm{ox}}-y_{g,\mathrm{water}}-2y_{g,CO_{2}}=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $2\times0.21y_{\mathrm{ox}}=\frac{1}{2}x_{f,H}+2x_{f,C}+x_{f,O}$ \end_inset \end_layout \begin_layout Plain Layout – \end_layout \begin_layout Plain Layout \begin_inset Formula $x_{f,N}+2\times0.79y_{\mathrm{ox}}-2y_{g,N_{2}}=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $y_{g,N_{2}}=0.79y_{\mathrm{ox}}+\frac{1}{2}x_{f,N}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{align} y_{g,CO_{2}} & =x_{f,C}\\ y_{g,\mathrm{water}} & =\frac{1}{2}x_{f,H}\\ y_{\mathrm{ox}}= & \frac{\frac{1}{2}x_{f,H}+2x_{f,C}-x_{f,O}}{2\times0.21}\\ y_{g,N_{2}}= & 0.79y_{\mathrm{ox}}+\frac{1}{2}x_{f,N} \end{align} \end_inset \end_layout \begin_layout Standard Note that the mole fractions are \emph on unnormalized \emph default (that is why we use symbol \begin_inset Formula $y$ \end_inset , not \begin_inset Formula $x$ \end_inset ): they denote the number of moles required to burn 1 mole of fuel. To compute the mole fractions in the exhaust gas, \begin_inset Formula \begin{equation} x_{g,\mathrm{water}}=\frac{y_{1}}{y_{1}+y_{2}+y_{3}} \end{equation} \end_inset \end_layout \begin_layout Standard Table \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "tab:fuel_components" \end_inset gives an overview of the composition of typical combustion fuels. Once the molar fractions of the exhaust gas are known, the average molar mass can be computed using Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:molar_mass_comp" \end_inset . Then, the specific gas constant can be computed according to: \begin_inset Formula \begin{equation} R_{s}=\frac{R_{u}}{\overline{M}}, \end{equation} \end_inset where \begin_inset Formula $R_{u}$ \end_inset is the universal gas constant. \end_layout \begin_layout Standard \begin_inset Float table wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout Mass fraction \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Wood \begin_inset Foot status collapsed \begin_layout Plain Layout https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Dutch Natural gas \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Carbon \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 50 % \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Oxygen \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 42 % \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 % \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Hydrogen \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 6 % \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Nitrogen \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 0 % \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \end_layout \end_inset \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Mixture mass composition of fuels \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "tab:fuel_components" \end_inset \end_layout \end_inset \end_layout \begin_layout Subsection Specific heat ratio \end_layout \begin_layout Standard The specific heat is build-up according to mass percentages of the flue gas. Carbon dioxide has a \begin_inset Formula $c_{p}$ \end_inset of 840 J/kg/K, water vapor of 1930: \begin_inset Formula \begin{equation} \overline{c}_{p}=\sum\nolimits _{i}\omega_{i}c_{p,i}. \end{equation} \end_inset \end_layout \begin_layout Section Sound absorbing solid materials \end_layout \begin_layout Standard High porosity soft materials can be modeled adequately with the Delaney-Bazley-M iki model. The model has a single input, namely the static flow resistivity. Table \end_layout \begin_layout Standard \begin_inset Float table wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout Name \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Basotect TG \begin_inset Foot status collapsed \begin_layout Plain Layout A.k.a.Flamex Basic (akoestiekwinkel.nl) \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Description \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Melamine resin foam (fire retardant) \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Density [ \begin_inset ERT status open \begin_layout Plain Layout \backslash si{ \backslash kg \backslash per \backslash cubic \backslash m} \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Foot status collapsed \begin_layout Plain Layout https://www.forman.co.nz/media/emizen_banner/b/a/basf_basotect_datasheet.pdf \end_layout \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Flow resistivity [ \begin_inset ERT status open \begin_layout Plain Layout \backslash si{ \backslash pascal \backslash s \backslash per \backslash meter} \end_layout \end_inset ] \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash num{8.5e3} \end_layout \end_inset , source: \begin_inset CommandInset citation LatexCommand cite key "kino_investigation_2009" literal "false" \end_inset , Table 2 average value. \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \end_layout \end_inset \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Resistivity values are given for room temperature \end_layout \end_inset \end_layout \end_inset Conversion \end_layout \begin_layout Chapter The transfer matrix method \end_layout \begin_layout Section Introduction \end_layout \begin_layout Standard Each part of an acoustic system in \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset is modeled using a so-called transfer matrix. A transfer matrix maps the state quantities on one side of the segment (node) to the other side of the segment (node). \end_layout \begin_layout Standard For one-dimensional wave propagation, analytical solutions for the velocity, temperature and density field in the transverse direction can be found. The state variables in frequency domain satisfy a system of first order ordinary differential equations. Once the solution is known on one end of a segment, the solution on the other end can be deduced. The transfer matrix couples the state variables \begin_inset Formula $\boldsymbol{\phi}$ \end_inset on one end of a segment to the other end, in frequency domain: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \boldsymbol{\phi}_{R}(\omega)=\boldsymbol{T}(\omega)\boldsymbol{\phi}_{L}(\omega)+\mathbf{s}(\omega), \end{equation} \end_inset where \begin_inset Formula $L$ \end_inset and \begin_inset Formula $R$ \end_inset denote the left and right side, respectively, \begin_inset Formula $\boldsymbol{T}$ \end_inset denotes the transfer matrix and \begin_inset Formula $\boldsymbol{s}$ \end_inset is a source term. In the code and in this documentation \begin_inset Formula $e^{{\color{red}+}i\omega t}$ \end_inset convention is used. A common choice of state variables is such that their product has the unit of power. For all systems in this code, the state variables satisfy this property. For example in an acoustic segment, the power is the product of acoustic pressure \begin_inset Formula $p\left(\omega\right)$ \end_inset and volume flow \begin_inset Formula $U\left(\omega\right)$ \end_inset . For complex phasors and, the acoustic power flow can then be computed as: \begin_inset Formula \begin{equation} E=\frac{1}{2}\Re\left[pU^{*}\right], \end{equation} \end_inset where \begin_inset Formula $\Re[\bullet]$ \end_inset denotes the real part of \begin_inset Formula $\bullet$ \end_inset , and * denotes the complex conjugation. \end_layout \begin_layout Section Example transfer matrix of an acoustic duct \end_layout \begin_layout Standard This section will provide the derivation of the transfer matrix of a simple acoustic duct. Starting with the isentropic acoustic continuity and momentum equation : \begin_inset Formula \begin{align} \frac{1}{c_{0}^{2}}\frac{\partial\hat{p}}{\partial\hat{t}}+\rho_{0}\nabla\cdot\hat{\boldsymbol{u}} & =0,\\ \rho_{0}\frac{\partial\hat{\boldsymbol{u}}}{\partial t}+\nabla\hat{p} & =0. \end{align} \end_inset The next step is to transform these equations to frequency domain and assuming only wave propagation in the \begin_inset Formula $x-$ \end_inset direction, integrating over the cross section we find: \begin_inset Formula \begin{align} \frac{i\omega}{c_{0}^{2}}p+\frac{\rho_{0}}{S_{f}}\frac{\mathrm{d}U}{\mathrm{d}x} & =0,\label{eq:contU}\\ \rho_{0}i\omega U+S_{f}\frac{\mathrm{d}p}{\mathrm{d}x} & =0,\label{eq:momU} \end{align} \end_inset where \begin_inset Formula $U$ \end_inset denotes the acoustic volume flow in \begin_inset ERT status open \begin_layout Plain Layout \backslash si{ \backslash cubic \backslash metre \backslash per \backslash second} \end_layout \end_inset . Eqs. \begin_inset space ~ \end_inset ( \begin_inset CommandInset ref LatexCommand ref reference "eq:contU" \end_inset - \begin_inset CommandInset ref LatexCommand ref reference "eq:momU" \end_inset ) is a coupled set of ordinary differential equations, which can be solved for the acoustic pressure to find \begin_inset Formula \begin{equation} p(x)=A\exp\left(-ikx\right)+B\exp\left(ikx\right),\label{eq:HH_sol_prismaticinviscid} \end{equation} \end_inset where \begin_inset Formula $A$ \end_inset and \begin_inset Formula $B$ \end_inset are constants, to be determined from the boundary conditions. Setting \begin_inset Formula $p=p_{L}$ \end_inset , and \begin_inset Formula $U=U_{L}$ \end_inset at \begin_inset Formula $x=0$ \end_inset , we can solve for the acoustic pressure, upon using Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:momU" \end_inset as: \begin_inset Formula \begin{equation} p(x)=p_{L}\cos\left(kx\right)-iZ_{0}\sin\left(kx\right)U_{L}, \end{equation} \end_inset and for the acoustic volume flow we find: \begin_inset Formula \begin{equation} U(x)=U_{L}\cos\left(kx\right)-\frac{i}{Z_{0}}\sin\left(kx\right)p_{L}. \end{equation} \end_inset Now, we have all ingredients to derive the transfer matrix of an acoustic duct. Setting \begin_inset Formula $p(x=L)=p_{R}$ \end_inset , and \begin_inset Formula $U(x=L)=U_{R}$ \end_inset , we find the following two-port coupling between the pressure and the velocity from the left side of the duct to the right side of the duct: \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} =\left[\begin{array}{cc} \cos\left(kL\right) & -iZ_{0}\sin\left(kL\right)\\ -iZ_{0}^{-1}\sin\left(kL\right) & \cos\left(kL\right) \end{array}\right]\left\{ \begin{array}{c} p_{L}\\ U_{L} \end{array}\right\} .\label{eq:transfer_inviscid} \end{equation} \end_inset \end_layout \begin_layout Section Setting up the system of equations \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \backslash \end_layout \end_inset has been set up to solve systems of acoustic segments such as this prismatic duct. The advantage of the transfer matrix method is the ease with which mixed (impedance/pressure/velocity) boundary conditions can be implemented. \end_layout \begin_layout Standard In this section, the assembly of the global system of equations is explained. The state variables of each segment are stacked in a column vector \series bold \begin_inset Formula $\boldsymbol{\phi}_{\mbox{sys}}$ \end_inset \series default , which has the size of \begin_inset Formula $4N_{\mbox{segs}}$ \end_inset , where \begin_inset Formula $N_{\mbox{segs}}$ \end_inset denotes the number of segments in the system. The coupling equations between the nodes of each segment, are the transfer matrices. Since the transfer matrices are \begin_inset Formula $2\times2$ \end_inset , this fills only half of the required amount of equations. The other half is filled with boundary conditions. Each segments transfer matrix can be regarded as the element matrix, which all have a form like: \begin_inset Formula \begin{equation} \boldsymbol{\phi}_{R}=\boldsymbol{T}\cdot\boldsymbol{\phi}_{L}+\boldsymbol{s}, \end{equation} \end_inset where \begin_inset Formula $\boldsymbol{\phi}_{L},\boldsymbol{\phi}_{R}$ \end_inset are the state vectors on the left and right sides of the segment, respectively, \begin_inset Formula $\boldsymbol{T}$ \end_inset is the transfer matrix, and \begin_inset Formula $\boldsymbol{s}$ \end_inset is a source term. \end_layout \begin_layout Standard There are two kind of boundary conditions, called external and internal boundary conditions. External boundary conditions apply where a prescribed condition is given, such as a prescribed pressure, voltage, volume flow, current or acoustic/electr ic impedance. Internal boundary conditions are used to couple different segments at a connection point, which is recognized by a shared node number. At a connection point, the effort variable is shared, which means that the pressure at the node is equal for each connected segment sharing the node. The flow variable is conserved, so the sum of the volume flow out of all segments connected at the node is 0. \end_layout \begin_layout Subsection* Example: two ducts \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/tfm_expl.pdf width 80text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Example of two simple duct segments connected together. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:coupling_example" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard This procedure of creating a system matrix is explained by an example where only two ducts are coupled. A schematic of the situation is depicted in Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:coupling_example" \end_inset . For the example situation, at the left node of segment (1), an impedance boundary \begin_inset Formula $Z_{L}$ \end_inset is prescribed. The right node of segment (1) is connected to the left node of segment (2), and at the right side of segment (2), a volume flow boundary condition is prescribed of \begin_inset Formula $U_{R}$ \end_inset . The corresponding system of equations for this case is \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \left[\begin{array}{cccc} \mathbf{T}_{1} & -\mathbf{I} & \mathbf{0} & \mathbf{0}\\ \mathbf{0} & \mathbf{0} & \mathbf{T}_{2} & -\mathbf{I}\\ \mathbf{0} & \left[\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right] & \left[\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right] & \mathbf{0}\\ \left[\begin{array}{cc} 1 & Z_{L}\\ 0 & 0 \end{array}\right] & \mathbf{0} & \mathbf{0} & \left[\begin{array}{cc} 0 & 0\\ 0 & 1 \end{array}\right] \end{array}\right]\left\{ \begin{array}{c} p_{1L}\\ U_{1L}\\ p_{1R}\\ U_{1R}\\ p_{2L}\\ U_{2L}\\ p_{2R}\\ U_{2R} \end{array}\right\} =\left\{ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ U_{R} \end{array}\right\} , \end{equation} \end_inset \end_layout \begin_layout Standard In this system matrix, \begin_inset Formula $\mathbf{0}$ \end_inset denotes a \begin_inset Formula $2\times2$ \end_inset sub matrix of zeros and \begin_inset Formula $\mathbf{I}$ \end_inset denotes a \begin_inset Formula $2\times2$ \end_inset identity sub matrix. \begin_inset Formula $\mathbf{T}_{i}$ \end_inset is the transfer matrix of the \begin_inset Formula $i$ \end_inset -th segment. The solution can be obtained by Gaussian elimination, for which in \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset the \family typewriter numpy.linalg.solve() \family default solver is used. Once the solution on the nodes is known, the solution in each segment can be computed as a post processing step. \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset provides some post processing routines to aid in visualization of the acoustic field inside a non-lumped segment, such as an acoustic duct. \end_layout \begin_layout Section Input impedance, output impedance \end_layout \begin_layout Standard The acoustic input impedance \begin_inset Formula $Z_{\mathrm{in}}\equiv p_{L}/U_{L}$ \end_inset on the left side of a segment is defined as the impedance a connecting segment \begin_inset Quotes eld \end_inset feels \begin_inset Quotes erd \end_inset for a certain boundary condition on the right side. \begin_inset Foot status open \begin_layout Plain Layout Note that the definitions of open and closed below are relating to electrical circuits, not open or closed in the acoustical sense. I.e. an open impedance corresponds to a hard acoustic wall (which is acoustically closed). \end_layout \end_inset There are two special load cases for the segment, either on the right side, the circuit is open, resulting in \begin_inset Formula $U_{R}=0$ \end_inset , or the circuit is shorted, which results in \begin_inset Formula $p_{R}=0$ \end_inset . For the open circuit, the input impedance can be computed from the transfer matrix as: \begin_inset Note Note status open \begin_layout Plain Layout Open case: ( \begin_inset Formula $U_{R}=0$ \end_inset _ \end_layout \begin_layout Plain Layout \begin_inset Formula $p_{R}=T_{11}p_{L}+T_{12}U_{L}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{R}=0=T_{21}p_{L}+T_{22}U_{L}\Rightarrow\frac{p_{L}}{U_{L}}=-\frac{T_{22}}{T_{21}}$ \end_inset \end_layout \begin_layout Plain Layout Shorted case ( \begin_inset Formula $p_{R}=0$ \end_inset ): \end_layout \begin_layout Plain Layout \begin_inset Formula $0=T_{11}p_{L}+T_{12}U_{L}\Rightarrow\frac{p_{L}}{U_{L}}=-\frac{T_{12}}{T_{11}}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{align} Z_{\mathrm{in},\mathrm{open}} & =-\frac{T_{22}}{T_{21}}\\ Z_{\mathrm{in},\mathrm{short}} & =-\frac{T_{12}}{T_{11}} \end{align} \end_inset \end_layout \begin_layout Standard For a passive component (and passive load on the right side), the real part of the input impedance should be positive: \begin_inset Formula \begin{equation} \Re\left[Z_{\mathrm{in}}\right]\geq0. \end{equation} \end_inset \end_layout \begin_layout Standard The acoustic output impedance \begin_inset Formula $Z_{\mathrm{out}}\equiv p_{R}/U_{R}$ \end_inset on the right side of a segment is defined as the impedance a connecting segment \begin_inset Quotes eld \end_inset feels \begin_inset Quotes erd \end_inset for a certain boundary condition on the left side. \begin_inset Formula \begin{align} Z_{\mathrm{out},\mathrm{open}} & =\frac{T_{11}}{T_{21}}\\ Z_{\mathrm{out},\mathrm{short}} & =\frac{T_{\mathrm{12}}}{T_{22}} \end{align} \end_inset \begin_inset Note Note status open \begin_layout Plain Layout Open case left side, means \begin_inset Formula $U_{L}=0$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $p_{R}=T_{11}p_{L}+T_{12}U_{L}$ \end_inset –> \begin_inset Formula $p_{R}=T_{11}p_{L}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{R}=T_{21}p_{L}+T_{22}U_{L}$ \end_inset –> \begin_inset Formula $U_{R}=T_{21}p_{L}$ \end_inset \end_layout \begin_layout Plain Layout ================================== \end_layout \begin_layout Plain Layout Shorted case, means \begin_inset Formula $p_{L}=0$ \end_inset , \end_layout \begin_layout Plain Layout \begin_inset Formula $p_{R}=T_{11}p_{L}+T_{12}U_{L}$ \end_inset –> \begin_inset Formula $p_{R}=T_{12}U_{L}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{R}=T_{21}p_{L}+T_{22}U_{L}$ \end_inset –> \begin_inset Formula $U_{R}=T_{22}U_{L}$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard For passive segments, the real part of the output impedance should be \emph on negative: \emph default \begin_inset Formula \begin{equation} \Re\left[Z_{\mathrm{out}}\right]\leq0. \end{equation} \end_inset \end_layout \begin_layout Chapter Segment properties and arguments \begin_inset CommandInset label LatexCommand label name "chap:Segment-properties" \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout Dit is meer een gebruikershandleiding van de technische achtergrond. Misschien kunnen we hier een apart deel voor maken in de documentatie. \end_layout \end_inset \end_layout \begin_layout Section Introduction \end_layout \begin_layout Standard Each segment has various properties and user-set parameters. This chapter provides a basic reference to these items. Which properties and parameters are available differs for each segment. \end_layout \begin_layout Section Parameters \end_layout \begin_layout Subsection Radius, diameter, area \end_layout \begin_layout Standard Most segments require a measure for the cross-sectional area. For ease of use, this can be entered as either the radius \begin_inset space ~ \end_inset \begin_inset Formula $r$ \end_inset , diameter \begin_inset space ~ \end_inset \begin_inset Formula $D$ \end_inset or cross-sectional area \begin_inset space ~ \end_inset \begin_inset Formula $S$ \end_inset . The letter is followed by either a capital \begin_inset space ~ \end_inset \begin_inset Formula $L$ \end_inset for the left node or \begin_inset Formula $R$ \end_inset for the right, e.g. \begin_inset space ~ \end_inset \begin_inset Formula $rL=0.2$ \end_inset . To avoid interpretation errors, they should be entered as keyword arguments, e.g. \begin_inset space ~ \end_inset \begin_inset Formula $\mathrm{ConeDuct}(L=1,rL=0.2,rR=0.3)$ \end_inset instead of \begin_inset Formula $\mathrm{ConeDuct}(1,0.2,0.3)$ \end_inset . \end_layout \begin_layout Section Properties \end_layout \begin_layout Standard Once a segment has been constructed, its arguments become properties and can be adjusted later on. For example, say 'duct' is an instance of the class PrsDuct and we want to change its radius. Then \begin_inset Formula $\mathrm{duct}.r=2$ \end_inset will set it to \begin_inset Formula $2$ \end_inset m. Retrieving any other measure of cross-sectional area is also possible: \begin_inset Formula $x=\mathrm{duct}.D$ \end_inset will retrieve the diameter and save it to \begin_inset Formula $x$ \end_inset . \end_layout \begin_layout Standard On top of that, segments contain calculated properties. These are listed in Table \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "tab:calc_seg_properties" plural "false" caps "false" noprefix "false" \end_inset . \end_layout \begin_layout Standard \begin_inset Float table wide false sideways false status collapsed \begin_layout Plain Layout \noindent \align center \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout Property \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Explanation \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $T(\omega)$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Transfer matrix \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $Vf$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Volume of segment filled with fluid [ \begin_inset ERT status open \begin_layout Plain Layout \backslash si{m} \end_layout \end_inset ] \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout \begin_inset Formula $Z(\omega)$ \end_inset \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout (series) impedance [ \begin_inset ERT status open \begin_layout Plain Layout \backslash si{Pa*s/m^3} \end_layout \end_inset ] \end_layout \end_inset \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Calculated properties of segments \end_layout \end_inset \end_layout \begin_layout Plain Layout \noindent \align center \begin_inset CommandInset label LatexCommand label name "tab:calc_seg_properties" \end_inset \end_layout \end_inset \end_layout \begin_layout Chapter Provided acoustic models \begin_inset CommandInset label LatexCommand label name "chap:Provided-acoustic-models" \end_inset \end_layout \begin_layout Section Introduction \end_layout \begin_layout Standard This chapter provides a concise overview of the provided acoustic models implemented in \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset . \end_layout \begin_layout Section Prismatic duct \begin_inset CommandInset label LatexCommand label name "subsec:Prismatic-duct" \end_inset \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/prsduct.pdf width 80text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Geometry of the prismatic duct \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:prsduct" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard A prismatic duct is used to model one-dimensional acoustic wave propagation. The prismatic duct is implemented in \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset in the \family typewriter PrsDuct \family default class. Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:prsduct" \end_inset shows this segment schematically. In the thermal boundary layer, heat and momentum diffuse to the wall. The thermal boundary layer can be a small layer w.r.t. to the transverse characteristic length scale of the tube, or can fully occupy the tube. In the latter case, the solution converges to the classic laminar Poisseuille flow solution. The basic assumptions behind this model are \end_layout \begin_layout Itemize Prismatic cross sectional area. \end_layout \begin_layout Itemize \begin_inset Formula $L\gg r_{h}$ \end_inset , (tube is long compared to its transverse length scale). \end_layout \begin_layout Itemize Radius is much smaller than the wave length. \end_layout \begin_layout Itemize Wave length is much larger than viscous penetration depth. \end_layout \begin_layout Itemize End effects and entrance effects are negligible. \end_layout \begin_layout Standard For a formal derivation of the model for prismatic cylindrical tubes, the reader is referred to the work of Tijdeman \begin_inset CommandInset citation LatexCommand cite key "tijdeman_propagation_1975" literal "true" \end_inset and Nijhof \begin_inset CommandInset citation LatexCommand cite key "nijhof_viscothermal_2010" literal "true" \end_inset . For a somewhat more pragmatic derivation, we would like to refer to the work of Swift \begin_inset CommandInset citation LatexCommand cite key "swift_thermoacoustics:_2003,swift_thermoacoustic_1988" literal "true" \end_inset and Rott \begin_inset CommandInset citation LatexCommand cite key "rott_damped_1969" literal "true" \end_inset . \end_layout \begin_layout Standard \begin_inset Formula \begin{align} \frac{\mathrm{d}p}{\mathrm{d}x} & =\frac{\omega\rho_{0}}{i\left(1-f_{\nu}\right)S_{f}}U,\label{eq:momentum_LRF}\\ \frac{\mathrm{d}U}{\mathrm{d}x} & =\frac{k}{iZ_{0}}\left(1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\varepsilon_{s}}\right)p,\label{eq:continuity_LRF} \end{align} \end_inset where \begin_inset Formula $S_{f}$ \end_inset is the cross-sectional area filled with fluid, \begin_inset Formula $k$ \end_inset is the inviscid wave number, and \begin_inset Formula $Z_{0}$ \end_inset the inviscid characteristic impedance of a tube ( \begin_inset Formula $Z_{0}=z_{0}/S_{f}$ \end_inset ). \begin_inset Formula $f_{\nu}$ \end_inset and \begin_inset Formula $f_{\kappa}$ \end_inset are the viscous and thermal Rott functions, respectively \begin_inset CommandInset citation LatexCommand cite key "rott_damped_1969" literal "true" \end_inset . They model the viscous and thermal effects with the wall. For circular tubes, the \begin_inset Formula $f$ \end_inset 's are defined as \begin_inset CommandInset citation LatexCommand cite after "p. 88" key "swift_thermoacoustics:_2003" literal "true" \end_inset : \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} f_{j,\mathrm{circ}}=\frac{J_{1}\left[\left(i-1\right)\frac{2r_{h}}{\delta_{j}}\right]}{\left(i-1\right)\frac{r_{h}}{\delta}J_{0}\left[\left(i-1\right)\frac{2r_{h}}{\delta_{j}}\right]},\label{eq:f_cylindrical} \end{equation} \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$j$" description "Index, subscript placeholder\\nomunit{-}" literal "true" \end_inset where \begin_inset Formula $\delta_{j}=\delta_{\nu}$ \end_inset for \begin_inset Formula $f_{\nu,\mathrm{circ}}$ \end_inset and \begin_inset Formula $\delta_{j}=\delta_{\kappa}$ \end_inset for \begin_inset Formula $f_{\kappa,\mathrm{circ}}$ \end_inset . \begin_inset Formula $J_{\alpha}$ \end_inset denotes the cylindrical Bessel function of the first kind and order \begin_inset Formula $\alpha$ \end_inset . \begin_inset Formula $r_{h}$ \end_inset is the hydraulic radius, defined as the ratio of the cross sectional area to the \begin_inset Quotes eld \end_inset wetted perimeter \begin_inset Quotes erd \end_inset : \begin_inset Formula \begin{equation} r_{h}=S_{f}/\Pi. \end{equation} \end_inset Note that for a circular tube with diameter \begin_inset Formula $D$ \end_inset , \begin_inset Formula $r_{h}=\nicefrac{D}{4}$ \end_inset . The parameter \begin_inset Formula $\epsilon_{s}$ \end_inset in Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:continuity_LRF" \end_inset is the ideal solid correction factor, which corrects for solids that have a finite heat capacity. This parameter is dependent on the thermal properties and the geometry of the solid. An example of \begin_inset Formula $\epsilon_{s}$ \end_inset is derived in Section \begin_inset CommandInset ref LatexCommand ref reference "subsec:Thermal-relaxation-effect" \end_inset . For the case of an thermally ideal solid, \begin_inset Formula $\epsilon_{s}$ \end_inset can be set to 0. \end_layout \begin_layout Subsection Other cross-sectional geometries \end_layout \begin_layout Subsubsection Rectangular duct \end_layout \begin_layout Standard Analytical functions exist for prismatic geometries, such as parallel plates, rectangular holes, and even triangular holes. For parallel plates with sides \begin_inset Formula $2y_{0}\times2z_{0}$ \end_inset , the Rott function reads: \begin_inset Formula \begin{equation} f=1-\frac{64}{\pi^{4}}\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{\left(2m-1\right)^{2}}\frac{1}{\left(2n-1\right)^{2}C_{mn}}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} C_{mn}=1-\frac{i\pi^{2}\delta^{2}}{8y_{0}^{2}z_{0}^{2}}\left(\left(2m-1\right)^{2}z_{0}^{2}+\left(2n-1\right)^{2}y_{0}^{2}\right). \end{equation} \end_inset The hydraulic radius is related to \begin_inset Formula $y_{0}$ \end_inset and \begin_inset Formula $z_{0}$ \end_inset as: \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $r_{h}=\frac{S}{\Pi}=\frac{4y_{0}z_{0}}{4y_{0}+4z_{0}}=$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} r_{h}=\frac{y_{0}z_{0}}{y_{0}+z_{0}} \end{equation} \end_inset Defining the aspect ratio as \begin_inset Formula $\AR=z_{0}/y_{0}$ \end_inset , a useful equation is to derive \begin_inset Formula $y_{0}$ \end_inset and \begin_inset Formula $z_{0}$ \end_inset from \begin_inset Formula $r_{h}$ \end_inset and \begin_inset Formula $\AR$ \end_inset : \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $r_{h}=\frac{y_{0}A}{\left(1+A\right)}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $y_{0}=r_{h}\frac{\left(1+A\right)}{A}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $z_{0}=r_{h}\left(1+A\right)$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{align} y_{0} & =r_{h}\frac{\left(1+\AR\right)}{\AR}\\ z_{0} & =r_{h}\left(1+\AR\right) \end{align} \end_inset \end_layout \begin_layout Subsubsection Annular ring \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $i\omega\rho_{0}u=-\frac{\mathrm{d}p}{\mathrm{d}x}+\mu_{0}\nabla_{\perp}^{2}u$ \end_inset \end_layout \begin_layout Plain Layout Fill in: \end_layout \begin_layout Plain Layout \begin_inset Formula \[ u=\frac{i}{\omega\rho_{0}}\left(1-h_{\nu}\right)\frac{\mathrm{d}p}{\mathrm{d}x} \] \end_inset \end_layout \begin_layout Plain Layout Note that \begin_inset Formula $h_{\nu}|_{\mathrm{wall}}\equiv1$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $0=h_{\nu}+\frac{i\delta_{\nu}^{2}}{2}\nabla_{\perp}^{2}h_{\nu}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $h_{\nu}+\frac{i\mu_{0}}{\omega\rho_{0}}\nabla_{\perp}^{2}h_{\nu}=0$ \end_inset \end_layout \begin_layout Plain Layout - \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{i\mu_{0}}{\omega\rho_{0}}\nabla_{\perp}^{2}h_{\nu}+h_{\nu}=0$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard The differential equation that is required to be solved \begin_inset Formula \begin{equation} \frac{i\mu_{0}}{\omega\rho_{0}}\nabla_{\perp}^{2}h_{\nu}+h_{\nu}=0,\qquad h_{\nu|\mathrm{wall}}=0 \end{equation} \end_inset \end_layout \begin_layout Standard For an annular duct the Rott function reads: \end_layout \begin_layout Standard \begin_inset Formula \[ h_{\nu}=\frac{\left(J_{0}\left(\frac{r_{0}\left(1-i\right)}{\delta_{\nu}}\right)-J_{0}\left(\frac{r_{1}\left(1-i\right)}{\delta_{\nu}}\right)\right)Y_{0}\left(\frac{r\left(1-i\right)}{\delta_{\nu}}\right)+\left(Y_{0}\left(\frac{r_{1}\left(1-i\right)}{\delta_{\nu}}\right)-Y_{0}\left(\frac{r_{0}\left(1-i\right)}{\delta_{\nu}}\right)\right)J_{0}\left(\frac{r\left(1-i\right)}{\delta_{\nu}}\right)}{J_{0}\left(\frac{r_{0}\left(1-i\right)}{\delta_{\nu}}\right)Y_{0}\left(\frac{r_{1}\left(1-i\right)}{\delta_{\nu}}\right)-J_{0}\left(\frac{r_{1}\left(1-i\right)}{\delta_{\nu}}\right)Y_{0}\left(\frac{r_{0}\left(1-i\right)}{\delta_{\nu}}\right)} \] \end_inset \end_layout \begin_layout Standard Where \begin_inset Formula \begin{align*} \alpha_{0} & =\frac{r_{0}\left(1-i\right)}{\delta_{i}}\\ \alpha_{1} & =\frac{r_{1}\left(1-i\right)}{\delta_{i}} \end{align*} \end_inset \end_layout \begin_layout Standard And: \begin_inset Formula \begin{align} C_{1} & =\frac{Y_{0}\left(\alpha_{1}\right)-Y_{0}\left(\alpha_{0}\right)}{J_{0}\left(\alpha_{0}\right)Y_{0}\left(\alpha_{1}\right)-J_{0}\left(\alpha_{1}\right)Y_{0}\left(\alpha_{0}\right)}\\ C_{2} & =\frac{J_{0}\left(\alpha_{0}\right)-J_{0}\left(\alpha_{1}\right)}{J_{0}\left(\alpha_{0}\right)Y_{0}\left(\alpha_{1}\right)-J_{0}\left(\alpha_{1}\right)Y_{0}\left(\alpha_{0}\right)} \end{align} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{align} f_{i} & =\delta_{i}\left(1+i\right)\left[\frac{\left\{ H_{0}^{(1)}\left(\alpha_{0}\right)-H_{0}^{(1)}\left(\alpha_{1}\right)\right\} \left[r_{0}H_{-1}^{(2)}\left(\alpha_{0}\right)-r_{1}H_{-1}^{(2)}\left(\alpha_{1}\right)\right]}{\left(r_{1}^{2}-r_{0}^{2}\right)\left[H_{0}^{(1)}\left(\alpha_{0}\right)H_{0}^{(2)}\left(\alpha_{1}\right)-H_{0}^{(1)}\left(\alpha_{1}\right)H_{0}^{(2)}\left(\alpha_{0}\right)\right]}+\right.\\ & \qquad\qquad\qquad\left.\frac{\left\{ H_{0}^{(2)}\left(\alpha_{0}\right)-H_{0}^{(2)}\left(\alpha_{1}\right)\right\} \left[r_{1}H_{-1}^{(1)}\left(\alpha_{1}\right)-r_{0}H_{-1}^{(1)}\left(\alpha_{0}\right)\right]}{\left(r_{1}^{2}-r_{0}^{2}\right)\left[H_{0}^{(1)}\left(\alpha_{0}\right)H_{0}^{(2)}\left(\alpha_{1}\right)-H_{0}^{(1)}\left(\alpha_{1}\right)H_{0}^{(2)}\left(\alpha_{0}\right)\right]}\right] \end{align} \end_inset \end_layout \begin_layout Subsection Transfer matrix \end_layout \begin_layout Standard Upon solving for Eqs. \begin_inset CommandInset ref LatexCommand ref reference "eq:momentum_LRF" \end_inset - \begin_inset CommandInset ref LatexCommand ref reference "eq:continuity_LRF" \end_inset , a transfer matrix can be derived which couples the pressure and volume flow on the left side to the right side as: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula \begin{align*} \frac{\mathrm{d}p}{\mathrm{d}x} & =\frac{\omega\rho_{0}}{i\left(1-f_{\nu}\right)S_{f}}U,\\ \frac{\mathrm{d}U}{\mathrm{d}x} & =\frac{k}{iZ_{0}}\left(1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\varepsilon_{s}}\right)p, \end{align*} \end_inset \end_layout \begin_layout Plain Layout We know the solution for \begin_inset Formula $p$ \end_inset is \end_layout \begin_layout Plain Layout \begin_inset Formula $p=A\exp\left(-i\Gamma x\right)+B\exp\left(i\Gamma x\right)$ \end_inset where \begin_inset Formula $\Gamma^{2}=k^{2}\frac{\left(1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\varepsilon_{s}}\right)}{1-f_{\nu}}$ \end_inset \end_layout \begin_layout Plain Layout Then \end_layout \begin_layout Plain Layout \begin_inset Formula $U=\frac{i\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\frac{\mathrm{d}p}{\mathrm{d}x}=\frac{i\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\Gamma i\left(-A\exp\left(-i\Gamma x\right)+B\exp\left(i\Gamma x\right)\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $U=-\frac{\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\Gamma\left(B\exp\left(i\Gamma x\right)-A\exp\left(-i\Gamma x\right)\right)$ \end_inset \end_layout \begin_layout Plain Layout Now: \begin_inset Formula $p(x=0)=p_{L}$ \end_inset \end_layout \begin_layout Plain Layout And: \begin_inset Formula $U(x=0)=U_{L}$ \end_inset \end_layout \begin_layout Plain Layout Then: \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{L}=\frac{\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\Gamma\left(A-B\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p_{L}=A+B\Rightarrow B=p_{L}-A$ \end_inset \end_layout \begin_layout Plain Layout Hence: \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{L}=\frac{\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\Gamma\left(2A-p_{L}\right)$ \end_inset or \begin_inset Formula $A=\frac{1}{2}p_{L}+\frac{1}{2}\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f}\Gamma}U_{L}$ \end_inset \end_layout \begin_layout Plain Layout And: \begin_inset Formula $B=p_{L}-A=\frac{1}{2}p_{L}-\frac{1}{2}\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f}\Gamma}U_{L}$ \end_inset \end_layout \begin_layout Plain Layout So, finally for \begin_inset Formula $p$ \end_inset we find: \end_layout \begin_layout Plain Layout \begin_inset Formula $p=\left(\frac{1}{2}p_{L}+\frac{1}{2}\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f}\Gamma}U_{L}\right)\exp\left(-i\Gamma x\right)+\left(\frac{1}{2}p_{L}-\frac{1}{2}\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f}\Gamma}U_{L}\right)\exp\left(i\Gamma x\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p=\left(\frac{1}{2}p_{L}+\frac{1}{2}Z_{c}U_{L}\right)\exp\left(-i\Gamma x\right)+\left(\frac{1}{2}p_{L}-\frac{1}{2}Z_{c}U_{L}\right)\exp\left(i\Gamma x\right)$ \end_inset where \begin_inset Formula $Z_{c}=\frac{kZ_{0}}{\left(1-f_{\nu}\right)\Gamma}$ \end_inset \end_layout \begin_layout Plain Layout Or, working to transfer matrices \end_layout \begin_layout Plain Layout \begin_inset Formula $p=\frac{1}{2}p_{L}\exp\left(-i\Gamma x\right)+\frac{1}{2}Z_{c}U_{L}\exp\left(-i\Gamma x\right)+\frac{1}{2}p_{L}\exp\left(i\Gamma x\right)-Z_{c}U_{L}\exp\left(i\Gamma x\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p=p_{L}\cos\left(\Gamma x\right)+\frac{1}{2}Z_{c}U_{L}\exp\left(-i\Gamma x\right)-Z_{c}U_{L}\exp\left(i\Gamma x\right)$ \end_inset \end_layout \begin_layout Plain Layout Using the rule: \begin_inset Formula $\sin\left(x\right)=\frac{1}{2i}\left(e^{ix}-e^{-ix}\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p=p_{L}\cos\left(\Gamma x\right)-iZ_{c}U_{L}\sin\left(\Gamma x\right)$ \end_inset \end_layout \begin_layout Plain Layout Using \end_layout \begin_layout Plain Layout \begin_inset Formula $U=\frac{i\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\frac{\mathrm{d}p}{\mathrm{d}x}=\frac{i}{Z_{c}}\left[-p_{L}\sin\left(\Gamma x\right)-iZ_{c}U_{L}\cos\left(\Gamma x\right)\right]=\left[-\frac{i}{Z_{c}}p_{L}\sin\left(\Gamma x\right)+U_{L}\cos\left(\Gamma x\right)\right]$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} =\left[\begin{array}{cc} \cos\left(\Gamma L\right) & -iZ_{c}\sin\left(\Gamma L\right)\\ -iZ_{c}^{-1}\sin\left(\Gamma L\right) & \cos\left(\Gamma L\right) \end{array}\right]\left\{ \begin{array}{c} p_{L}\\ U_{L} \end{array}\right\} ,\label{eq:transfer_matrix_prismatic_duct} \end{equation} \end_inset where \begin_inset Formula $Z_{c}$ \end_inset is the characteristic impedance of the duct, i.e. the impedance \begin_inset Formula $p/U$ \end_inset of a plane (although damped) propagating wave: \begin_inset Formula \begin{equation} Z_{c}=\frac{kZ_{0}}{\left(1-f_{\nu}\right)\Gamma}.\label{eq:Z_c_prismduct} \end{equation} \end_inset The parameter \begin_inset Formula $\Gamma$ \end_inset in Eqs. \begin_inset CommandInset ref LatexCommand ref reference "eq:transfer_matrix_prismatic_duct" \end_inset and \begin_inset CommandInset ref LatexCommand ref reference "eq:Z_c_prismduct" \end_inset is the viscothermal wave number, i.e. the wave number corrected for viscothermal losses: \begin_inset Formula \begin{equation} \Gamma=\frac{\omega}{c_{0}}\sqrt{\frac{1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\epsilon_{s}}}{1-f_{\nu}}}.\label{eq:Gamma} \end{equation} \end_inset Due to the numerical implementation of the Bessel functions in many libraries, the \begin_inset Formula $f_{j}$ \end_inset function for cylindrical ducts (Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:f_cylindrical" \end_inset ) cannot be computed for high \begin_inset Formula $r_{h}/\delta$ \end_inset by computing this ratio \begin_inset Formula $J_{1}/J_{0}$ \end_inset . The numerical result starts to break down at \begin_inset Formula $r_{h}/\delta\sim100$ \end_inset . To resolve this problem, the \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset code applies a smooth transition from the Bessel function ratio to the boundary layer limit solution for \begin_inset Formula $f$ \end_inset : \begin_inset Formula \begin{equation} f_{j,\mathrm{bl}}=\frac{\left(1-i\right)\delta_{j}}{2r_{h}} \end{equation} \end_inset in the range of \begin_inset Formula $100> length. \end_layout \begin_layout Standard Impedance is given by the equation: \end_layout \begin_layout Standard \noindent \align center \begin_inset Formula \begin{equation} Z_{holes}=\frac{1}{N_{h}}\left(R_{v}+i\omega M_{A}\right) \end{equation} \end_inset \end_layout \begin_layout Standard in which \begin_inset Formula $N_{h}$ \end_inset is the number of holes, \begin_inset Formula $R_{v}$ \end_inset the acoustic resistance as described in equation \begin_inset CommandInset ref LatexCommand ref reference "eq:Rv_hole" plural "false" caps "false" noprefix "false" \end_inset , \begin_inset Formula $\omega$ \end_inset the angular frequency and \begin_inset Formula $m_{a}$ \end_inset the acoustic mass as described in equation \begin_inset CommandInset ref LatexCommand ref reference "eq:acoustic_mass" plural "false" caps "false" noprefix "false" \end_inset , except without Karal's discontinuity factor. \end_layout \begin_layout Section End corrections and discontinuities \begin_inset CommandInset label LatexCommand label name "subsec:End-corrections-and" \end_inset \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/discontinuity.pdf width 60text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Schematic of a waveguide discontinuity. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:karal" \end_inset \end_layout \end_inset For discontinuities in the cross section of a waveguide, and the case of inviscid adiabatic wave propagation, an exact expression is available for the added acoustic mass \begin_inset CommandInset citation LatexCommand cite key "karal_analogous_1953" literal "true" \end_inset . Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:karal" \end_inset gives a schematic of the situation. The model is implemented in the \family typewriter Discontinuity \family default class in the \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset code. The assumptions behind the model are: \end_layout \begin_layout Itemize Both tubes on either side of the discontinuity are cylindrical. The tubes are co-axially connected. \end_layout \begin_layout Itemize The wavelength is larger than transverse characteristic length scale (no propagating modes expect for the plane waves). \end_layout \begin_layout Itemize Other discontinuities are far away from the current one. \end_layout \begin_layout Itemize Inviscid and adiabatic wave propagation (Helmholtz equation). \end_layout \begin_layout Standard The ratio of tube radii \begin_inset Formula $a_{L}/a_{R}$ \end_inset is denoted by \begin_inset Formula $\alpha$ \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\alpha$" description "Ratio of tube radii\\nomunit{-}" literal "true" \end_inset . It turns out that a surface area discontinuity only generates an acoustic pressure discontinuity. The volume flow is preserved. Hence: \begin_inset Formula \begin{align} U_{R} & =U_{L}\\ p_{R} & =p_{L}-i\omega M_{A}U_{L} \end{align} \end_inset where \begin_inset Formula $M_{A}$ \end_inset is the so-called added acoustic mass in \begin_inset ERT status open \begin_layout Plain Layout \backslash si{ \backslash kg \backslash per \backslash metre \backslash tothe{4}} \end_layout \end_inset , which equals \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$M_A$" description "Acoustic mass\\nomunit{\\si{\\kg\\per\\metre\\tothe{4}}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$a$" description "Tube radius\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset Formula \begin{equation} M_{A}=\chi(\alpha,k)\frac{8\rho_{0}}{3\pi^{2}a_{L}},\label{eq:acoustic_mass} \end{equation} \end_inset where \begin_inset Formula $\chi$ \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\chi$" description "Karal's discontinuity factor\\nomunit{-}" literal "true" \end_inset is Karal's discontinuity factor, which is in general a function of the tube radii and the wave number. \end_layout \begin_layout Standard For \begin_inset Formula $\lambda\gg a_{R}$ \end_inset , the dependency of \begin_inset Formula $\chi$ \end_inset on the wave number \begin_inset Formula $k$ \end_inset can be neglected, which lowers the computational burden significantly, as \begin_inset Formula $\chi$ \end_inset has to be computed only once. For the case \begin_inset Formula $\alpha\to0$ \end_inset (by letting \begin_inset Formula $a_{R}\to\infty$ \end_inset ), \begin_inset Formula $\chi\to1$ \end_inset . In case of \begin_inset Formula $\alpha\to1$ \end_inset , the acoustic mass gradually reduces to zero as \begin_inset Formula $\chi\to0$ \end_inset . When \begin_inset Formula $\alpha=1$ \end_inset , there is no continuity left, such that \begin_inset Formula $M_{A}=0$ \end_inset . \end_layout \begin_layout Standard The derivation of the coefficient \begin_inset Formula $\chi$ \end_inset is documented in Appendix \begin_inset CommandInset ref LatexCommand ref reference "chap:Derivation-of-Karal's" \end_inset , except of the following information. To solve the curve of \begin_inset Formula $\chi$ \end_inset , a system of infinite equations has to be solved for an infinite number of unknowns. In the \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset code, as a standard this system is truncated up to \begin_inset Formula $N=$ \end_inset 100 equations and 100 unknowns. Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:chi_vs_alpha" \end_inset shows the effect of truncating this infinite system of equations. As visible for the case of 100 equations, the curves start to deviate from each other for lower values of \begin_inset Formula $\alpha$ \end_inset . Assuming that convergence is obtained as \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$N$" description "Number\\nomunit{-}" literal "true" \end_inset \begin_inset Formula $N\to\infty$ \end_inset , the curve of \begin_inset Formula $N=100$ \end_inset has acceptable accuracy for \begin_inset Formula $\alpha>0.07$ \end_inset . To limit possible faulty results, the \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset code gives a warning when the tube ratio is chosen such that an invalid \begin_inset Formula $\chi$ \end_inset is computed. When an \begin_inset Formula $\alpha<0.07$ \end_inset is desired, the user should choose a higher value of \begin_inset Formula $N$ \end_inset . \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/chi_vs_alpha.pdf width 90text% \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout \begin_inset Formula $\chi$ \end_inset vs \begin_inset Formula $\alpha$ \end_inset for different truncations \begin_inset Formula $\left(N\right)$ \end_inset of the infinite system of equations. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:chi_vs_alpha" \end_inset \end_layout \end_inset \end_layout \begin_layout Section Hard wall \end_layout \begin_layout Standard A hard wall is the wall perpendicular to the wave propagation direction. Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:hardwall" \end_inset shows the schematic configuration for this segment. Due to thermal relaxation a hard wall consumes acoustic energy is consumed. The hard wall segment models this thermal relaxation loss. The assumptions behind the model are: \end_layout \begin_layout Itemize Normal incident waves. \end_layout \begin_layout Itemize Uniform normal velocity. \end_layout \begin_layout Itemize The wavelength is much larger than the thermal penetration depth ( \begin_inset Formula $\lambda\gg\delta_{\kappa}$ \end_inset ). \end_layout \begin_layout Standard We can derive the following impedance boundary condition \begin_inset CommandInset citation LatexCommand cite after "p. 157" key "ward_deltaec_2017" literal "true" \end_inset : \begin_inset Note Note status collapsed \begin_layout Plain Layout Delta EC User guide: \end_layout \begin_layout Plain Layout \begin_inset Formula \[ U_{R}=U_{L}-\frac{\omega p}{\rho_{0}c_{0}^{2}}\frac{\gamma-1}{1+\epsilon_{s}}S\frac{\delta_{\kappa}}{2} \] \end_inset \end_layout \begin_layout Plain Layout Or: \end_layout \begin_layout Plain Layout \begin_inset Formula \[ U_{L}=\frac{k}{z_{0}}\frac{\gamma-1}{1+\epsilon_{s}}S\frac{\delta_{\kappa}}{2}p \] \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} U=k\delta_{\kappa}\frac{S}{z_{0}}\frac{\left(\gamma-1\right)\left(1+i\right)}{2\left(1+\epsilon_{s}\right)}p. \end{equation} \end_inset Hence the impedance of a hard wall scales with \begin_inset Formula $Z\sim Z_{0}\frac{\lambda}{\delta_{\kappa}}$ \end_inset . For 1 kHz, this results in \begin_inset Formula $\sim4100Z_{0}$ \end_inset , which is practically already close to \begin_inset Formula $\infty$ \end_inset . Except for really high frequencies this segment can often be replaced with a boundary condition of \begin_inset Formula $U=0$ \end_inset . An important point to make here is that this boundary condition is inconsistent with the LRF solution for 1D wave propagation in ducts, as the velocity profile in a duct is not uniform. This is especially true for the case of small ducts where \begin_inset Formula $r_{h}\sim\delta$ \end_inset . \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/hardwall.pdf width 50text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Schematic of a hard acoustic wall where the thermal boundary layer dissipates a bit of the acoustic energy ( \begin_inset Formula $Z\neq\infty$ \end_inset ). \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:hardwall" \end_inset \end_layout \end_inset \end_layout \begin_layout Section Spherical wave propagation models \end_layout \begin_layout Standard For spherical waves, the Helmholtz equation reads \begin_inset Formula \begin{equation} \left(\frac{\mathrm{d}^{2}}{\mathrm{d}r^{2}}+\frac{2}{r}\frac{\mathrm{d}}{\mathrm{d}r}+\Gamma^{2}\right)p=0.\label{eq:hh_spher} \end{equation} \end_inset The solution of Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:hh_spher" \end_inset reads: \begin_inset Formula \begin{equation} p=\frac{C_{1}\exp\left(-i\Gamma r\right)+C_{2}\exp\left(-i\Gamma r\right)}{r}. \end{equation} \end_inset The acoustic volume flow can be computed as \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $u_{r}=\frac{i}{\omega\rho_{0}}\frac{\mathrm{d}p}{\mathrm{d}r}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $u_{r}=\frac{i}{kz_{0}}\frac{\mathrm{d}p}{\mathrm{d}r}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{r}=4\pi r^{2}\alpha\frac{i}{kz_{0}}\frac{\mathrm{d}p}{\mathrm{d}r}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} U=i\frac{\alpha4\pi r^{2}}{\Gamma z_{c}}\frac{\mathrm{d}p}{\mathrm{d}r}, \end{equation} \end_inset where \begin_inset Formula $\alpha=1$ \end_inset for a full sphere and \begin_inset Formula $\alpha=\frac{1}{2}$ \end_inset for a hemisphere. We can derive the following transfer matrix for \begin_inset Formula $p$ \end_inset and \begin_inset Formula $U$ \end_inset : \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\frac{C_{1}\exp\left(-i\Gamma r_{L}\right)+C_{2}\exp\left(-i\Gamma r_{L}\right)}{\Gamma r_{L}}=p_{L}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{C_{1}\exp\left(-i\Gamma r_{R}\right)+C_{2}\exp\left(-i\Gamma r_{R}\right)}{\Gamma r_{R}}=p_{R}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(U_{L}\frac{e^{-i\Gamma\left(r_{L}+r_{R}\right)}}{8\pi\Gamma\alpha r_{L}r_{R}}\left(i\Gamma z_{c}e^{2i\Gamma r_{L}}-i\Gamma z_{c}e^{2i\Gamma r_{R}}\right)+p_{L}\left(\frac{r_{L}e^{i\Gamma\left(r_{L}+r_{R}\right)}}{2r_{R}}+\frac{i}{2\Gamma r_{R}}\left(e^{i\Gamma\left(r_{L}-r_{R}\right)}-e^{i\Gamma\left(r_{R}+r_{L}\right)}\right)\right)\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p_{R}=\frac{iU_{L}z_{c}}{4\pi\alpha r_{L}r_{R}}\sin\left(\Gamma\left(r_{L}-r_{R}\right)\right)+p_{L}\left[\frac{r_{L}}{r_{R}}\cos\left(\Gamma\left(r_{L}-r_{R}\right)\right)-\frac{1}{\Gamma r_{R}}\sin\left(\Gamma\left(r_{L}-r_{R}\right)\right)\right]$ \end_inset \end_layout \begin_layout Plain Layout and: \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{R}=U_{L}\left(\frac{r_{R}}{r_{L}}\cos\left(\Gamma\left(r_{L}-r_{R}\right)\right)+\frac{1}{\Gamma r_{L}}\sin\left(\Gamma\left(r_{L}-r_{R}\right)\right)\right)+\frac{4i\pi\alpha}{z_{c}}p_{L}\left[\left(r_{L}r_{R}+\frac{1}{\Gamma^{2}}\right)\sin\left(\Gamma\left(r_{L}-r_{R}\right)\right)+\frac{\left(r_{R}-r_{L}\right)}{\Gamma}\cos\left(\Gamma\left(r_{L}-r_{R}\right)\right)\right]$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p\\ U \end{array}\right\} _{R}=\left[\begin{array}{cc} M_{11} & M_{12}\\ M_{21} & M_{22} \end{array}\right]\left\{ \begin{array}{c} p\\ U \end{array}\right\} _{L}, \end{equation} \end_inset where \begin_inset Formula \begin{align} M_{11} & =\frac{r_{L}}{r_{R}}\cos\left(\Gamma\left(r_{L}-r_{R}\right)\right)-\frac{1}{\Gamma r_{R}}\sin\left(\Gamma\left(r_{L}-r_{R}\right)\right),\\ M_{12} & =\frac{iz_{c}\sin\left(\Gamma\left(r_{L}-r_{R}\right)\right)}{4\pi\alpha r_{L}r_{R}},\\ M_{21} & =\frac{4\pi i\alpha}{z_{c}}\left[\left(r_{L}r_{R}+\frac{1}{\Gamma^{2}}\right)\sin\left(\Gamma\left(r_{L}-r_{R}\right)\right)+\frac{r_{R}-r_{L}}{\Gamma}\cos\left(\Gamma\left(r_{L}-r_{R}\right)\right)\right]\\ M_{22} & =\frac{r_{R}}{r_{L}}\cos\left(\Gamma\left(r_{L}-r_{R}\right)\right)+\frac{1}{\Gamma r_{L}}\sin\left(\Gamma\left(r_{L}-r_{R}\right)\right), \end{align} \end_inset \end_layout \begin_layout Section Boundary conditions \end_layout \begin_layout Subsection Radiation impedance of a baffled piston \end_layout \begin_layout Itemize \begin_inset Formula $a$ \end_inset : radius of the exit [m] \end_layout \begin_layout Itemize \begin_inset Formula $S$ \end_inset : \begin_inset Formula $\pi a^{2}$ \end_inset cross sectional area [m \begin_inset Formula $^{2}$ \end_inset ] \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p=Z_{\mathrm{rad}}U, \end{equation} \end_inset \begin_inset Formula \begin{equation} Z_{\mathrm{rad}}=\frac{z_{0}}{S}\left[1-\frac{2J_{1}\left(2ka\right)}{2ka}+i\frac{2H_{1}(2ka)}{2ka}\right] \end{equation} \end_inset \end_layout \begin_layout Standard In the low frequency range, a power series expansion of \begin_inset Formula $H_{1}$ \end_inset yields [Aarts]: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} H_{1}(x)=\frac{2}{\pi}\left[\frac{x^{2}}{3}-\frac{x^{4}}{45}+\frac{x^{6}}{1575}-\dots\right] \end{equation} \end_inset Filling this in, we obtain the following low-frequency approximation to \begin_inset Formula $Z_{\mathrm{rad}}$ \end_inset : \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} Z_{\mathrm{rad}}=\frac{z_{0}}{S}\left[i\frac{8ka}{3\pi}+\frac{1}{2}\left(ka\right)^{2}+\mathcal{O}\left(\left(ka\right)^{3}\right)\right]\label{eq:Zrad-baffled-piston} \end{equation} \end_inset \end_layout \begin_layout Subsection Incident plane wave on small port in infinite baffle \end_layout \begin_layout Standard Situation: an acoustic system, which is connected to the outside world though a port, ending in an infinite wall \begin_inset CommandInset ref LatexCommand ref reference "fig:bc_planewave_port" plural "false" caps "false" noprefix "false" \end_inset . There is an incident plane wave with specified amplitude and frequency. It would be beneficial for computing time to replace the outside world by a boundary condition on the port. Here it is approached as a scattering problem. More information is described in \begin_inset CommandInset citation LatexCommand cite after "p. 132-134" key "zwikker_sound_1949" literal "false" \end_inset . The pressure field can be written as: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{t}=p_{i}+p_{s}\label{eq:scattering-problem} \end{equation} \end_inset \end_layout \begin_layout Standard in which \begin_inset Formula $p_{t}$ \end_inset is the total pressure field, \begin_inset Formula $p_{i}$ \end_inset the incident pressure field (the field as if there were only an infinite wall) and \begin_inset Formula $p_{s}$ \end_inset the scattered pressure field. The combination of the incident and scattered field combined result in the total pressure field. All depend on both position and time (or frequency). If only the infinite wall is taken into account and the port and system behind it are ignored, the amplitude of the incident plane wave is: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{i}(x,\omega)=\begin{cases} P_{i}\cdot\cos(kx) & x<=0\\ 0 & x>0 \end{cases} \end{equation} \end_inset \end_layout \begin_layout Standard in which \begin_inset Formula $P_{i}$ \end_inset is the amplitude of the incident plane wave at the wall (resulting in sound pressure \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $P_{i}$ \end_inset \family default \series default \shape default \size default \emph default \bar default \strikeout default \xout default \uuline default \uwave default \noun default \color inherit on the surface of a reflecting wall), \begin_inset Formula $k$ \end_inset is the wave number and \begin_inset Formula $x$ \end_inset the position into the wall. There is no scattered pressure field, so this is the total pressure field right away. When the port and system behind it are added, the total pressure field is no longer equal to the incident pressure field: a correction must be added, which is captured in \begin_inset Formula $p_{s}$ \end_inset . The correction is due to the air slug within the port moving. At \begin_inset Formula $x<0$ \end_inset , this has the same effect as a baffled piston. On the condition that the wavelength is much larger than the port size, the scattered field near the boundary (but still outside of the port) is given by: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{s}(x=0^{-})=-Z_{\mathrm{rad}}U \end{equation} \end_inset \end_layout \begin_layout Standard in which \begin_inset Formula $Z_{\mathrm{rad}}$ \end_inset is the radiation impedance of a baffled piston and \begin_inset Formula $U$ \end_inset is the acoustic volume flow rate. Note the minus sign, which stems from the direction in which \begin_inset Formula $U$ \end_inset is defined. The same convention is taken as in COMSOL: velocity \begin_inset Formula $v$ \end_inset is positive when inwards, so inwards \begin_inset Formula $U$ \end_inset is positive. Filling in equation \begin_inset CommandInset ref LatexCommand ref reference "eq:scattering-problem" plural "false" caps "false" noprefix "false" \end_inset , just outside of the port at \begin_inset Formula $x=0^{-}$ \end_inset , yields: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{t}(x=0^{-})=P_{i}-Z_{rad}U \end{equation} \end_inset \end_layout \begin_layout Standard It is questionable whether the port acoustically ends at the boundary, so this might be an approximation. In COMSOL, the pressure is continuous, to it is fine to apply it at \begin_inset Formula $x=0$ \end_inset instead of \begin_inset Formula $x=0^{-}$ \end_inset . \begin_inset Formula $U$ \end_inset can be found by integrating the inner product of velocity and the normal vector over the boundary, while adding a minus sign because the normal vector points outwards. In COMSOL it is more convenient to use \emph on specific \emph default impedances and \emph on velocities \emph default . Then the equation is slightly modified to: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{t}(x=0)=P_{i}-z_{\mathrm{rad}}v\label{eq:bc-planewave-port-pressure} \end{equation} \end_inset \end_layout \begin_layout Standard in which \begin_inset Formula $z_{\mathrm{rad}}$ \end_inset is the specific radiation impedance of a baffled piston and \begin_inset Formula $v$ \end_inset the acoustic velocity (inwards). This equation can be applied as a \emph on pressure \emph default boundary condition in COMSOL. The required \begin_inset Formula $v$ \end_inset can be \begin_inset Quotes eld \end_inset measured \begin_inset Quotes erd \end_inset by averaging the normal component of the velocity and adding a minus sign to make it inwards. Alternatively, the equation can be solved for \begin_inset Formula $v$ \end_inset to obtain a \emph on velocity \emph default boundary condition: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} v=\frac{P_{i}-p_{t}(x=0)}{z_{\mathrm{rad}}}\label{eq:bc-planewave-port-velocity} \end{equation} \end_inset \end_layout \begin_layout Standard in which \begin_inset Formula $p_{t}(x=0)$ \end_inset can be \begin_inset Quotes eld \end_inset measured \begin_inset Quotes erd \end_inset by averaging it over the port's boundary. The LRFTubes implementation of this \emph on mixed \emph default boundary condition is for a left wall: \begin_inset Formula \begin{equation} p_{L}+Z_{\mathrm{rad}}U_{L}=P_{i}, \end{equation} \end_inset and the same on a right wall: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{R}-Z_{\mathrm{rad}}U_{R}=P_{i} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout TO DO: redraw image and list what approximations are used \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/bc_planewave_port.jpg lyxscale 10 width 50text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Schematic view of incident wave (green) on an infinite wall (blue) containing a port with a system connected to it. The location of the boundary condition is shown in red. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:bc_planewave_port" \end_inset \end_layout \end_inset \end_layout \begin_layout Chapter Thermoacoustic segments \end_layout \begin_layout Standard For relatively small temperature gradients, Swift's thermoacoustic equations \begin_inset CommandInset citation LatexCommand cite after "p. 91" key "swift_thermoacoustics:_2003" literal "false" \end_inset : \begin_inset Formula \begin{align} \frac{\mathrm{d}p}{\mathrm{d}x} & =-\frac{-i\omega p_{m}}{R_{s}T_{m}S_{\mathrm{gas}}\left(1-f_{\nu}\right)}U,\\ \frac{\mathrm{d}U}{\mathrm{d}x} & =\frac{-i\omega S_{\mathrm{gas}}}{\gamma p_{m}}\left[1+\left(\gamma-1\right)f_{\kappa}\right]p+\frac{f_{\kappa}-f_{\nu}}{\left(1-f_{\nu}\right)\left(1-\Pr\right)}\frac{1}{T_{m}}\frac{\mathrm{d}T_{m}}{\mathrm{d}x}U, \end{align} \end_inset can be integrated. Assuming \begin_inset Formula $\frac{\mathrm{d}T_{m}}{\mathrm{d}x}L\ll T_{m}$ \end_inset . Then we find for the solution:: \begin_inset Formula \begin{equation} p(x)=C_{1}\exp\left(\Gamma_{1}x\right)+C_{2}\exp\left(\Gamma_{2}x\right), \end{equation} \end_inset where \begin_inset Formula \begin{equation} \Gamma_{1,2}=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a},\label{eq:Gammasol} \end{equation} \end_inset wheren \begin_inset Formula $1$ \end_inset denotes to the \begin_inset Formula $+$ \end_inset and 2 to the \begin_inset Formula $-$ \end_inset sign. In Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:Gammasol" \end_inset , \begin_inset Formula $a,$ \end_inset \begin_inset Formula $b,$ \end_inset and \begin_inset Formula $c$ \end_inset are defined as: \begin_inset Formula \[ \] \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\frac{\left(\Gamma_{1}f_{\nu}p_{L}-\Gamma_{1}p_{L}+iU_{L}\omega\rho_{m}\right)e^{\Gamma_{2}L}+\left(-\Gamma_{2}f_{\nu}p_{L}+\Gamma_{2}p_{L}-iU_{L}\omega\rho_{m}\right)e^{\Gamma_{1}L}}{\Gamma_{1}f_{\nu}-\Gamma_{1}-\Gamma_{2}f_{\nu}+\Gamma_{2}}$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \begin{array}{c} p_{R}\\ U_{R} \end{array}=\left[\begin{array}{cc} \frac{\left(\Gamma_{1}f_{\nu}p_{L}-\Gamma_{1}p_{L}\right)e^{\Gamma_{2}L}+\left(-\Gamma_{2}f_{\nu}p_{L}+\Gamma_{2}p_{L}\right)e^{\Gamma_{1}L}}{\left(\Gamma_{2}-\Gamma_{1}\right)\left(1-f_{\nu}\right)} & i\frac{\left(iU_{L}\omega\rho_{m}\right)e^{\Gamma_{2}L}+\left(-iU_{L}\omega\rho_{m}\right)e^{\Gamma_{1}L}}{\left(\Gamma_{2}-\Gamma_{1}\right)\left(1-f_{\nu}\right)}\\ \\ \end{array}\right]\left\{ \begin{array}{c} p_{L}\\ U_{L} \end{array}\right\} \end{equation} \end_inset \end_layout \begin_layout Chapter Speaker segment \end_layout \begin_layout Section As an active element, with voltage control \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/spk.pdf width 100text% \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Electrical and mechanical model of the speaker \end_layout \end_inset \end_layout \end_inset \end_layout \begin_layout Standard The speaker generates electromotive force \end_layout \begin_layout Standard \begin_inset Formula \begin{align} F_{\mathrm{emf}} & =B\ell I, \end{align} \end_inset where \begin_inset Formula $B\ell$ \end_inset is the \begin_inset Quotes eld \end_inset motor constant \begin_inset Quotes erd \end_inset , or force factor, in units \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash si{ \backslash newton \backslash per \backslash ampere} \end_layout \end_inset , or \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash si{ \backslash volt \backslash second \backslash per \backslash meter} \end_layout \end_inset . The back-emf \begin_inset Quotes eld \end_inset force \begin_inset Quotes erd \end_inset : \begin_inset Formula \begin{equation} V_{\mathrm{bemf}}=B\ell u \end{equation} \end_inset \end_layout \begin_layout Standard The \begin_inset Quotes eld \end_inset circuit equation \begin_inset Quotes erd \end_inset : \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} V_{\mathrm{in}}-V_{\mathrm{bemf}}=Z_{\mathrm{el}}I, \end{equation} \end_inset where \begin_inset Formula $Z_{\mathrm{el}}$ \end_inset is the equivalent impedance of the electrical circuit in \begin_inset Formula $\Omega$ \end_inset . The mechanical impedance comprises a stiffness part, a damping part and a mass part. The equation of motion is: \begin_inset Formula \begin{equation} z_{m}u=F_{\mathrm{emf}}+p_{l}S-p_{r}S, \end{equation} \end_inset \end_layout \begin_layout Standard where \begin_inset Formula $u$ \end_inset denotes the velocity phasor of the membrane. The mechanical impedance \begin_inset Formula $z_{m}$ \end_inset is defined as: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} z_{m}=i\omega m_{m}+r_{m}+\frac{k_{m}}{i\omega}, \end{equation} \end_inset where \begin_inset Formula $m_{m}$ \end_inset is the moving mass, \begin_inset Formula $r_{m}$ \end_inset the damping force and \begin_inset Formula $k_{m}$ \end_inset the spring constant. \begin_inset Formula $z_{m}$ \end_inset can equivalently be written as: \begin_inset Note Note status collapsed \begin_layout Plain Layout \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $z_{m}=i\omega m+R_{m}+\frac{K_{m}}{i\omega}$ \end_inset \end_layout \begin_layout Plain Layout \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $z_{m}=m\left(i\omega+\frac{R_{m}}{m}+\frac{\omega_{r}^{2}}{i\omega}\right)$ \end_inset \end_layout \begin_layout Plain Layout \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $z_{m}=m\left(i\omega+\frac{R_{m}}{m}+\frac{\omega_{r}^{2}}{i\omega}\right)$ \end_inset \end_layout \begin_layout Plain Layout using: \begin_inset Formula $\omega_{r}^{2}=\frac{K_{m}}{m}\Rightarrow m=\frac{K_{m}}{\omega_{r}^{2}}$ \end_inset \end_layout \begin_layout Plain Layout \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $z_{m}=\frac{m}{i\omega}\left(-\omega^{2}+i\omega\frac{R_{m}}{m}+\omega_{r}^{2}\right)$ \end_inset \end_layout \begin_layout Plain Layout \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $z_{m}=\frac{m}{i\omega}\left(-\omega^{2}+i\omega\frac{R_{m}\omega_{r}^{2}}{K_{m}}+\omega_{r}^{2}\right)$ \end_inset \end_layout \begin_layout Plain Layout Now, writing \begin_inset Formula $R_{m}$ \end_inset as: \begin_inset Formula $R_{m}=2\zeta\sqrt{K_{m}m}$ \end_inset : \begin_inset Formula $\zeta=\frac{1}{2}\frac{r_{m}}{\sqrt{k_{m}m_{m}}}\Rightarrow\zeta=\frac{1}{2}\frac{r_{m}}{\sqrt{k_{m}m_{m}}}=\frac{1}{2}\frac{r_{m}}{\omega_{r}m_{m}}$ \end_inset \end_layout \begin_layout Plain Layout \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $z_{m}=\frac{m}{i\omega}\left(\omega_{r}^{2}-\omega^{2}+2i\omega\zeta\omega_{r}\right)$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} z_{m}=m\left(i\omega+2\zeta\omega_{r}+\frac{\omega_{r}^{2}}{i\omega}\right), \end{equation} \end_inset where \begin_inset Formula \begin{equation} \omega_{r}^{2}=\frac{k_{m}}{m_{m}}\qquad;\qquad\zeta=\frac{r_{m}}{2\sqrt{k_{m}m_{m}}}=\frac{r_{m}}{2\omega_{r}m_{m}}=\frac{\omega_{r}r_{m}}{2k_{m}}. \end{equation} \end_inset \end_layout \begin_layout Standard After some algebraic manipulations we find: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $z_{m}u=\left(p_{l}-p_{r}\right)S+B\ell I$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{1}{Z_{\mathrm{el}}}\left(V_{\mathrm{in}}-V_{\mathrm{bemf}}\right)=I$ \end_inset \end_layout \begin_layout Plain Layout where \begin_inset Formula $V_{\mathrm{bemf}}=B\ell u$ \end_inset \end_layout \begin_layout Plain Layout Units of \begin_inset Formula $\left[B\ell\right]=\frac{N}{A}=\frac{\mathrm{kg}\mathrm{m}s}{\mathrm{s}^{2}C}$ \end_inset , knowing that \begin_inset Formula $V=\frac{J}{C}$ \end_inset , we can write this as: \begin_inset Formula $\frac{\mathrm{kg}\mathrm{m}s}{\mathrm{s}^{2}C}=\frac{V\mathrm{kg}\mathrm{m}s}{\mathrm{s}^{2}J}=\frac{Vs}{\mathrm{m}}$ \end_inset \end_layout \begin_layout Plain Layout And \begin_inset Formula $\left[\frac{B\ell^{2}}{Z_{\mathrm{el}}}\right]=\left[\frac{Vs}{\mathrm{m}}\frac{N}{A}\frac{A}{V}\right]=\left[\frac{s}{\mathrm{m}}\frac{N}{A}\right]$ \end_inset \end_layout \begin_layout Plain Layout Results in: \end_layout \begin_layout Plain Layout \begin_inset Formula $z_{m}u=\left(p_{l}-p_{r}\right)S+B\ell\frac{V_{\mathrm{in}}-V_{\mathrm{bemf}}}{Z_{\mathrm{el}}}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{B\ell^{2}u}{Z_{\mathrm{el}}}+z_{m}u=\left(p_{l}-p_{r}\right)S+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$ \end_inset \end_layout \begin_layout Plain Layout To acoustic variables \end_layout \begin_layout Plain Layout \begin_inset Formula \[ \frac{1}{S}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U=\left(p_{l}-p_{r}\right)S+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}} \] \end_inset \end_layout \begin_layout Plain Layout To transfer matrix notation: \end_layout \begin_layout Plain Layout \begin_inset Formula $p_{r}=p_{l}-\frac{1}{S^{2}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U+\frac{B\ell}{Z_{\mathrm{el}}S}V_{\mathrm{in}}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{align} \frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l} & =p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}},\label{eq:U_vs_V}\\ U_{r}-U_{l} & =0, \end{align} \end_inset which is in transfer matrix notation: \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{r}\\ U_{r} \end{array}\right\} =\boldsymbol{T}\left\{ \begin{array}{c} p_{l}\\ U_{l} \end{array}\right\} +\boldsymbol{s}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} \boldsymbol{T}=\left[\begin{array}{cc} 1 & -\frac{1}{S^{2}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)\\ 0 & 1 \end{array}\right]\qquad;\qquad\boldsymbol{s}=\left\{ \begin{array}{c} \frac{B\ell}{Z_{\mathrm{el}}S}V_{\mathrm{in}}\\ 0 \end{array}\right\} \end{equation} \end_inset \end_layout \begin_layout Standard Computing the voltage input for given velocity \end_layout \begin_layout Standard Suppose we know the membrane velocity, and we want to know the corresponding driving voltage. For that we can rearrange Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:U_vs_V" \end_inset a bit: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\frac{1}{S_{l}}\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}\right)U_{l}=p_{l}S_{l}-p_{r}S_{r}+\frac{B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$ \end_inset \end_layout \begin_layout Plain Layout Filling in \begin_inset Formula $S_{l}$ \end_inset is \begin_inset Formula $S_{r}$ \end_inset = \begin_inset Formula $S_{d}$ \end_inset and \begin_inset Formula $\frac{p_{r}-p_{l}}{U}=Z_{\mathrm{ac}}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(z_{m}+\frac{\left(B\ell\right)^{2}}{Z_{\mathrm{el}}}+Z_{\mathrm{ac}}S\right)U=\frac{S_{d}B\ell}{Z_{\mathrm{el}}}V_{\mathrm{in}}$ \end_inset \end_layout \begin_layout Plain Layout Or: \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\frac{B\ell}{S_{d}}+\frac{Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}+z_{m}/S_{d}\right)}{B\ell}\right)U=V_{\mathrm{in}}$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} V_{\mathrm{in}}=\left(\frac{B\ell}{S_{d}}+\frac{Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}+z_{m}/S_{d}\right)}{B\ell}\right)U, \end{equation} \end_inset or equivalently in terms of the mechanical velocity: \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\frac{B\ell^{2}+Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}S_{d}+z_{m}\right)}{B\ell}u=V_{\mathrm{in}}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} V_{\mathrm{in}}=\frac{B\ell^{2}+Z_{\mathrm{el}}\left(Z_{\mathrm{ac}}S_{d}+z_{m}\right)}{B\ell}u \end{equation} \end_inset For a COMSOL implementation, in terms of the computed acoustic pressure and derivatives thereof (to create a linear system of equations): \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $V_{\mathrm{in}}=\frac{B\ell^{2}u+Z_{\mathrm{el}}\left(p+z_{m}u\right)}{B\ell}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $V_{\mathrm{in}}=\left(B\ell+\frac{Z_{\mathrm{el}}z_{m}}{B\ell}\right)u+\frac{Z_{\mathrm{el}}}{B\ell}p$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} V_{\mathrm{in}}=\left(B\ell+\frac{Z_{\mathrm{el}}z_{m}}{B\ell}\right)u+\frac{Z_{\mathrm{el}}}{B\ell}F_{\mathrm{spk}}, \end{equation} \end_inset where \begin_inset Formula $F_{\mathrm{spk}}$ \end_inset is the net force the speaker exerts \emph on on the fluid \emph default . \end_layout \begin_layout Section As antireciprocal segment \end_layout \begin_layout Standard As antireciprocal segment, a voltage controlled speaker has electrical connectio ns on the left side, and acoustical connections on the right side: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p\\ U \end{array}\right\} _{R}=\boldsymbol{T}_{\mathrm{spk}}\left\{ \begin{array}{c} V\\ I \end{array}\right\} _{L}. \end{equation} \end_inset A model us used for the back cavity pressure build-up which can be added as an extra impedance, placed in series with the effective acoustic impedance of the front side, hence the force balance reads: \begin_inset Formula \begin{equation} F_{\mathrm{emf}}=Z_{\mathrm{back}}U+Z_{\mathrm{front}}U \end{equation} \end_inset The transfer matrix reads: \begin_inset Formula \begin{equation} \boldsymbol{T}_{\mathrm{spk}}=\left[\begin{array}{cc} -\frac{S^{2}Z_{\mathrm{back}}+z_{m}}{SB\ell} & \frac{\left(B\ell\right)^{2}+Z_{\mathrm{el}}\left(z_{m}+S^{2}Z_{\mathrm{back}}\right)}{B\ell S}\\ \frac{S}{B\ell} & -\frac{SZ_{\mathrm{el}}}{B\ell} \end{array}\right] \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout Determinant: \begin_inset Formula \[ \frac{Z_{\mathrm{el}}\left(S^{2}Z_{\mathrm{back}}+z_{m}\right)}{B\ell^{2}}-\left(1+\frac{Z_{\mathrm{el}}\left(S^{2}Z_{\mathrm{back}}+z_{m}\right)}{B\ell^{2}}\right)=-1 \] \end_inset \end_layout \begin_layout Plain Layout For a closed back-cavity volume, the back-cavity is: \end_layout \begin_layout Plain Layout Then again: \end_layout \begin_layout Plain Layout Compute determinant: \end_layout \begin_layout Plain Layout \begin_inset Formula $\mathrm{det}=-S$ \end_inset \end_layout \end_inset \end_layout \begin_layout Chapter (Micro)-perforated plate design \end_layout \begin_layout Standard Given \begin_inset Formula $\beta$ \end_inset , \begin_inset Formula $\zeta$ \end_inset and \begin_inset Formula $\omega_{r}$ \end_inset , a proper acoustic mass has to be chosen. Given the resonator equations \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula \begin{align*} C & =\frac{V}{\rho_{0}z_{0}},\\ m_{\mathrm{neck}} & =\frac{1}{\omega_{r}^{2}C}\\ \zeta & =\frac{1}{2}\omega_{r}CR_{v}. \end{align*} \end_inset and \begin_inset Formula \[ Z_{h}=\frac{1}{\omega_{r}C}\left(\frac{\omega_{r}}{i\omega}+2\zeta+\frac{i\omega}{\omega_{r}}\right) \] \end_inset \end_layout \end_inset , the viscous resistance and required acoustic mass can be determined. This results in requirements for the (effective) acoustic mass and resistance of the perforate. For arbitrary hole sizes, the definition of the acoustic impedance of a perforate is: \begin_inset Formula \begin{equation} z=\frac{\Delta p}{\overline{u}}.\label{eq:perforate_impedance_definition} \end{equation} \end_inset where \begin_inset Formula $\overline{u}$ \end_inset denotes the acoustic volume flow per unit of area through the perforate (uncorrected yet for porosity), such that the area-averaged velocity \emph on in a hole \emph default is \begin_inset Formula $u_{h}=\overline{u}/\phi$ \end_inset , where \begin_inset Formula $\phi$ \end_inset denotes the porosity. In Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:perforate_impedance_definition" \end_inset , it is assumed that the acoustic wavelength is typically much larger than the length scale(s) of the perforate. The model for the impedance of a perforate, in the linear range is \begin_inset Note Note status collapsed \begin_layout Plain Layout The COMSOL language, partially translated: \end_layout \begin_layout Plain Layout \begin_inset Formula $z=-\rho_{0}c_{0}\frac{2i\sin\left(\frac{k_{c}t_{p}}{2}\right)}{\sqrt{\left(\gamma-\left(\gamma-1\right)\Psi_{h}\right)\Psi_{v}}}-\rho_{0}c_{0}\frac{i\omega}{c_{0}C_{D}\phi}\frac{2\delta}{\Psi_{v}}f_{\mathrm{int}},$ \end_inset \end_layout \begin_layout Plain Layout Using the fact that: \begin_inset Formula $\Psi_{v}\equiv f_{\nu}-1$ \end_inset and equivalently: \begin_inset Formula $\Psi_{h}\equiv f_{\kappa}-1$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $z=\rho_{0}c_{0}\frac{2i\sin\left(\Gamma\frac{t_{w}}{2}\right)}{\sqrt{\left(\gamma-\left(\gamma-1\right)\left(f_{\kappa}-1\right)\right)\left(f_{\nu}-1\right)}}+\rho_{0}c_{0}\frac{i\omega}{c_{0}C_{D}\phi}\frac{2\delta}{1-f_{\nu}}f_{\mathrm{int}},$ \end_inset \end_layout \begin_layout Plain Layout where \begin_inset Formula $k_{c}$ \end_inset is our \begin_inset Formula $\Gamma$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $z=\rho_{0}c_{0}\frac{2i\sin\left(\Gamma\frac{t_{w}}{2}\right)}{\sqrt{\left(1+\left(\gamma-1\right)f_{\kappa}\right)\left(1-f_{\nu}\right)}}+\frac{i\omega}{c_{0}C_{D}\phi}\frac{2\delta}{1-f_{\nu}}f_{\mathrm{int}},$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\delta$ \end_inset is the end correction length for one side: \begin_inset Formula $\delta=4D/(3\pi)$ \end_inset . For small plate thicknesses: \end_layout \begin_layout Plain Layout \begin_inset Formula $z=\rho_{0}c_{0}\frac{2i\sin\left(\Gamma\frac{t_{w}}{2}\right)}{\sqrt{\left(1+\left(\gamma-1\right)f_{\kappa}\right)\left(1-f_{\nu}\right)}}+\rho_{0}c_{0}\frac{i\omega}{c_{0}C_{D}\phi}\frac{2\delta}{1-f_{\nu}}f_{\mathrm{int}},$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula \[ Z_{c}=\frac{kZ_{0}}{\left(1-f_{\nu}\right)\Gamma}. \] \end_inset viscothermal wave number, i.e. the wave number corrected for viscothermal losses: \begin_inset Formula \[ \Gamma=\frac{\omega}{c_{0}}\sqrt{\frac{1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\epsilon_{s}}}{1-f_{\nu}}}. \] \end_inset \end_layout \begin_layout Plain Layout For small plate thicknesses: \end_layout \begin_layout Plain Layout \begin_inset Formula $z=i\omega\rho_{0}\frac{t_{w}+\frac{2\delta f_{\mathrm{int}}}{C_{D}}}{\left(1-f_{\nu}\right)},$ \end_inset \end_layout \end_inset : \begin_inset Formula \begin{equation} z=\frac{i\omega\rho_{0}}{\phi}\left[\frac{t_{w}}{\left(1-f_{\nu}\right)}+2\delta f_{\mathrm{int}}\right]+\alpha\frac{\rho_{0}\omega\delta_{\nu}}{\phi}, \end{equation} \end_inset where \begin_inset Formula $f_{\mathrm{int}}$ \end_inset is the hole-hole interaction function which \begin_inset Formula $\to1$ \end_inset for \begin_inset Formula $\phi\to0$ \end_inset , and \begin_inset Formula $\delta$ \end_inset is the single-sided hole (therefore, the factor 2 in front) end correction due to the added mass effect, for the situation of negligible hole-hole interaction. [Paper: Tayong, 2013]. \end_layout \begin_layout Standard \begin_inset Formula \begin{align} f_{\mathrm{int}}(\phi) & =1-1.4092\sqrt{\phi}+0.33818\sqrt{\phi}^{3}+0.06793\sqrt{\phi}^{5}.\\ & -0.02287\sqrt{\phi}^{6}+0.063015\sqrt{\phi}^{7}-0.01614\sqrt{\phi}^{8} \end{align} \end_inset For square holes: \end_layout \begin_layout Standard where \begin_inset Formula \begin{equation} \xi^{2}=\frac{\pi D^{2}}{4P^{2}} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \frac{D}{P}=\sqrt{\frac{4\phi}{\pi}}. \end{equation} \end_inset \end_layout \begin_layout Standard For circular large holes with diameter \begin_inset Formula $D$ \end_inset , the end correction for both sides is \begin_inset Formula \begin{equation} 2\delta=\frac{8}{3\pi}D\approx0.85D. \end{equation} \end_inset \end_layout \begin_layout Standard Here we use a more advanced model, which includes the shear wave number. For unrounded edges and a perforate thickness of \begin_inset Formula $t_{p}$ \end_inset , the added mass end correction can be computed as: \begin_inset Note Note status open \begin_layout Plain Layout Equation according to Temiz for added mass effect: \end_layout \begin_layout Plain Layout \begin_inset Formula $2\delta=\frac{\delta_{\mathrm{temiz}}}{2}D$ \end_inset \end_layout \begin_layout Plain Layout Where: \end_layout \begin_layout Plain Layout \begin_inset Formula $\delta_{\mathrm{temiz}}=0.97\exp\left(-0.2S_{h}\right)+1.54-0.003\frac{D}{t_{p}}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $S_{h}=\frac{D}{2}\sqrt{\frac{\rho_{0}\omega}{\mu_{0}}}$ \end_inset \end_layout \begin_layout Plain Layout ——– \end_layout \begin_layout Plain Layout Ours: \end_layout \begin_layout Plain Layout \begin_inset Formula $2\delta=\frac{8}{3\pi}D$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} 2\delta=\frac{1}{2}\left[0.97\exp\left(-0.14\frac{D}{\delta_{\nu}}\right)+1.54-0.003\frac{D}{t_{p}}\right]D \end{equation} \end_inset \end_layout \begin_layout Standard The factor \begin_inset Formula $\alpha$ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \alpha=5.08\left(\frac{D}{\sqrt{2}\delta_{\nu}}\right)^{-1.45}+1.70-0.002\frac{D}{t_{p}}. \end{equation} \end_inset \end_layout \begin_layout Section Tuning the hole diameter for large holes and the negligible hole-hole interactio n \end_layout \begin_layout Standard The coarse impedance of a Helmholtz resonator repeated here: \begin_inset Formula \begin{equation} Z(\omega)=\underbrace{i\omega m_{A}+R_{v}}_{Z_{h}}+\frac{\rho_{0}c_{0}^{2}}{i\omega V}, \end{equation} \end_inset The resistive and reacting part \begin_inset Formula $i\omega m_{A}+R_{v}$ \end_inset is due to the resonator holes, \begin_inset Formula \begin{equation} Z_{h}=i\omega m_{A}+R_{v}\approx\frac{1}{S}\left[\frac{i\omega\rho_{0}}{\phi}\left[\frac{t_{w}}{\left(1-f_{\nu}\right)}+2\delta f_{\mathrm{int}}\right]+\frac{\alpha\rho_{0}\omega\delta_{\nu}}{\phi}\right].\label{eq:Zhole} \end{equation} \end_inset In the large hole limit, or high shear wave number: \begin_inset Formula \[ \Re\left[i\omega m_{A}+R_{v}\right]\approx\frac{\rho_{0}\delta_{\nu}\omega}{\phi S}\left[\alpha+\frac{2t_{w}}{\left(D-4\delta_{\nu}\right)}\right]\underbrace{\propto}_{\mathrm{approx}.}\sqrt{\omega}. \] \end_inset \end_layout \begin_layout Standard In the large hole limit, without hole-hole interaction and \begin_inset Formula $\delta_{\nu}\to0$ \end_inset , we the resonance frequency of the system is: \begin_inset Formula \begin{equation} \omega_{r,\mathrm{lh}}^{2}=\frac{\phi Sc_{0}^{2}}{V\left(1.54D+t_{w}\right)}\label{eq:omgr_largeholes} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\frac{c_{0}^{2}\rho_{0}}{V\omega_{\mathrm{r,lh}}^{2}}\left[\frac{\omega_{\mathrm{r,lh}}^{2}}{i\omega}+\omega\left\{ \frac{\alpha\delta_{\nu}}{2\delta f_{\mathrm{int}}+t_{w}}+i\frac{Dt_{w}+2\delta f_{\mathrm{int}}\left(D-2\delta_{\nu}\left(1-i\right)\right)}{\left(D-2\delta_{\nu}\left(1-i\right)\right)\left(2\delta f_{\mathrm{int}}+t_{w}\right)}\right\} \right]$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{c_{0}^{2}\rho_{0}}{V\omega_{\mathrm{r,lh}}^{2}}\left[\frac{\omega_{\mathrm{r,lh}}^{2}}{i\omega}+\frac{\omega\alpha\delta_{\nu}}{2\delta f_{\mathrm{int}}+t_{w}}+i\omega\left(1+t_{w}\frac{2\delta_{\nu}\left(1-i\right)}{\left(D-2\delta_{\nu}\left(1-i\right)\right)\left(2\delta f_{\mathrm{int}}+t_{w}\right)}\right)\right]$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} Z_{\mathrm{large\,holes},\mathrm{res}}(\omega)=\frac{c_{0}^{2}\rho_{0}}{V\omega_{r,\mathrm{lh}}^{2}}\left[\frac{\omega_{r,\mathrm{lh}}^{2}}{i\omega}+\frac{i\omega t_{w}}{\left\{ 1+2\frac{\delta_{\nu}\left(i-1\right)}{D}\right\} \left(2\delta f_{\mathrm{int}}+t_{w}\right)}+\frac{i\omega\left[2\delta f_{\mathrm{int}}-i\delta_{\nu}\alpha\right]}{2\delta f_{\mathrm{int}}+t_{w}}\right]\label{eq:Zlargeholes_forres} \end{equation} \end_inset \end_layout \begin_layout Subsection COMSOL boundary condition to useful \end_layout \begin_layout Standard When using COMSOL to compute Helmholtz resonances, the added mass effect is included just by solving the Helmholtz equation. Therefore, to model the holes, only the final wall thickness part of the added mass (and hole-hole interaction), and the resistive part of the impedance should be added to the simulation. If we look at Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:Zhole" \end_inset , it means only the following part: \begin_inset Formula \begin{equation} z_{\mathrm{bc,\,COMSOL}}=i\omega\rho_{0}\frac{t_{w}}{1-f_{\nu}}+\alpha\rho_{0}\omega\delta_{\nu}. \end{equation} \end_inset \end_layout \begin_layout Subsection Porosity estimator constraint \end_layout \begin_layout Standard An estimation for the porosity is a good requirement, as a too large porosity leads to too much hole-hole interaction and shift away from proper Helmholtz resonators. First of all, we set the surface area at the inner duct, which is available for holes as \begin_inset Formula \begin{equation} S=\Pi L_{h}, \end{equation} \end_inset and we fix \begin_inset Formula $L_{h}$ \end_inset to \begin_inset Formula \begin{equation} L_{h}=\lambda_{r}/20=\frac{2\pi c_{0}}{20\omega_{r,\mathrm{lh}}}=\frac{\pi c_{0}}{10\omega_{r,\mathrm{lh}}}. \end{equation} \end_inset Rewriting Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:omgr_largeholes" \end_inset to \begin_inset Formula $\phi$ \end_inset yields \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\phi\approx\frac{V\left(1.54D+t_{w}\right)\omega_{r,\mathrm{lh}}^{2}}{Sc_{0}^{2}}$ \end_inset \end_layout \begin_layout Plain Layout Fill in for \begin_inset Formula $S=\Pi L_{h}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\phi\approx\frac{V\left(1.54D+t_{w}\right)\omega_{r,\mathrm{lh}}^{2}}{\Pi L_{h}c_{0}^{2}}$ \end_inset \end_layout \begin_layout Plain Layout And for \begin_inset Formula $L_{h}$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $L_{h}=\frac{\pi c_{0}}{10\omega_{r,\mathrm{lh}}}.$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\phi\approx\frac{10}{\pi}\frac{V\left(1.54D+t_{w}\right)\omega_{r,\mathrm{lh}}^{3}}{\Pi c_{0}^{3}}$ \end_inset \end_layout \end_inset : \begin_inset Formula \begin{equation} \phi_{\mathrm{estimation}}\approx\frac{10}{\pi}\frac{V\left(1.54D+t_{w}\right)\omega_{r,\mathrm{lh}}^{3}}{\Pi c_{0}^{3}}\leq0.1 \end{equation} \end_inset \end_layout \begin_layout Standard See what this constraint does...* \end_layout \begin_layout Section Large hole (boundary layer) limit \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \phi=\frac{S_{\mathrm{hole}}}{S_{\mathrm{tot}}} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula $\delta_{\nu}\ll D$ \end_inset . Given \begin_inset Formula $\zeta$ \end_inset and \begin_inset Formula $\omega_{r}$ \end_inset . \begin_inset Note Note status collapsed \begin_layout Plain Layout Now, the following substitutions are made: \begin_inset Formula \begin{align*} C & =\frac{V}{\rho_{0}z_{0}},\\ m_{\mathrm{neck}} & =\frac{1}{\omega_{r}^{2}C}\\ \zeta & =\frac{1}{2}\omega_{r}CR_{v}. \end{align*} \end_inset \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $ $ \end_inset \end_layout \end_inset such that we can write: \begin_inset Formula \[ Z_{h}=\frac{1}{\omega_{r}C}\left(\frac{\omega_{r}}{i\omega}+2\zeta+\frac{i\omega}{\omega_{r}}\right) \] \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula \[ Z_{h}=\frac{1}{\omega_{r}C}\left(\frac{\omega_{r}}{i\omega}+2\zeta+\frac{i\omega}{\omega_{r}}\right)=\frac{1}{i\omega C}+\frac{2\zeta\omega_{r}}{C} \] \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{2\zeta}{\omega_{r}C}=R_{v}.$ \end_inset Or: \begin_inset Formula \[ \zeta=\frac{1}{2}\omega_{r}R_{v}C \] \end_inset But: \begin_inset Formula $\frac{1}{Cm_{A}}=\omega_{r}^{2}$ \end_inset Such that: \begin_inset Formula $\frac{1}{C}=\omega_{r}^{2}m_{A}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula \[ \zeta=\frac{1}{2}\frac{R_{v}}{\omega_{r}m_{A}} \] \end_inset \end_layout \end_inset Note that: \begin_inset Formula \begin{equation} \zeta=\frac{1}{2}\frac{R}{m_{A}\omega_{r}}\approx\frac{1}{2}\frac{\Re\left[z\right]}{\Im\left[z\right]} \end{equation} \end_inset Procedure: \end_layout \begin_layout Standard In the boundary layer limit: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} f_{\nu}=\frac{\left(1-i\right)\delta_{\nu}}{2r_{h}}, \end{equation} \end_inset such that: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} z_{\mathrm{perforate}}=\frac{i\omega\rho_{0}}{\phi}\frac{t_{w}+2\delta f_{\mathrm{int}}}{\left(1-\frac{\delta_{\nu}}{2r_{h}}+\frac{i\delta_{\nu}}{2r_{h}}\right)} \end{equation} \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $z=\frac{i\omega\rho_{0}}{\phi}\frac{t_{w}+\frac{2\delta f_{\mathrm{int}}}{C_{D}}\left(1-\frac{\delta_{\nu}}{2r_{h}}+\frac{i\delta_{\nu}}{2r_{h}}\right)}{\left(1-\frac{\delta_{\nu}}{2r_{h}}+\frac{i\delta_{\nu}}{2r_{h}}\right)}$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard Typical resistance: fill in \begin_inset Formula $\omega=\omega_{r}$ \end_inset . Filling in: \begin_inset Formula \begin{equation} \zeta\approx\frac{\delta_{\nu}}{D}. \end{equation} \end_inset \end_layout \begin_layout Standard The real part of the perforate impedance is the resistive part. In a 3D simulation, this impedance can be added to a surface of the hole, to model the hole \emph on resistance \emph default in an otherwise inviscid simulation. The real part is: \begin_inset Formula \begin{equation} \frac{}{} \end{equation} \end_inset \end_layout \begin_layout Subsection Lots of holes \end_layout \begin_layout Standard Hereby, once we know the hole diameter, the required acoustic mass can be tuned using the porosity: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} m_{A}\approx\frac{\Im\left[z(\omega=\omega_{r}\right]}{\omega S_{\mathrm{t}}}\approx\frac{1}{S_{\mathrm{tot}}\phi}\left(\frac{\rho_{0}8Df_{\mathrm{int}}(\phi)}{3\pi}+\rho_{0}t_{w}\right) \end{equation} \end_inset \end_layout \begin_layout Standard So that the porosity can be computed as: \begin_inset Formula \begin{equation} \phi\approx F(\phi)=\frac{D\rho_{0}\left(D-2\delta_{\nu}\right)\left(8Df_{\mathrm{int}}+3\pi t_{w}\right)}{3\pi S_{\mathrm{tot}}m_{A}\left(D^{2}-4D\delta_{\nu}+8\delta_{\nu}^{2}\right)}\approx\frac{\rho_{0}\left(8Df_{\mathrm{int}}(\phi)+3\pi t_{w}\right)}{3\pi S_{\mathrm{tot}}m_{A}}. \end{equation} \end_inset Note that this is a trancendental equation in \begin_inset Formula $\phi$ \end_inset , which can easily be solved by iterating \begin_inset Formula $\phi$ \end_inset : \end_layout \begin_layout Standard \begin_inset Formula \begin{align} \phi_{1} & =F(1)\\ \phi_{2} & =F(\phi_{1})\\ \phi_{3} & =F(\phi_{2})\\ \vdots & =\vdots \end{align} \end_inset \end_layout \begin_layout Subsection Some holes \end_layout \begin_layout Standard For only \begin_inset Quotes eld \end_inset some holes \begin_inset Quotes erd \end_inset , far away from each other, we fill in for \begin_inset Formula $\phi=\frac{1}{4}N_{\mathrm{hole}}\pi D^{2}/S_{\mathrm{tot}}$ \end_inset : \begin_inset Formula \begin{equation} m_{A}\approx\frac{\rho_{0}}{3\pi N_{\mathrm{hole}}D}\left(\frac{32}{\pi}+\frac{12t_{w}}{D}\right) \end{equation} \end_inset \end_layout \begin_layout Standard So the number of holes can be chosen as: \begin_inset Formula \begin{equation} N_{\mathrm{holes}}\approx\frac{4\rho_{0}\left(8Df_{\mathrm{int}}+3\pi t_{w}\right)}{3\pi^{2}D^{2}m_{A}} \end{equation} \end_inset \end_layout \begin_layout Section Small hole limit \end_layout \begin_layout Standard In the small hole limit, \begin_inset space ~ \end_inset \begin_inset Formula \begin{equation} f_{\nu}\approx1-\frac{iD^{2}}{16\delta_{\nu}^{2}} \end{equation} \end_inset \end_layout \begin_layout Standard Such that: \begin_inset Formula \begin{equation} \zeta=\frac{1}{2}\frac{R}{m_{A}\omega_{r}}\approx\frac{1}{2}\frac{\Re\left[z(\omega=\omega_{r}\right]}{\Im\left[z(\omega=\omega_{r}\right]}\approx\frac{3\pi\delta_{\nu}^{2}t_{w}}{D^{3}f_{\mathrm{int}}} \end{equation} \end_inset Such that: \begin_inset Formula \begin{equation} D=\sqrt[3]{\frac{6\pi\delta_{\nu}^{2}t_{w}}{6\zeta}}. \end{equation} \end_inset \end_layout \begin_layout Standard And: \begin_inset Formula \begin{equation} m_{A}=\rho_{0}\frac{8Df_{\mathrm{int}}}{3\pi S_{\mathrm{tot}}\phi} \end{equation} \end_inset Such that: \begin_inset Formula \begin{equation} \phi\approx\rho_{0}\frac{8Df_{\mathrm{int}}}{3\pi S_{\mathrm{tot}}m_{A}} \end{equation} \end_inset \end_layout \begin_layout Section Geometry of hole patterns \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/hexagonal_pattern.pdf width 50text% \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Geometry details of a hexagonal hole pattern \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:hexagonal_pitch" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard For a square hole pattern, with hole-hole pitch \begin_inset Formula $P$ \end_inset , the overall surface of a unit cell \begin_inset Formula $S_{\mathrm{unit}}=P^{2}$ \end_inset . For a certain porosity, the pitch can then be computed as: \begin_inset Formula \begin{equation} P=\sqrt{\frac{\pi}{4\phi}}D. \end{equation} \end_inset For a hexagonal hole pattern (Fig. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "fig:hexagonal_pitch" \end_inset ) with hole-hole pitch \begin_inset Formula $P$ \end_inset , the overall surface of a unit cell \begin_inset Formula $S_{\mathrm{unit}}=\frac{\sqrt{3}}{2}P^{2}$ \end_inset . Henceforth, the pitch can be computed from the porosity and the hole diameter as: \begin_inset Formula \begin{equation} P=\sqrt{\frac{\sqrt{3}\pi}{6\phi}}D. \end{equation} \end_inset \end_layout \begin_layout Standard The most important design parameters of a perforate are the porosity and the hole diameter. \end_layout \begin_layout Section Addition of acoustic hole resistance in an otherwise inviscid simulation \end_layout \begin_layout Standard We assume that in a 3D FEM simulation, the imaginary acoustic impedance of a single hole \begin_inset Formula \begin{equation} Z_{\mathrm{hole}}=i\omega\rho_{0}\frac{4}{\pi D^{2}}\left[\frac{t_{w}}{\left(1-f_{\nu}\right)}+\frac{8Df_{\mathrm{int}}}{3\pi C_{D}}\right], \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \Re[z_{\mathrm{hole}}]=\frac{2D\delta_{\nu}\omega\rho_{0}t_{w}}{\left(4\delta_{\nu}^{2}+\left(D-2\delta_{\nu}\right)^{2}\right)},\label{eq:Rv_hole} \end{equation} \end_inset \end_layout \begin_layout Section Over-all transmission matrix \end_layout \begin_layout Standard \begin_inset Formula \begin{align} & & & & \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} _{1} & = & \boldsymbol{T}_{1}\left\{ \begin{array}{c} p_{L}\\ U_{L} \end{array}\right\} _{1}\\ & & \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} _{2} & & =\boldsymbol{T}_{2}\left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} _{1}\\ \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} _{3} & =\boldsymbol{T}_{3} & \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} _{2}\\ \end{align} \end_inset , hence \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} _{3}=\underbrace{\boldsymbol{T}_{3}\cdot\boldsymbol{T}_{2}\cdot\boldsymbol{T}_{1}}_{\boldsymbol{T}}\left\{ \begin{array}{c} p_{L}\\ U_{L} \end{array}\right\} _{1} \end{equation} \end_inset \end_layout \begin_layout Chapter Miscellaneous models for acoustic components \end_layout \begin_layout Section Acoustic impedance of small orifices \end_layout \begin_layout Subsection Rectangular orifice \end_layout \begin_layout Subsection Slit orifice \end_layout \begin_layout Standard ==================== \end_layout \begin_layout Standard Lookup model \end_layout \begin_layout Section COMSOL model \end_layout \begin_layout Standard \align left LRFTubes allows importing transfer matrix data from externally computed sources (i.e. finite element model results). We focus on the use of COMSOL Multiphysics here. The output data from COMSOL should be created using the \begin_inset Quotes eld \end_inset Port Sweep \begin_inset Quotes erd \end_inset functionality. Implementation is only for 2 ports, as this is the only case for which COMSOL is able to export data. In COMSOL, the transfer matrix is defined as: \end_layout \begin_layout Standard \align center \begin_inset Graphics filename img/comsol_transfermatrix.png \end_inset \end_layout \begin_layout Standard \align left \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{i}\\ Q_{i} \end{array}\right\} =\left[\begin{array}{cc} T_{11} & T_{12}\\ T_{21} & T_{22} \end{array}\right]\left\{ \begin{array}{c} p_{o}\\ Q_{o} \end{array}\right\} ,\label{eq:transfer_matrix_COMSOL} \end{equation} \end_inset hence the transfer matrix definition of \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset is the \emph on inverse \emph default of the definition of COMSOL Multiphysics: \begin_inset Formula \begin{equation} \boldsymbol{T}_{\mathrm{\lrftubes}}=\boldsymbol{T}_{\mathrm{COMSOL}}^{-1} \end{equation} \end_inset \end_layout \begin_layout Standard To properly use the Lookup model, in COMSOL port 1 should be corresponding to the LEFT side of a segment, and port 2 should be corresponding to the RIGHT side of a segment. Then, the data should be exported to a \emph on txt \emph default file with the columns in the following order: frequency, T11, T12, T21, T22. A file of this format, as exported by COMSOL can be passed to the constructor of \family typewriter \emph on LookupModel \family default . \end_layout \begin_layout Subsection SPICE model \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \noindent \align center \begin_inset Graphics filename img/two_port_probing.pdf width 90text% \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Two-port model, probing the transfer matrix by computing the simulation output. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:2-port-probing" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard A SPICE model can be created from a COMSOL model, by performing a circuit analysis of the system in two cases, one is the situation providing a voltage source on one side, and measuring the current going in, and the current going out on the other side, while the element is short-circuited. The other is similar, only in this case the segment is \emph on open \emph default on the other side. Fig. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "fig:2-port-probing" \end_inset shows the schematic of the two cases that need to be computed. If we assume: \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p\\ U \end{array}\right\} _{R}=\left[\begin{array}{cc} A & B\\ C & D \end{array}\right]\left\{ \begin{array}{c} p\\ U \end{array}\right\} _{L}, \end{equation} \end_inset for the components of the transfer matrix, we can set the following equations: \begin_inset Formula \begin{align} U_{R}^{(1)} & =C+DU_{L}^{(1)},\\ 0 & =A+BU_{L}^{(1)},\\ 0 & =C+DU_{L}^{(2)},\\ p_{R}^{(2)} & =A+BU_{L}^{(2)}, \end{align} \end_inset which gives four equations, for the four unknown transfer matrix coefficients. We can directly perform this computation using the method \family typewriter LookupModel.from_pU \family default in \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset . \end_layout \begin_layout Chapter Measuring the transmission matrix using the four microphone method \end_layout \begin_layout Standard Based on Brüel Kjaer - Transmission loss in impedance tube.pdf in /home/anne/next cloud/wip_redusone/2021-Steegmuller/measurement_setup \end_layout \begin_layout Standard Modifications: volume flow U instead of velocity v; impedance Z instead of characteristic impedance z; transfer functions Hir instead of cross correlations (?). \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout TO DO: \end_layout \begin_layout Plain Layout draw own image image \end_layout \begin_layout Plain Layout fix citation \end_layout \begin_layout Plain Layout Transfer matrix according to our own definition instead of the definition of Bruel & Kjaer = definition of COMSOL \end_layout \begin_layout Plain Layout Consistently use Q or U for volume flow? Also in text above about COMSOL. \end_layout \end_inset \end_layout \begin_layout Standard The transfer matrix of a device can be measured using a four microphone setup as shown in figure \begin_inset CommandInset ref LatexCommand ref reference "fig:meas_transmatrix_4mic" plural "false" caps "false" noprefix "false" \end_inset . The microphones record acoustic pressure and plane waves are assumed. In the following equations, time dependency \begin_inset Formula $\exp(+j*\omega*t)$ \end_inset is not shown. \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/Bruel_Kjaer_fig1.png lyxscale 50 width 80text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Experimental setup to measure the transfer matrix, using the four microphone method \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:meas_transmatrix_4mic" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard The transfer matrix coefficients are calculated based on sound pressure \begin_inset Formula $p$ \end_inset and volume velocity \begin_inset Formula $U$ \end_inset , as related by equation \begin_inset CommandInset ref LatexCommand ref reference "eq:transfer_matrix_COMSOL" plural "false" caps "false" noprefix "false" \end_inset . Note that this definition is different than the definition used in LRFtubes and therefore \begin_inset Formula $T$ \end_inset should be inverted for further use. Subscrips \begin_inset Formula $i$ \end_inset and \begin_inset Formula $d$ \end_inset refer to \begin_inset Formula $x=0$ \end_inset and \begin_inset Formula $x=d$ \end_inset respectively. There are two equations and four unknowns, so two sets of measurements are required. The second set, indicated by superscript \begin_inset Formula $*$ \end_inset , must be performed with a different acoustic termination. Together this results in four equations for four unknowns. \end_layout \begin_layout Standard \align left \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{i}\\ Q_{i} \end{array}\begin{array}{c} p_{i}^{*}\\ Q_{i}^{*} \end{array}\right\} =\left[\begin{array}{cc} T_{11} & T_{12}\\ T_{21} & T_{22} \end{array}\right]\left\{ \begin{array}{c} p_{o}\\ Q_{o} \end{array}\begin{array}{c} p_{o}^{*}\\ Q_{o}^{*} \end{array}\right\} ,\label{eq:transfer_matrix-double} \end{equation} \end_inset \end_layout \begin_layout Standard Solving for \begin_inset Formula $T$ \end_inset yields: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \left[\begin{array}{cc} T_{11} & T_{12}\\ T_{21} & T_{22} \end{array}\right]=\frac{1}{p_{d}Q_{d}^{*}-p_{d}^{*}Q_{d}}\left[\begin{array}{cc} p_{i}Q_{d}^{*}-p_{i}^{*}Q_{d} & -p_{i}p_{d}^{*}+p_{i}^{*}p_{d}\\ Q_{i}Q_{d}^{*}-Q_{i}^{*}Q_{d} & -p_{d}^{*}Q_{i}+p_{d}Q_{i}^{*} \end{array}\right] \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula $p$ \end_inset and \begin_inset Formula $Q$ \end_inset at \begin_inset Formula $x=0$ \end_inset and \begin_inset Formula $x=d$ \end_inset can be calculated from travelling \begin_inset Formula $A$ \end_inset , \begin_inset Formula $B$ \end_inset , \begin_inset Formula $C$ \end_inset and \begin_inset Formula $D$ \end_inset . The calculation of their second measurement counterparts \begin_inset Formula $*$ \end_inset goes analogously and uses \begin_inset Formula $A^{*}$ \end_inset , \begin_inset Formula $B^{*}$ \end_inset , \begin_inset Formula $C^{*}$ \end_inset and \begin_inset Formula $D^{*}$ \end_inset . \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{i}=A+B \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} Q_{i}=\frac{A-B}{Z_{0}} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{d}=C\cdot e^{-jkd}+D\cdot e^{jkd} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} Q_{d}=\frac{C\cdot e^{-jkd}-D\cdot e^{jkd}}{Z_{0}} \end{equation} \end_inset \end_layout \begin_layout Standard in which \begin_inset Formula $Z_{0}=\frac{z_{0}}{S}$ \end_inset is the impedance of an infinite duct, with \begin_inset Formula $z_{0}$ \end_inset the characteristic impedance and \begin_inset Formula $S$ \end_inset the cross-sectional area, \begin_inset Formula $j=\sqrt{-1}$ \end_inset , \begin_inset Formula $k$ \end_inset the wavenumber. Travelling waves \begin_inset Formula $A$ \end_inset , \begin_inset Formula $B$ \end_inset , \begin_inset Formula $C$ \end_inset and \begin_inset Formula $D$ \end_inset can be calculated from transfer functions \begin_inset Formula $H_{ir}$ \end_inset from reference signal \begin_inset Formula $r$ \end_inset , as sent to the loudspeaker, to the recorded signal of microphone \begin_inset Formula $i$ \end_inset . The calculation of their second measurement counterparts \begin_inset Formula $*$ \end_inset goes analogously and uses \begin_inset Formula $H_{ir}^{*}$ \end_inset . \begin_inset Formula \begin{equation} A=\frac{j\left(H_{1r}\cdot e^{jkx_{2}}-H_{2r}\cdot e^{jkx_{1}}\right)}{2\sin\left(k\left(x_{1}-x_{2}\right)\right)} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} B=\frac{j\left(H_{2r}\cdot e^{-jkx_{1}}-H_{1r}\cdot e^{-jkx_{2}}\right)}{2\sin\left(k\left(x_{1}-x_{2}\right)\right)} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} C=\frac{j\left(H_{3r}\cdot e^{jkx_{4}}-H_{4r}\cdot e^{jkx_{3}}\right)}{2\sin\left(k\left(x_{3}-x_{4}\right)\right)} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} D=\frac{j\left(H_{4r}\cdot e^{-jkx_{3}}-H_{3r}\cdot e^{-jkx_{4}}\right)}{2\sin\left(k\left(x_{3}-x_{4}\right)\right)} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\sqrt{G_{rr}}$ \end_inset has been removed from the equations because Caspers thinks that \begin_inset Formula $H_{ir}$ \end_inset refers to the cross spectrum instead of the transfer function. If the transfer function is used, then \begin_inset Formula $\sqrt{G_{rr}}$ \end_inset shall be left out. \end_layout \end_inset \end_layout \begin_layout Standard Note: if no reference signal has been recorded, the reference signal can be set to the signal captured by microphone 1. The equations have no way to figure out whether the loudspeaker really was driven by such a signal. Then a requirement is that all microphones are recorded simultaneously and with synchronized ADC clocks. \end_layout \begin_layout Chapter IEC Coupler impedances \end_layout \begin_layout Standard The Comsol model with which this data is gathered exports the input impedance correctly, but the transfer impedance is actually the \emph on negative \emph default of the actual transfer impedance. This is due to Comsol, which was only interested in the magnitude of the impedance values, and due to us (sloppy work). The input impedance is defined as: \begin_inset Formula \begin{equation} Z_{\mathrm{in}}=\frac{p_{\mathrm{coupler,entrance}}}{U_{\mathrm{coupler,entrance}}} \end{equation} \end_inset and the transfer impedance as: \begin_inset Formula \begin{equation} Z_{\mathrm{tr}}=\frac{p_{\mathrm{DRP}}}{U_{\mathrm{coupler,entrance}}} \end{equation} \end_inset \end_layout \begin_layout Chapter Standard acoustic solutions \end_layout \begin_layout Section Spherically symmetric breathing ball (monopole) \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout From Rienstra and Hirschberg: \begin_inset Formula \begin{equation} \hat{p}(r)=-z_{0}c_{0}k\frac{\hat{v}}{i\omega}\frac{k^{2}a_{0}^{2}}{1+ika_{0}}\frac{\exp\left(-i\left(kr-a_{0}\right)\right)}{kr} \end{equation} \end_inset \end_layout \begin_layout Plain Layout To our definitions and a bit of rewriting: \begin_inset Formula \[ \hat{p}(r)=\frac{i\rho_{0}c_{0}ka^{2}}{1+ika}\frac{\exp\left(-i\left(kr-a\right)\right)}{r}\hat{v} \] \end_inset \end_layout \end_inset Radiation from a compact monopole with radius \begin_inset Formula $a$ \end_inset and \begin_inset Quotes eld \end_inset breathing \begin_inset Quotes erd \end_inset velocity amplitude \begin_inset Formula $\hat{v}$ \end_inset : \begin_inset Formula \begin{equation} \hat{p}(r)=\frac{iz_{0}ka^{2}}{1+ika}\frac{\exp\left(-i\left(kr-a\right)\right)}{r}\hat{v}. \end{equation} \end_inset Small source limit ( \begin_inset Formula $ka\ll1$ \end_inset ): \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \hat{p}(r)\approx iz_{0}\frac{ka^{2}}{r}\left[\exp\left(-i\left(kr-a\right)\right)\right]\hat{v}. \end{equation} \end_inset In terms of the transfer impedance ( \begin_inset Formula $\hat{U}=4\pi a^{2}\hat{v}$ \end_inset ): \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula \[ \hat{p}(r)=\frac{i\rho_{0}c_{0}ka^{2}}{1+ika}\frac{\exp\left(-i\left(kr-a\right)\right)}{r}\frac{\hat{U}}{4\pi a^{2}} \] \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula \[ \hat{p}(r)=\frac{iz_{0}k}{4\pi\left(1+ika\right)r}\left[\exp\left(-i\left(kr-a\right)\right)\right]\hat{U} \] \end_inset \end_layout \begin_layout Plain Layout which is also: \begin_inset Formula \[ \hat{p}(r)\approx\frac{iz_{0}}{2\lambda r}\left[\exp\left(-i\left(kr-a\right)\right)\right]\hat{U} \] \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \hat{p}(r)=\underbrace{\frac{iz_{0}k}{4\pi\left(1+ika\right)r}\left[\exp\left(-i\left(kr-a\right)\right)\right]}_{Z_{\mathrm{tr}}(r)}\hat{U}, \end{equation} \end_inset For easy estimations, in the small source ( \begin_inset Formula $ka\ll1$ \end_inset ) and far field limit ( \begin_inset Formula $kr\gg1$ \end_inset ): \begin_inset Formula \begin{equation} \hat{p}(r)\approx\frac{iz_{0}}{2\lambda r}\hat{U}\left[\exp\left(-ikr\right)\right]. \end{equation} \end_inset \end_layout \begin_layout Section Dipoles \end_layout \begin_layout Subsection Translating sphere, exact solution \end_layout \begin_layout Standard \begin_inset Formula $\theta$ \end_inset : pole angle. Then the velocity follows: \begin_inset Formula \begin{equation} \hat{v}(\theta)=\hat{v}_{0}\cos\left(\theta\right). \end{equation} \end_inset After performing analysis, we find for the pressure: \begin_inset Formula \begin{equation} \hat{p}(r,\theta)=\frac{-i\omega\rho_{0}\hat{v}_{0}a^{3}\cos\theta}{2\left(1+ika\right)-\left(ka\right)^{2}}\frac{\partial}{\partial r}\left\{ \frac{\exp\left(-ik\left(r-a\right)\right)}{r}\right\} . \end{equation} \end_inset In the small source limit ( \begin_inset Formula $ka\ll1$ \end_inset ): \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\hat{p}(r,\theta)=-\hat{v}_{0}\frac{z_{0}k^{2}a^{3}\cos\theta}{2r}\left(1+\frac{1}{ikr}\right)e^{-ik\left(r-a\right)}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \hat{p}(r,\theta)\approx-\frac{z_{0}k^{2}a^{3}\cos\theta}{2r}\left(\frac{1+ikr}{ikr}\right)\left[\exp\left(-ik\left(r-a\right)\right)\right]\hat{v}_{0}.\label{eq:dipole_transl_sphere} \end{equation} \end_inset \end_layout \begin_layout Standard Small source limit, far field ( \begin_inset Formula $ka\ll1$ \end_inset , \begin_inset Formula $kr\gg1$ \end_inset ): \begin_inset Formula \begin{equation} \hat{p}(r,\theta)\approx-\hat{v}_{0}\frac{z_{0}k^{2}a^{3}\cos\theta}{2r}e^{-ikr}. \end{equation} \end_inset \end_layout \begin_layout Subsection Perfect dipole from two compact monopoles \end_layout \begin_layout Standard Distance between sources: \begin_inset Formula $d\ll\lambda$ \end_inset . Volume flow from a single pole: \begin_inset Formula $\hat{U}$ \end_inset . From the other source \begin_inset Formula $-\hat{U}$ \end_inset . The angle \begin_inset Formula $\theta$ \end_inset is 0 at positions where the positive source is the closest to the listening point. Distance between the sources is \begin_inset Formula $d$ \end_inset . Then the sound pressure is \begin_inset Formula \begin{equation} \hat{p}(r,\theta)\approx-k^{2}z_{0}\frac{\exp\left(-ikr\right)\cos\theta}{4\pi r}\left(\frac{1+ikr}{ikr}\right)\hat{U}d \end{equation} \end_inset Comparing this equation to Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:dipole_transl_sphere" \end_inset , we find that for the same acoustic pressure of a perfect dipole vs. a translating sphere: \begin_inset Formula \begin{equation} 2\pi a^{2}\hat{v}_{0}a=\hat{U}d. \end{equation} \end_inset So if we set the volume flow of a translating sphere equal to the frontal area of \begin_inset Formula $\pi a^{2}$ \end_inset , the effective dipole distance is \begin_inset Formula $2a$ \end_inset , which corresponds to the diameter of the sphere! \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\frac{a^{3}}{2}\hat{v}_{0}=\frac{1}{4\pi}\hat{U}d$ \end_inset \end_layout \begin_layout Plain Layout Hence: if we set \begin_inset Formula $\hat{U}_{\mathrm{tr\,sphere}}=\pi a^{2}\hat{v}$ \end_inset : the effective distance \begin_inset Formula $d$ \end_inset of a translating sphere is: \end_layout \begin_layout Plain Layout \begin_inset Formula $2\pi a^{2}\hat{v}_{0}a=\hat{U}d$ \end_inset \end_layout \end_inset \end_layout \begin_layout Section Compact quadrupole \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \noindent \align center \begin_inset Graphics filename img/quadrupole.pdf width 60text% \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout Schematic of the quadrupole. \end_layout \end_inset \end_layout \end_inset \end_layout \begin_layout Standard A compact square-shaped quadrupole with distances of \begin_inset Formula $d$ \end_inset between each pole, distance \begin_inset Formula $kd\ll1$ \end_inset . Volume flow from a single pole: \begin_inset Formula $\hat{U}$ \end_inset . \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \hat{p}(x,y)=-ik^{3}z_{0}\hat{U}d^{2}\frac{xy\exp\left(-ikr\right)}{4\pi r^{3}}\left(1+\frac{3}{ikr}-\frac{3}{\left(kr\right)^{2}}\right). \end{equation} \end_inset \end_layout \begin_layout Chapter Optimized reactive silencers \end_layout \begin_layout Section Parallel Helmholtz resonator transfer function and transmission loss \end_layout \begin_layout Standard Equations for a side branch Helmholtz resonator: \end_layout \begin_layout Standard \begin_inset Formula \begin{align} p_{R} & =p_{L},\\ U_{R} & =U_{L}-p_{L}/Z_{h}, \end{align} \end_inset where \begin_inset Formula $Z_{h}$ \end_inset is the side branch impedance of the Helmholtz resonator, defined as \begin_inset Formula \begin{equation} Z_{h}=\left(\frac{\rho_{0}z_{0}}{i\omega V}+R_{v}+i\omega m_{\mathrm{neck}}\right), \end{equation} \end_inset where \begin_inset Formula \begin{equation} m_{\mathrm{neck}}=\frac{\rho_{0}\ell_{\mathrm{eff},\mathrm{neck}}}{S_{\mathrm{neck}}},\label{eq:acoustic_mass_neck} \end{equation} \end_inset and for relatively large holes, air at STP, the resistance term can be estimated as [SOURCE HERE!]: \begin_inset Formula \begin{equation} R_{v}\approx7.2\times10^{-3}z_{0}/S_{h}, \end{equation} \end_inset \end_layout \begin_layout Standard Now, the following substitutions are made: \begin_inset Formula \begin{align} C & =\frac{V}{\rho_{0}z_{0}},\\ m_{\mathrm{neck}} & =\frac{1}{\omega_{r}^{2}C}\\ \zeta & =\frac{1}{2}\omega_{r}CR_{v}. \end{align} \end_inset \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\frac{2\zeta}{\omega_{r}C}=R_{v}.$ \end_inset \end_layout \end_inset such that we can write: \begin_inset Formula \begin{equation} Z_{h}=\frac{1}{\omega_{r}C}\left(\frac{\omega_{r}}{i\omega}+2\zeta+\frac{i\omega}{\omega_{r}}\right) \end{equation} \end_inset \end_layout \begin_layout Standard The quality factor of the resonator is the ratio of the resonance frequency to its bandwidth measure. If we take \begin_inset Formula \begin{equation} Q\overset{\mathrm{def}}{=}\frac{f_{r}}{\Delta f}, \end{equation} \end_inset where \begin_inset Formula $\Delta f$ \end_inset is the full width at half the maximum value, i.e. the frequency distance between two points lying at \begin_inset Formula $-3$ \end_inset \begin_inset space ~ \end_inset dB w.r.t. the maximum value. The damping ratio \begin_inset Formula $\zeta$ \end_inset is related to \begin_inset Formula $Q$ \end_inset as: \begin_inset Formula \begin{equation} \zeta=\frac{1}{2Q}=\frac{1}{2}\frac{\Delta f}{f_{r}} \end{equation} \end_inset \end_layout \begin_layout Standard Assembling the transfer matrix \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p\\ U \end{array}\right\} _{R}=\left[\begin{array}{cc} T_{11} & T_{12}\\ T_{21} & T_{22} \end{array}\right]\left\{ \begin{array}{c} p\\ U \end{array}\right\} _{L}, \end{equation} \end_inset where \begin_inset Formula \begin{align} T_{11} & =1\\ T_{12} & =0\\ T_{21} & =-Z_{h}^{-1}\\ T_{22} & =1 \end{align} \end_inset \end_layout \begin_layout Subsection Transmission loss \end_layout \begin_layout Standard The transmission coefficient can be computed as: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \tau=\frac{C}{A}=\frac{Z_{0}\left(T_{21}p_{L}+T_{22}U_{L}\right)}{\frac{1}{2}\left(p_{L}+Z_{0}U_{L}\right)}, \end{equation} \end_inset using \begin_inset Formula \begin{equation} T_{11}p_{L}+T_{12}U_{L}=p_{R}=Z_{0}U_{R}=Z_{0}\left(T_{21}p_{L}+T_{22}U_{L}\right), \end{equation} \end_inset we get \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $Z_{0}\left(T_{21}p_{L}+T_{22}U_{L}\right)=T_{11}p_{L}+T_{12}U_{L}$ \end_inset \end_layout \begin_layout Plain Layout – \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{L}=\frac{\left(T_{11}-Z_{0}T_{21}\right)}{\left(Z_{0}T_{22}-T_{12}\right)}p_{L}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} U_{L}=\frac{\left(T_{11}-Z_{0}T_{21}\right)}{\left(Z_{0}T_{22}-T_{12}\right)}p_{L}, \end{equation} \end_inset filling in: \begin_inset Formula \begin{equation} \tau=\frac{2}{Z_{0}}\frac{T_{11}T_{22}-T_{12}T_{21}}{T_{11}-T_{12}/Z_{0}-T_{21}Z_{0}+T_{22}}, \end{equation} \end_inset assuming that the determinant of the transfer matrix be unity \begin_inset Formula $(T_{11}T_{22}-T_{12}T_{21}\equiv1$ \end_inset ) [THIS IS TRUE, BUT WHERE DOES THIS ASSUMPTION COME FROM??], this can be further simplified: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \tau=\frac{2}{T_{11}-T_{12}/Z_{0}-T_{21}Z_{0}+T_{22}}, \end{equation} \end_inset \end_layout \begin_layout Standard For a Helmholtz resonator, this results in: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula \[ \tau=\frac{2}{T_{11}-T_{12}/Z_{0}-T_{21}Z_{0}+T_{22}}, \] \end_inset \end_layout \begin_layout Plain Layout Filling in: \begin_inset Formula $T_{11}=1$ \end_inset , \begin_inset Formula $T_{12}=0$ \end_inset , \begin_inset Formula $T_{21}=-1/Z_{h}$ \end_inset \begin_inset Formula $T_{22}=1$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula \[ \tau=\frac{2Z_{h}}{2Z_{h}+Z_{0}}, \] \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \tau(\omega)=\frac{2Z_{h}(\omega)}{Z_{0}+2Z_{h}(\omega)}, \end{equation} \end_inset \end_layout \begin_layout Standard Filling in the Helmholtz resonator equation: \begin_inset Formula \begin{equation} \tau(\omega)=\frac{2\left(1+2\frac{\omega}{\omega_{r}}\zeta-\left(\frac{\omega}{\omega_{r}}\right)^{2}\right)}{2\left(1+2\frac{\omega}{\omega_{r}}\zeta-\left(\frac{\omega}{\omega_{r}}\right)^{2}\right)+i\frac{\omega}{\omega_{r}}\left(\frac{Cz_{0}\omega_{r}}{S}\right)}\label{eq:tau_hhres} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\left(\frac{Cz_{0}\omega_{r}}{S}\right)=\left(\frac{V\omega_{r}}{c_{0}S}\right)$ \end_inset \end_layout \end_inset The peak height, filling in for \begin_inset Formula $\omega/\omega_{r}=1$ \end_inset : \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \tau=\frac{4\zeta}{4\zeta+\beta}, \end{equation} \end_inset where \begin_inset Formula $\beta$ \end_inset is defined as the resonator strength: \begin_inset Formula \begin{equation} \beta=\frac{V\omega_{r}}{Sc_{0}} \end{equation} \end_inset In terms of transmission loss: \begin_inset Formula \begin{equation} \mathrm{TL}_{\omega=\omega_{r}}=20\log\left(\frac{\beta+4\zeta}{4\zeta}\right) \end{equation} \end_inset \end_layout \begin_layout Standard In case of weak damping ( \begin_inset Formula $\zeta\ll1$ \end_inset ), Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:tau_hhres" \end_inset can be reduced to: \begin_inset Formula \begin{equation} \tau(\omega)=\frac{1-\left(\frac{\omega}{\omega_{r}}\right)^{2}}{1-\left(\frac{\omega}{\omega_{r}}\right)^{2}+\frac{1}{2}i\frac{\omega}{\omega_{r}}\beta} \end{equation} \end_inset \end_layout \begin_layout Standard The width of the peak over which a certain transmission loss is higher than a value of \begin_inset Formula $\mathrm{TL_{\mathrm{min}}}$ \end_inset \begin_inset space ~ \end_inset dB, can be computed as: \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $|\tau(\omega_{r}+\Delta\omega)|=|\frac{1-\left(\frac{\omega_{r}+\Delta\omega}{\omega_{r}}\right)^{2}}{1-\left(\frac{\omega_{r}+\Delta\omega}{\omega_{r}}\right)^{2}+\frac{1}{2}i\frac{\omega_{r}+\Delta\omega}{\omega_{r}}\beta}|=10^{\frac{\mathrm{TL}_{\mathrm{min}}}{20}}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $|\tau(\omega_{r}+\Delta\omega)|=|\frac{1-\left(\frac{\omega_{r}+\Delta\omega}{\omega_{r}}\right)^{2}}{1-\left(\frac{\omega_{r}+\Delta\omega}{\omega_{r}}\right)^{2}+\frac{1}{2}i\frac{\omega_{r}+\Delta\omega}{\omega_{r}}\beta}|=10^{\frac{\mathrm{TL}_{\mathrm{min}}}{20}}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \beta=\frac{\Delta\omega}{\omega_{r}}4\sqrt{10^{^{\frac{\mathrm{TL_{\mathrm{min}}}}{10}}}-1} \end{equation} \end_inset \end_layout \begin_layout Standard The peak half width is the distance over which the transmission loss has dropped 3 \begin_inset space ~ \end_inset dB w.r.t. the transmission loss at the resonance frequency. This is an important design parameter. We can compute it by setting: \begin_inset Formula \begin{equation} |\frac{\tau|_{\omega_{r}+\Delta\omega}}{\tau|_{\omega_{r}}}|=\sqrt{2}, \end{equation} \end_inset \end_layout \begin_layout Standard So given the -3 \begin_inset space ~ \end_inset dB point, and the maximum required transmission loss, we can compute \begin_inset Formula $\zeta$ \end_inset and \begin_inset Formula $\beta$ \end_inset : \begin_inset Note Note status collapsed \begin_layout Plain Layout Eq 1: \end_layout \begin_layout Plain Layout \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $\frac{\alpha_{-3\mathrm{dB}}-1}{\zeta}=\sqrt{2}\Rightarrow\zeta=\frac{\alpha_{-3\mathrm{dB}}-1}{\sqrt{2}}$ \end_inset \begin_inset Newline newline \end_inset Eq 2: \end_layout \begin_layout Plain Layout \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \xout off \uuline off \uwave off \noun off \color none \begin_inset Formula $\mathrm{TL}_{\mathrm{max}}=20\log\left(\frac{\beta+4\zeta}{4\zeta}\right)\Rightarrow\frac{\beta+4\zeta}{4\zeta}=10^{\frac{\mathrm{TL}_{\mathrm{max}}}{20}}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\beta=4\zeta\left(10^{\frac{\mathrm{TL}_{\mathrm{max}}}{20}}-1\right)$ \end_inset \end_layout \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $\zeta=\frac{\alpha_{-3\mathrm{dB}}-1}{\sqrt{2}}$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $\beta=4\zeta\left(10^{\frac{\mathrm{TL}_{\mathrm{max}}}{20}}-1\right)$ \end_inset \end_layout \begin_layout Standard Required volume in terms of resonator strength: \begin_inset Formula \begin{equation} V=\frac{Sc_{0}\beta}{\omega_{r}} \end{equation} \end_inset \end_layout \begin_layout Subsection Insertion loss \end_layout \begin_layout Standard For computation of the insertion loss, we require two more parameters: \end_layout \begin_layout Itemize The load impedance at the downstream end of the silencer \end_layout \begin_layout Itemize The output impedance of the source ( \begin_inset Formula $Z_{\mathrm{rad}}$ \end_inset ) \end_layout \begin_layout Standard Suppose the source strength is defined by \begin_inset Formula $\mathcal{S}$ \end_inset . Situation without silencer: \end_layout \begin_layout Standard \begin_inset Formula \begin{align} U_{L} & =\mathcal{S}/\left(Z_{s}+Z_{l}\right),\\ U_{R} & =U_{L},\\ p_{R} & =Z_{\mathrm{rad}}U_{R}, \end{align} \end_inset where \begin_inset Formula $Z_{s}$ \end_inset denotes the source output impedance, and \begin_inset Formula $Z_{l}$ \end_inset denotes the load impedance as felt by the source. \end_layout \begin_layout Standard For the reference case, the load impedance equals the radiation impedance, and the radiated acoustic power is: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $P_{\mathrm{ref}}=\frac{1}{2}\Re\left[p_{R}U_{R}^{*}\right]$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $P_{\mathrm{ref}}=\frac{1}{2}\Re\left[Z_{\mathrm{rad}}\left(\mathcal{S}/Z_{s}\right)\left(\mathcal{S}/Z_{s}\right)^{*}\right]$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $P_{\mathrm{ref}}=\frac{1}{2}|\mathcal{S}/Z_{s}|^{2}\Re\left[Z_{\mathrm{rad}}\right]$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} P_{\mathrm{ref}}=\frac{1}{2}\frac{|\mathcal{S}|^{2}}{|Z_{\mathrm{rad}}+Z_{s}|^{2}}\Re\left[Z_{\mathrm{rad}}\right] \end{equation} \end_inset \end_layout \begin_layout Standard Now, situation including silencer, with in general, transfer matrix \begin_inset Formula $\boldsymbol{T}$ \end_inset . \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $P_{\mathrm{ref}}=\frac{1}{2}\Re\left[p_{R}U_{R}^{*}\right]$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $P_{\mathrm{ref}}=\frac{1}{2}\Re\left[Z_{\mathrm{rad}}U_{R}U_{R}^{*}\right]$ \end_inset \end_layout \begin_layout Plain Layout Using: \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} P_{\mathrm{with\,silencer}}=\frac{1}{4}|\mathcal{S}|^{2}\frac{\Re\left[Z_{\mathrm{rad}}\right]}{|T_{22}Z_{\mathrm{rad}}-T_{12}+Z_{s}\left(T_{11}-T_{21}Z_{\mathrm{rad}}\right)|^{2}} \end{equation} \end_inset \end_layout \begin_layout Standard From that, computing the power ratio, that \begin_inset Formula $\det\boldsymbol{T}\equiv1$ \end_inset for a reciprocal system: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} R_{P}=\frac{P_{\mathrm{with\,silencer}}}{P_{\mathrm{ref}}}=\frac{|Z_{\mathrm{rad}}+Z_{s}|^{2}}{|T_{22}Z_{\mathrm{rad}}-T_{12}+Z_{s}\left(T_{11}-T_{21}Z_{\mathrm{rad}}\right)|^{2}} \end{equation} \end_inset \end_layout \begin_layout Subsection Insertion loss for a Helmholtz side branch resonator \end_layout \begin_layout Standard Filling in for a simple Helmholtz side branch resonator: \begin_inset Formula \begin{equation} R_{P,\mathrm{Helmholtz}}=\frac{|Z_{\mathrm{rad}}+Z_{s}|^{2}}{|Z_{\mathrm{rad}}+Z_{s}\left(1+\frac{Z_{\mathrm{rad}}}{Z_{h}}\right)|^{2}}. \end{equation} \end_inset \end_layout \begin_layout Standard Comparing this to the transmission loss curve: \begin_inset Formula \begin{equation} |\tau|_{\mathrm{Helmholtz}}^{2}=\frac{4|Z_{h}|^{2}}{|2Z_{h}+Z_{0}|^{2}} \end{equation} \end_inset \end_layout \begin_layout Subsubsection High output impedance limit \begin_inset Formula $(Z_{s}\gg Z_{\mathrm{rad}})$ \end_inset , volume flow source \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} R_{P,\mathrm{Helmholtz}}=\frac{|Z_{h}|^{2}}{|Z_{h}+Z_{\mathrm{rad}}|^{2}}. \end{equation} \end_inset \end_layout \begin_layout Subsubsection Low output impedance limit \begin_inset Formula $(Z_{s}\ll Z_{\mathrm{rad}})$ \end_inset , pressure source \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} R_{P,\mathrm{Helmholtz}}=\frac{|Z_{h}|^{2}}{|Z_{h}+Z_{s}|^{2}} \end{equation} \end_inset \end_layout \begin_layout Subsubsection Special case: barrier in an infinite space \begin_inset Formula $(Z_{s}=Z_{\mathrm{rad}})$ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} R_{P,\mathrm{Helmholtz}}=\frac{|Z_{h}|^{2}}{|Z_{h}+\frac{1}{2}Z_{\mathrm{rad}}|^{2}}. \end{equation} \end_inset \end_layout \begin_layout Standard Comparing limits to power transmission ratio \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} |\tau|^{2}=\frac{|Z_{h}|^{2}}{|Z_{h}+\frac{1}{2}Z_{0}|^{2}}, \end{equation} \end_inset \end_layout \begin_layout Standard So the transmission loss is the reduction in transmitted sound power for the situation where the source output impedance equals the radiation impedance on the other side of the silencer. \end_layout \begin_layout Subsection Multiple Helmholtz resonators at a single inlet \end_layout \begin_layout Standard In case multiple resonators are connected to the same inlet, the parallel impedance can be computed by computing the equivalent parallel impedance: \begin_inset Formula \begin{equation} \frac{1}{Z_{h,\mathrm{tot}}}=\frac{1}{Z_{h,1}}+\frac{1}{Z_{h,2}}+\dots \end{equation} \end_inset \end_layout \begin_layout Section Transmission of the duct \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} =\left[\begin{array}{cc} \cos\left(kL\right) & -iZ_{0}\sin\left(kL\right)\\ -iZ_{0}^{-1}\sin\left(kL\right) & \cos\left(kL\right) \end{array}\right]\left\{ \begin{array}{c} p_{L}\\ U_{L} \end{array}\right\} \end{equation} \end_inset \end_layout \begin_layout Chapter 3D (FEM) Models \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout Apply equation of state: \end_layout \begin_layout Plain Layout \begin_inset Formula \begin{align*} i\omega\rho+\rho_{0}\nabla\cdot\boldsymbol{u} & =0\\ i\omega\rho_{0}\boldsymbol{u} & =-\nabla p+\mu_{0}\nabla^{2}\boldsymbol{u}+\left(\frac{1}{3}\mu+\zeta\right)\nabla\left(\nabla\cdot\boldsymbol{u}\right)\\ i\omega\rho_{0}c_{p}T & =i\omega p+\kappa\nabla^{2}T\\ \frac{\rho}{\rho_{0}} & =\frac{p}{p_{0}}-\frac{T}{T_{0}} \end{align*} \end_inset \end_layout \begin_layout Plain Layout Solving for \begin_inset Formula $i\omega\rho_{0}c_{p}T=i\omega p+\kappa\nabla^{2}T$ \end_inset \end_layout \begin_layout Plain Layout : \begin_inset Formula $T=\frac{1}{\rho_{0}c_{p}}\left(1-h_{\kappa}\right)p$ \end_inset \end_layout \begin_layout Plain Layout Where \begin_inset Formula $\frac{i\delta_{\kappa}^{2}}{2}\nabla^{2}h_{\kappa}+h_{\kappa}=0$ \end_inset and \end_layout \begin_layout Plain Layout Same for velocity, negliging \begin_inset Quotes eld \end_inset bulk \begin_inset Quotes erd \end_inset viscosity terms: \end_layout \begin_layout Plain Layout \begin_inset Formula $i\omega\rho_{0}\boldsymbol{u}=-\nabla p+\mu_{0}\nabla^{2}\boldsymbol{u}$ \end_inset \end_layout \begin_layout Plain Layout More or less solution: \end_layout \begin_layout Plain Layout \begin_inset Formula $\boldsymbol{u}=\frac{i}{\rho_{0}\omega}\left(1-h_{\nu}\right)\nabla p$ \end_inset \end_layout \begin_layout Plain Layout Where \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{2i}{\delta_{\nu}^{2}}\nabla^{2}h_{\nu}+h_{\nu}=0$ \end_inset and \begin_inset Formula $h_{\nu}|_{\mathrm{wall}}=1$ \end_inset for a no-slip b.c. and 0 for a slip b.c. \end_layout \begin_layout Plain Layout Filling in the expression for eq of state, \end_layout \begin_layout Plain Layout \begin_inset Formula $\rho=\frac{1}{c_{0}^{2}}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p$ \end_inset \end_layout \begin_layout Plain Layout Substituting that one, for \begin_inset Formula $\rho$ \end_inset in continuity eq: \end_layout \begin_layout Plain Layout \begin_inset Formula $i\omega\frac{1}{c_{0}^{2}}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p+\rho_{0}\nabla\cdot\boldsymbol{u}=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\rho_{0}\nabla\cdot\boldsymbol{u}+i\frac{k}{c_{0}}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p=0$ \end_inset \end_layout \begin_layout Plain Layout Fill in for momentum: \end_layout \begin_layout Plain Layout \begin_inset Formula $\rho_{0}\nabla\cdot\left(\frac{i}{\rho_{0}\omega}\left(1-h_{\nu}\right)\nabla p\right)+i\frac{k}{c_{0}}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\nabla\cdot\left(\left(1-h_{\nu}\right)\nabla p\right)+k^{2}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Note Note status collapsed \begin_layout Plain Layout Multiplying with weight factor, applying greens theorem: \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}p_{w}k\left(1+\left(\gamma-1\right)h_{\kappa}\right)p-iz_{0}\nabla\cdot\boldsymbol{u}p_{w}\mathrm{d}V=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}p_{w}k\left(1+\left(\gamma-1\right)h_{\kappa}\right)p+iz_{0}\nabla p_{w}\cdot\boldsymbol{u}\mathrm{d}V=iz_{0}\oint_{S}p_{w}\boldsymbol{u}\cdot\boldsymbol{n}\mathrm{d}S$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}p_{w}k\left(1+\left(\gamma-1\right)h_{\kappa}\right)p+iz_{0}\nabla p_{w}\cdot\boldsymbol{u}\mathrm{d}V=iz_{0}\oint_{S}p_{w}\boldsymbol{u}\cdot\boldsymbol{n}\mathrm{d}S$ \end_inset \end_layout \begin_layout Plain Layout Filling in \begin_inset Formula $\boldsymbol{u}$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{i}{\rho_{0}\omega}\nabla p\left(1-\psi_{v}\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}p_{w}k^{2}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p-\left(1-\psi_{v}\right)\nabla p_{w}\cdot\nabla p\mathrm{d}V=ikz_{0}\oint_{S}p_{w}\boldsymbol{u}\cdot\boldsymbol{n}\mathrm{d}S$ \end_inset \end_layout \begin_layout Plain Layout Axially symmetric: \begin_inset Formula $\int_{z}\int_{r=0}^{a}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{z}\int_{r=0}^{a}\left(p_{w}k^{2}\left(1+\left(\gamma-1\right)\psi_{T}\right)p-\left(1-\psi_{v}\right)\nabla p_{w}\cdot\nabla p\right)2\pi r\mathrm{d}r\mathrm{d}z=ikz_{0}\oint_{S}p_{w}\boldsymbol{u}\cdot\boldsymbol{n}\mathrm{d}S$ \end_inset \end_layout \begin_layout Plain Layout —– Which \end_layout \begin_layout Plain Layout \begin_inset Formula $i\omega\frac{1}{c_{0}^{2}}p\left(1+\left(\gamma-1\right)h_{\kappa}\right)+\rho_{0}\nabla\cdot\left(\frac{i}{\rho_{0}\omega}\nabla p\left(1-\psi_{v}\right)\right)=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $k^{2}p\left(1+\left(\gamma-1\right)h_{\kappa}\right)+\rho_{0}\nabla\cdot\left(\nabla p\left(1-\psi_{v}\right)\right)=0$ \end_inset \end_layout \end_inset \end_layout \begin_layout Plain Layout From \end_layout \end_inset \end_layout \begin_layout Section SLNS model \end_layout \begin_layout Standard \begin_inset Formula \begin{align} \nabla^{2}h_{v}+\frac{2}{i\delta_{\nu}^{2}}h_{v} & =0,\\ \nabla^{2}h_{\kappa}+\frac{2}{i\delta_{\kappa}^{2}}h_{\kappa} & =0,\\ \frac{1}{k}\nabla\cdot\left(\left(1-h_{\nu}\right)\nabla p\right)+k\left(1+\left(\gamma-1\right)h_{\kappa}\right)p & =0\label{eq:slns} \end{align} \end_inset \end_layout \begin_layout Standard The velocity is: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \boldsymbol{u}=\frac{i}{\rho_{0}\omega}\left(1-h_{\nu}\right)\nabla p \end{equation} \end_inset \end_layout \begin_layout Standard Comsol writes for the effective density: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \left(-\frac{1}{\rho_{c}}\nabla p\right)=i\omega\boldsymbol{u}, \end{equation} \end_inset such that \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\frac{1}{\rho_{c}}=\frac{1-h_{\nu}}{\rho_{0}},$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \rho_{c}=\frac{\rho_{0}}{1-h_{\nu}}, \end{equation} \end_inset \end_layout \begin_layout Standard And: \begin_inset Formula \begin{equation} \nabla\cdot\left(-\frac{1}{\rho_{c}}\nabla p_{t}\right)-\frac{\omega^{2}}{c^{2}\rho_{c}}p=Q_{m}, \end{equation} \end_inset Filling in: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\nabla\cdot\left(-\frac{1}{\rho_{c}}\nabla p_{t}\right)-\frac{\omega^{2}}{c^{2}\rho_{c}}p=Q_{m}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\nabla\cdot\left(-\frac{\left(1-h_{\nu}\right)}{\rho_{m}}\nabla p\right)-\frac{k^{2}}{\rho_{m}}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p=0$ \end_inset \end_layout \begin_layout Plain Layout Makes: \begin_inset Formula $c^{2}\rho_{c}=\frac{c_{m}^{2}\rho_{m}}{1+\left(\gamma-1\right)h_{\kappa}}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $c^{2}=\frac{c_{m}^{2}\left(1-h_{\nu}\right)}{1+\left(\gamma-1\right)h_{\kappa}}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} c^{2}=\frac{c_{m}^{2}\left(1-h_{\nu}\right)}{1+\left(\gamma-1\right)h_{\kappa}} \end{equation} \end_inset \end_layout \begin_layout Standard With boundary conditions at isothermal no-slip wall: \end_layout \begin_layout Standard \begin_inset Formula \begin{align} h_{\nu} & =1\qquad\mathrm{at\,the\,wall}\\ h_{\kappa} & =1\qquad\mathrm{at\,the\,wall} \end{align} \end_inset \end_layout \begin_layout Standard Symmetry / inlet outlet: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} h_{\nu}=h_{\kappa}=0 \end{equation} \end_inset \end_layout \begin_layout Standard For pressure / velocity b.c.'s \begin_inset Formula \begin{equation} \boldsymbol{u}=\frac{i}{\rho_{0}\omega}\left(1-h_{\nu}\right)\nabla p \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout Combine with pressure acoustics: \end_layout \begin_layout Plain Layout Weak form: \end_layout \begin_layout Plain Layout (-acpr.gradpx*acpr.gradtestpx-acpr.gradpy*acpr.gradtestpy-acpr.gradpz*acpr.gradtestpz- acpr.p_t*test(pac)*acpr.ik^2)*acpr.delta/acpr.rho_c \end_layout \begin_layout Plain Layout (-acpr.gradpx*acpr.gradtestpx-acpr.gradpy*acpr.gradtestpy-acpr.gradpz*acpr.gradtestpz- acpr.p_t*test(pac)*acpr.ik^2)*acpr.delta/acpr.rho_c \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}\left[-\nabla p_{t}\cdot\nabla p-p_{t}p\left(ik\right)\right]\frac{\delta}{\rho_{0}c_{0}}\mathrm{dV}$ \end_inset \end_layout \begin_layout Plain Layout Weak form of SLNS: \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}p_{t}\left[\nabla\cdot\left(\left(1-h_{\nu}\right)\nabla p\right)+k^{2}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p\right]\frac{\delta}{\rho_{0}c_{0}}\mathrm{d}V$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}\left[-\nabla p_{t}\cdot\left(\left(1-h_{\nu}\right)\nabla p\right)+p_{t}k^{2}\left(1+\left(\gamma-1\right)h_{\kappa}\right)p\right]\frac{\delta}{\rho_{0}c_{0}}\mathrm{d}V$ \end_inset +Boundary term. \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}\left[\underbrace{-\nabla p_{t}\cdot\nabla p-p_{t}\left(ik\right)^{2}p}_{\mathrm{already\,there}}+\nabla p_{t}\cdot\left(h_{\nu}\nabla p\right)-p_{t}\left(ik\right)^{2}p\left(\left(\gamma-1\right)h_{\kappa}\right)\right]\frac{\delta}{\rho_{0}c_{0}}\mathrm{d}V$ \end_inset \end_layout \begin_layout Plain Layout Makes the weak contribution equal to: \end_layout \begin_layout Plain Layout \begin_inset Formula $\int_{V}\left[\nabla p_{t}\cdot\left(h_{\nu}\nabla p\right)+p_{t}\left(ik\right)^{2}p\left(\left(1-\gamma\right)h_{\kappa}\right)\right]\frac{\delta}{\rho_{0}c_{0}}\mathrm{d}V$ \end_inset \end_layout \begin_layout Plain Layout Written out: \end_layout \begin_layout Plain Layout (hnu*(test(px)*px+test(py)*py+pz*test(pz))+test(p)*p*acpr.ik^2*(1-gamma)*hkappa)* acpr.delta/acpr.rho_c \end_layout \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout DEPRECATED, we doen het met de pressure acoustics interface en een enkele weak contribution! \end_layout \begin_layout Section Comsol implementation - General Form PDE \end_layout \begin_layout Plain Layout Model in Comsol: \end_layout \begin_layout Plain Layout \begin_inset Formula \begin{equation} e_{a}\frac{\partial^{2}p}{\partial t^{2}}+d_{a}\frac{\partial p}{\partial t}+\nabla\cdot\boldsymbol{\Gamma}=f \end{equation} \end_inset \end_layout \begin_layout Plain Layout Comparing with Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:slns" \end_inset results in: \begin_inset Formula \begin{align} \boldsymbol{\Gamma} & =\frac{1}{k}\left(1-h_{\nu}\right)\nabla p\\ f & =-k\left(1+\left(\gamma-1\right)h_{\kappa}\right)p \end{align} \end_inset \end_layout \begin_layout Section Comsol implementation - prescribed velocity \end_layout \begin_layout Plain Layout Flux / source term form in Comsol: \begin_inset Formula \begin{equation} -\boldsymbol{n}\cdot\boldsymbol{\Gamma}=g-qp \end{equation} \end_inset From the mathematics, we find: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $k\boldsymbol{\Gamma}=\left(1-h_{\nu}\right)\nabla p$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\boldsymbol{u}=\frac{i}{\rho_{0}\omega}\left(1-h_{\nu}\right)\nabla p$ \end_inset \end_layout \begin_layout Plain Layout – Combine: \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{\rho_{0}\omega}{i}\boldsymbol{u}=\left(1-h_{\nu}\right)\nabla p$ \end_inset \end_layout \begin_layout Plain Layout – \end_layout \begin_layout Plain Layout \begin_inset Formula $\boldsymbol{\Gamma}=-iz_{0}\boldsymbol{u}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} -\boldsymbol{n}\cdot\boldsymbol{\Gamma}=iz_{0}\boldsymbol{u}\cdot\boldsymbol{n}\label{eq:Gam_vs_un} \end{equation} \end_inset Such that: \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\boldsymbol{u}\cdot\boldsymbol{n}=\frac{i}{\rho_{0}\omega}\left(1-h_{\nu}\right)\nabla p\cdot\boldsymbol{n}$ \end_inset \end_layout \begin_layout Plain Layout Note that: \begin_inset Formula \[ k\boldsymbol{\Gamma}=\left(1-h_{\nu}\right)\nabla p \] \end_inset \end_layout \begin_layout Plain Layout Fill in: \begin_inset Formula $iz_{0}\boldsymbol{u}\cdot\boldsymbol{n}=-\boldsymbol{\Gamma}\cdot\boldsymbol{n}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{align} q & =0\\ g & =iz_{0}\boldsymbol{u}\cdot\boldsymbol{n} \end{align} \end_inset \end_layout \begin_layout Plain Layout Moreover, at such a boundary, we need to set \begin_inset Formula $h_{\nu}$ \end_inset and \begin_inset Formula $h_{\kappa}$ \end_inset to 0. \end_layout \begin_layout Section Normal impedance b.c. \end_layout \begin_layout Plain Layout We set \begin_inset Formula \begin{equation} z\boldsymbol{u}\cdot\boldsymbol{n}=p \end{equation} \end_inset \end_layout \begin_layout Plain Layout Upon using Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:Gam_vs_un" \end_inset , we find: \end_layout \begin_layout Plain Layout Yields: \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\frac{i}{z_{0}}\boldsymbol{n}\cdot\boldsymbol{\Gamma}=\boldsymbol{u}\cdot\boldsymbol{n}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} -\boldsymbol{n}\cdot\boldsymbol{\Gamma}=-i\frac{z_{0}}{z}p \end{equation} \end_inset \end_layout \begin_layout Plain Layout Such that: \begin_inset Formula \begin{align} q & =i\frac{z_{0}}{z}\\ g & =0 \end{align} \end_inset \end_layout \begin_layout Section Interior impedance jump \end_layout \begin_layout Plain Layout Equation: \begin_inset Formula \begin{equation} p_{\mathrm{up}}-p_{\mathrm{down}}=z\boldsymbol{u}\cdot\boldsymbol{n}_{\mathrm{up}} \end{equation} \end_inset \end_layout \begin_layout Plain Layout It should be implemented as a \begin_inset Quotes eld \end_inset weak contribution \begin_inset Quotes erd \end_inset . For that we refer the the weak form equation: \begin_inset Note Note status open \begin_layout Plain Layout Reverse engineering comsols weak contribution of such a split: \end_layout \begin_layout Plain Layout -acpr.delta*acpr.iomega*(down(acpr.p_t)-up(acpr.p_t))*(down(test(acp))-up(test(acp)) )/acpr.Zi \end_layout \begin_layout Plain Layout waar: delta = 1/omega^2 \end_layout \begin_layout Plain Layout Leest: \end_layout \begin_layout Plain Layout -i/omega*(down(p)-up(p))*(down(test(p))-up(test(p))) /z \end_layout \begin_layout Plain Layout We hebben altijd op een rand: \begin_inset Formula \[ \] \end_inset \end_layout \end_inset \end_layout \end_inset \end_layout \begin_layout Standard We can write this as a weak contribution: \end_layout \begin_layout Standard Weak contribution in pressure acoustics interface: \end_layout \begin_layout Standard \family typewriter (hnu*(test(px)*px+test(py)*py+pz*test(pz))+test(p)*p*acpr.ik^2*(1-gamma)*hkappa)* acpr.delta/acpr.rho_c \end_layout \begin_layout Standard Or we could write this with a custom density and speed of sound <— TODO! \end_layout \begin_layout Standard 2D Axisymmetric: \end_layout \begin_layout Standard \family typewriter (hnu*(test(pr)*pr+pz*test(pz))+test(p)*p*acpr.ik^2*(1-gamma)*hkappa)*acpr.delta/ac pr.rho_c \end_layout \begin_layout Standard \begin_inset CommandInset bibtex LatexCommand bibtex btprint "btPrintCited" bibfiles "lrftubes" options "plain" \end_inset \end_layout \begin_layout Chapter \start_of_appendix Thermal relaxation in thick tubes \end_layout \begin_layout Section \begin_inset CommandInset label LatexCommand label name "subsec:Thermal-relaxation-effect" \end_inset Thermal relaxation effect in thick tubes \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/prsduct_thermal_relax.pdf width 80text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Schematic situation of a tube surrounded by a thick solid. Note that the transverse acoustic temperature is drawn to be not zero at the wall. This happens in case of thermal interaction with a solid with finite thermal effusivity. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:prsduct-heatwave-solid" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard In this section, a formulation for \begin_inset Formula $\epsilon_{s}$ \end_inset is given for tubes where the temperature wave in the solid is present. Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:prsduct-heatwave-solid" \end_inset shows a schematic overview of the situation. As shown in the figure, the temperature wave accompanied with an acoustic wave results in heat conduction to/from the wall of the tube. To solve this interaction mathematically, the heat equation in the solid has to be solved. For constant thermal conductivity, density and heat capacity the heat equation of the solid is \begin_inset Formula \begin{equation} \rho_{s}c_{s}\frac{\partial\tilde{T}_{s}}{\partial t}=\kappa_{s}\nabla^{2}\tilde{T}_{s}, \end{equation} \end_inset where \begin_inset Formula $\rho_{s},c_{s},\tilde{T}_{s}$ \end_inset and \begin_inset Formula $\kappa_{s}$ \end_inset are the density, specific heat, temperature and thermal conductivity of the solid, respectively. In frequency domain and using cylindrical coordinates, assuming axial symmetry, this can be written as \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$r$" description "Radial position in cylindrical coordinates\\nomunit{\\si{\\m}}" literal "true" \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \left(r^{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right)+r\frac{\partial}{\partial r}+\frac{2}{i\delta_{s}^{2}}r^{2}\right)T_{s}=0, \end{equation} \end_inset where \begin_inset Formula $\delta_{s}$ \end_inset is \begin_inset Formula \begin{equation} \delta_{s}=\sqrt{\frac{2\kappa_{s}}{\rho_{s}c_{s}\omega}}. \end{equation} \end_inset Now, since \begin_inset Formula $\partial T_{s}/\partial x\sim\frac{\delta_{s}}{\lambda}\frac{\partial T_{s}}{\partial r}$ \end_inset , the second order derivative of the temperature in the axial direction can be neglected. In that case, the differential equation to solve for is \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\rho_{s}c_{s}i\omega T_{s}=\kappa_{s}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}\right)T_{s}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $-\kappa_{s}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}\right)T_{s}+\rho_{s}c_{s}i\omega T_{s}=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}\right)T_{s}+2\frac{\rho_{s}c_{s}\omega}{2\kappa_{s}i}T_{s}=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\delta_{s}^{2}=\frac{2\kappa_{s}}{\rho_{s}c_{s}\omega}$ \end_inset <<< subst \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}\right)T_{s}+\frac{2}{i\delta_{s}^{2}}T_{s}=0$ \end_inset \end_layout \begin_layout Plain Layout Multiply with \begin_inset Formula $r^{2}$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(r^{2}\frac{\partial^{2}}{\partial r^{2}}+r\frac{\partial}{\partial r}+\frac{2}{i\delta_{s}^{2}}r^{2}\right)T_{s}=0$ \end_inset \end_layout \begin_layout Plain Layout Say: \begin_inset Formula $\xi^{2}=\frac{2}{i\delta_{s}^{2}}r^{2}\Rightarrow$ \end_inset \end_layout \begin_layout Plain Layout Then: \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{\partial^{2}}{\partial r^{2}}=$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \left(r^{2}\frac{\partial^{2}}{\partial r^{2}}+r\frac{\partial}{\partial r}+\frac{2}{i\delta_{s}^{2}}r^{2}\right)T_{s}=0, \end{equation} \end_inset which is a Bessel differential equation of the zero'th order in \begin_inset Formula $T_{s}$ \end_inset . The solutions is sought in terms of traveling cylindrical waves: \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\sqrt{\frac{2}{i}}=\sqrt{-2i}=\pm\left(i-1\right)$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} T_{s}=C_{1}H_{0}^{(1)}\left(\left(i-1\right)\frac{r}{\delta_{s}}\right)+C_{2}H_{0}^{(2)}\left(\left(i-1\right)\frac{r}{\delta_{s}}\right), \end{equation} \end_inset where \begin_inset Formula $C_{1}$ \end_inset and \begin_inset Formula $C_{2}$ \end_inset constants to be determined from the boundary conditions, and \begin_inset Formula $H_{\alpha}^{(i)}$ \end_inset is the cylindrical Hankel function of the \begin_inset Formula $(i)^{\mathrm{th}}$ \end_inset kind and order \begin_inset Formula $\alpha$ \end_inset . If we require \begin_inset Formula $T_{s}\to0$ \end_inset as \begin_inset Formula $r\to\infty$ \end_inset , the constant \begin_inset Formula $C_{2}$ \end_inset is required to be \begin_inset Formula $0$ \end_inset . From the acoustic energy equation, a similar differential equation can be found for the acoustic temperature in the fluid: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\rho_{0}c_{p}i\omega T=i\omega\alpha_{P}T_{0}p+\kappa\nabla^{2}T$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\nabla^{2}-2\frac{\omega\rho_{0}c_{p}}{2\kappa}i\right)T=-\frac{1}{\kappa}i\omega\alpha_{P}T_{0}p$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\nabla^{2}+\frac{2}{i\delta_{\kappa}^{2}}\right)T=\frac{2}{i\delta_{s}^{2}}\frac{\alpha_{P}T_{0}}{\rho_{0}c_{p}}p$ \end_inset \end_layout \end_inset \begin_inset Formula \[ \left(r^{2}\frac{\partial^{2}}{\partial r^{2}}+r\frac{\partial}{\partial r}+\frac{2}{i\delta_{s}^{2}}r^{2}\right)T=\frac{2}{i\delta_{s}^{2}}\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p, \] \end_inset for which the (partial) solution is \begin_inset Formula \begin{equation} T=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\left(1-C_{3}J_{0}\left(\left(i-1\right)\frac{r}{\delta_{\kappa}}\right)\right).\label{eq:temp_partial_sol} \end{equation} \end_inset To attain at Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:temp_partial_sol" \end_inset , use has been made of the fact that the temperature should be finite at \begin_inset Formula $r=0$ \end_inset . \begin_inset Formula $C_{3}$ \end_inset is a constant that is to be determined from the boundary conditions at the solid-fluid interface. These boundary conditions are: \begin_inset Formula \begin{align} T_{s}|_{r=a} & =T|_{r=a},\\ -\kappa_{s}\frac{\partial T_{s}}{\partial r}|_{r=a} & =-\kappa\frac{\partial T}{\partial r}|_{r=a}, \end{align} \end_inset i.e. continuity of the temperature and the heat flux at the interface. This yields two equations for two unknowns ( \begin_inset Formula $C_{1}$ \end_inset and \begin_inset Formula $C_{3}$ \end_inset , \begin_inset Formula $C_{2}$ \end_inset is already argued to be \begin_inset Formula $0$ \end_inset ). Solving for the acoustic temperature yields: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $T|_{r=a}=T_{s}|_{r=a}$ \end_inset \end_layout \begin_layout Plain Layout – \end_layout \begin_layout Plain Layout \begin_inset Formula $C_{1}H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\left(1-C_{3}J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right)\Rightarrow C_{1}=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(1-C_{3}J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right)}{H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}$ \end_inset (1) \end_layout \begin_layout Plain Layout Derivative b.c. \end_layout \begin_layout Plain Layout – \begin_inset Formula $-\frac{\partial T}{\partial r}|_{r=a}=-\frac{\kappa_{s}}{\kappa}\frac{\partial T_{s}}{\partial r}|_{r=a}$ \end_inset \end_layout \begin_layout Plain Layout where \begin_inset Formula $-\frac{\partial T}{\partial r}|_{r=a}=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(i-1\right)}{\delta_{\kappa}}C_{3}J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)$ \end_inset \end_layout \begin_layout Plain Layout using \begin_inset Formula $\frac{\partial H_{0}^{(1)}(z)}{\partial z}=-H_{1}^{(1)}(z)$ \end_inset ==> \begin_inset Formula $-\frac{\kappa}{\kappa_{s}}\frac{\partial T_{s}}{\partial r}|_{r=a}=\frac{\kappa}{\kappa_{s}}C_{1}\frac{\left(i-1\right)}{\delta_{s}}H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)$ \end_inset \end_layout \begin_layout Plain Layout Such that: \begin_inset Formula $\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(i-1\right)}{\delta_{\kappa}}C_{3}J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)=\frac{\kappa_{s}}{\kappa}C_{1}\frac{\left(i-1\right)}{\delta_{s}}H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)$ \end_inset \end_layout \begin_layout Plain Layout Filling in \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(i-1\right)}{\delta_{\kappa}}C_{3}J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)=\frac{\kappa_{s}}{\kappa}\left(\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(1-C_{3}J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right)}{H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}\right)\frac{\left(i-1\right)}{\delta_{s}}H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)$ \end_inset \end_layout \begin_layout Plain Layout Solving for \begin_inset Formula $C_{3}$ \end_inset gives: \end_layout \begin_layout Plain Layout \begin_inset Formula $C_{3}=\frac{1}{\left[\frac{J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}{\frac{\kappa_{s}}{\kappa}\frac{\delta_{\kappa}}{\delta_{s}}H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}+J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right]}$ \end_inset \end_layout \begin_layout Plain Layout or: \end_layout \begin_layout Plain Layout \begin_inset Formula $C_{3}=\frac{1}{\left[\left(1+\epsilon_{s}\right)J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right]}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\epsilon_{s}=\frac{\kappa\delta_{s}}{\delta_{\kappa}\kappa_{s}}\frac{H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}{H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{\kappa\delta_{s}}{\delta_{\kappa}\kappa_{s}}=\sqrt{\frac{\kappa^{2}\delta_{s}^{2}}{\kappa_{s}^{2}\delta_{\kappa}^{2}}}=\sqrt{\frac{\kappa\rho_{0}c_{p}}{\kappa\rho_{s}c_{s}}}$ \end_inset \end_layout \end_inset \begin_inset Formula \[ T=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}\left(1-\frac{1}{\left(1+\epsilon_{s}\right)}\frac{J_{0}\left(\left(i-1\right)\frac{r}{\delta_{\kappa}}\right)}{J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}\right)p, \] \end_inset where \begin_inset Formula \begin{equation} \epsilon_{s}=\frac{e_{f}}{e_{s}}\frac{J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}{J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}, \end{equation} \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout - \end_layout \begin_layout Plain Layout -Asymptotic form of the Hankel function for large argument, and \end_layout \begin_layout Plain Layout \begin_inset Formula $-\pi<\arg(z)<2\pi$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $H_{\alpha}^{(1)}(z)\sim\sqrt{\frac{2}{\pi z}}e^{i\left(z-\pi\frac{1+2\alpha}{4}\right)}$ \end_inset \end_layout \begin_layout Plain Layout And for \end_layout \begin_layout Plain Layout \begin_inset Formula $J_{\alpha}(z)\sim\sqrt{\frac{2}{\pi z}}\cos\left(z-\pi\frac{1+2\alpha}{4}\right)$ \end_inset \end_layout \begin_layout Plain Layout Filling this in into \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{e_{f}}{e_{s}}\cdot-ii=\frac{e_{f}}{e_{s}}$ \end_inset \end_layout \end_inset where \begin_inset Formula $e_{f}$ \end_inset is the thermal effusivity \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$e$" description "Thermal effusivity\\nomunit{\\si{\\joule\\per\\square\\metre\\kelvin\\second\\tothe{ \\frac{1}{2} } }}" literal "true" \end_inset \end_layout \end_inset of the fluid, and \begin_inset Formula $e_{s}$ \end_inset the thermal effusivity of the solid, such that the ratio is \begin_inset Formula \begin{equation} \frac{e_{f}}{e_{s}}=\sqrt{\frac{\kappa\rho_{0}c_{p}}{\kappa_{s}\rho_{s}c_{s}}}. \end{equation} \end_inset \end_layout \begin_layout Standard Note that for large \begin_inset Formula $a/\delta_{\kappa}$ \end_inset : \begin_inset Formula \begin{equation} \frac{J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}{J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}\to i, \end{equation} \end_inset and for large \begin_inset Formula $a/\delta_{s}$ \end_inset \begin_inset Formula \begin{equation} \frac{H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}{H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}\to-i, \end{equation} \end_inset such that for both numbers large \begin_inset Formula \begin{equation} \epsilon_{s}\to\frac{e_{f}}{e_{s}}. \end{equation} \end_inset \end_layout \begin_layout Chapter Derivation of Karal's discontinuity factor \begin_inset CommandInset label LatexCommand label name "chap:Derivation-of-Karal's" \end_inset \end_layout \begin_layout Standard \series bold Note: this documentation is incomplete. \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/discontinuity_appendix.pdf width 60text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Schematic of a discontinuity at the interface between two tubes with different radius. Domain B is the smaller tube and domain C is the larger tube. The radius of the tube in domain B is \begin_inset Formula $b$ \end_inset , and the radius of the tube in domain C is \begin_inset Formula $c$ \end_inset . \end_layout \end_inset \end_layout \begin_layout Plain Layout \align center \begin_inset CommandInset label LatexCommand label name "fig:karal-1" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard This appendix describes the derivation of Karal's discontinuity factor. The following assumptions underlie the model: \end_layout \begin_layout Itemize \begin_inset Formula $z=0$ \end_inset : position of the discontinuity \end_layout \begin_layout Itemize Assume \begin_inset Formula $f\ll f_{c}$ \end_inset , such that far away from the discontinuity, only propagating modes exist. \end_layout \begin_layout Itemize Assume axial symmetry, so dependence of \begin_inset Formula $\theta$ \end_inset is dropped \end_layout \begin_layout Standard In cylindrical coordinates, the solution of the Helmholtz equation can be written in terms of cylindrical harmonics \begin_inset CommandInset citation LatexCommand cite key "blackstock_fundamentals_2000" literal "true" \end_inset . Assuming axial symmetrySuch that the acoustic pressure in for example tube \begin_inset Formula $B$ \end_inset can be written as: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{B}=\left\{ \begin{array}{c} J_{m}\left(k_{r}r\right)\\ N_{m}\left(k_{r}r\right) \end{array}\right\} \left\{ \begin{array}{c} e^{im\phi}\\ e^{-im\phi} \end{array}\right\} \left\{ \begin{array}{c} e^{\beta z}\\ e^{-\beta z} \end{array}\right\} \end{equation} \end_inset where \begin_inset Formula $J_{m}$ \end_inset is the cylindrical Bessel function of order \begin_inset Formula \begin{equation} k_{r}^{2}-\beta^{2}=k^{2}. \end{equation} \end_inset Using the boundary condition that \begin_inset Formula \begin{equation} \frac{\partial p_{B}}{\partial r}|_{r=b}=0, \end{equation} \end_inset and assuming axial symmetry (only the \begin_inset Formula $m=0$ \end_inset modes) it follows that \begin_inset Formula \begin{equation} \frac{\partial J_{0}}{\partial r}\left(k_{r}b\right)|_{r=b}=0. \end{equation} \end_inset Assuming that \begin_inset Formula $\alpha_{k}$ \end_inset is the \begin_inset Formula $k^{\mathrm{th}}$ \end_inset zero of \begin_inset Formula $J_{0}^{'}(x)$ \end_inset , we can write for \begin_inset Formula $k_{r,k}$ \end_inset : \begin_inset Formula \begin{equation} k_{r,k}=\frac{\alpha_{k}}{b}. \end{equation} \end_inset Hence we find the following reduced expression for the pressure in tube \begin_inset Formula $B$ \end_inset : \begin_inset Formula \begin{equation} p_{B}=B_{0}^{0}\exp\left(ikz\right)+B_{0}^{1}\exp\left(-ikz\right)+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)\left\{ \begin{array}{c} e^{\beta_{n}z}\\ e^{-\beta_{n}z} \end{array}\right\} , \end{equation} \end_inset where accordingly, \begin_inset Formula \begin{equation} \beta_{k}^{2}=\left(\frac{\alpha_{k}}{b}\right)^{2}-k^{2}\label{eq:beta_k} \end{equation} \end_inset For \begin_inset Formula $k^{2}<\left(\alpha_{k}/b\right)^{2}$ \end_inset , \begin_inset Formula $\beta_{k}^{2}>0$ \end_inset , the modes are evanescent. And since we only allow finite solutions for \begin_inset Formula $z\leq0$ \end_inset , the final results for \begin_inset Formula $p_{B}$ \end_inset is \begin_inset Formula \begin{equation} p_{B}=B_{0}^{0}\exp\left(ikz\right)+B_{0}^{1}\exp\left(-ikz\right)+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}, \end{equation} \end_inset where \begin_inset Formula $\beta_{n}$ \end_inset is defined as the positive root of the r.h.s. of Eq. \begin_inset space ~ \end_inset \begin_inset CommandInset ref LatexCommand ref reference "eq:beta_k" \end_inset . We simplify this relation to: \begin_inset Formula \begin{equation} p_{B}(z)=p_{B}^{0}(z)+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}. \end{equation} \end_inset For the velocity we find \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $u=\frac{i}{\omega\rho_{0}}\frac{\partial p_{B}}{\partial z}=u_{B}^{0}(z)+\sum_{n=1}^{\infty}\frac{i\beta_{n}}{\omega\rho_{0}}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} u_{B}(z)=u_{B}^{0}(z)+\sum_{n=1}^{\infty}Y_{B,n}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} Y_{B,n}=\frac{i\beta_{n}}{\omega\rho_{0}}. \end{equation} \end_inset \end_layout \begin_layout Standard Similarly, for the positive \begin_inset Formula $z$ \end_inset we find \begin_inset Formula \begin{equation} p_{C}(z)=P_{C}^{0}(z)+\sum_{m=1}^{\infty}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)e^{-\gamma_{m}z}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} \gamma_{m}=\sqrt{\left(\frac{\alpha_{m}}{c}\right)^{2}-k^{2}}. \end{equation} \end_inset and \begin_inset Formula \begin{equation} u_{C}(z)=u_{C}^{0}(z)+\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)e^{-\gamma_{m}z}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} Y_{C,m}=-\frac{i\gamma_{m}}{\omega\rho_{0}} \end{equation} \end_inset \end_layout \begin_layout Section Boundary conditions \end_layout \begin_layout Standard At the interface ( \begin_inset Formula $z=0$ \end_inset ), the following boundary conditions are valid: \begin_inset Formula \begin{align} u_{B}|_{z=0} & =u_{C}|_{z=0} & 0\leq r\leq b\label{eq:derivative1bc}\\ u_{C}|_{z=0} & =0 & b\leq r\leq c\label{eq:derivative2bc}\\ p_{B} & =p_{C} & 0\leq r\leq b\label{eq:continuitybc} \end{align} \end_inset Taking Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:derivative1bc" \end_inset , multiply by \begin_inset Formula $r$ \end_inset and integrating from \begin_inset Formula $0$ \end_inset to \begin_inset Formula $c$ \end_inset , taking into account Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:derivative2bc" \end_inset yields: \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $u_{B}(z)=u_{B}^{0}(z)+\sum_{n=1}^{\infty}\zeta_{B,n}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}$ \end_inset \end_layout \begin_layout Plain Layout \lang english Integrating from 0 to \begin_inset Formula $b$ \end_inset for \begin_inset Formula $u_{B}$ \end_inset and integrating from 0 to \begin_inset Formula $c$ \end_inset for \begin_inset Formula $u_{C}$ \end_inset cancels out the Bessel functions, as the primitive of \begin_inset Formula $J_{0}(x)x$ \end_inset is \begin_inset Formula $J_{1}(x)x$ \end_inset , for which due to the no-slip b.c. the resulting integral is zero, and at \begin_inset Formula $r=0$ \end_inset , the integral is zero as well. Hence we obtain only the propagating mode contribution to the volume flow. \end_layout \end_inset \begin_inset Formula \begin{equation} b^{2}u_{B}^{0}=c^{2}u_{C}^{0} \end{equation} \end_inset We require one more equation at the interface, which is found from the continuit y boundary conditions as well. Multiplying Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:derivative1bc" \end_inset with \begin_inset Formula $J_{0}(\alpha_{q}\frac{r}{c})r$ \end_inset and integrating setting \begin_inset Formula $q=m$ \end_inset and dividing by \begin_inset Formula $bc$ \end_inset yields: \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $u_{B}=u_{B}^{0}+\sum_{n=1}^{\infty}\zeta_{B,n}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $u_{C}=u_{C}^{0}+\sum_{m=1}^{\infty}\zeta_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)$ \end_inset \end_layout \begin_layout Plain Layout \lang english – \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english – Work out stuff, first line: \end_layout \begin_layout Plain Layout \lang english - Using the rule: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \int J_{0}(C_{1}x)J_{0}(C_{2}x)x\mathrm{d}x=x\frac{C_{1}J_{1}(C_{1}x)J_{0}(C_{2}x)-C_{2}J_{0}\left(C_{1}x\right)J_{1}(C_{2}x)}{C_{1}^{2}-C_{2}^{2}} \] \end_inset \end_layout \begin_layout Plain Layout \lang english –> \begin_inset Formula $C_{1}=\frac{\alpha_{q}}{c}$ \end_inset ; \begin_inset Formula $C_{2}=\frac{\alpha_{n}}{b}$ \end_inset \begin_inset Formula $x=b$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=u_{B}^{0}J_{1}(\alpha_{q}\frac{b}{c})\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}b\frac{\frac{\alpha_{q}}{c}J_{1}(\frac{\alpha_{q}}{c}b)J_{0}(\frac{\alpha_{n}}{b}b)-\frac{\alpha_{n}}{b}J_{0}\left(\frac{\alpha_{q}}{c}b\right)J_{1}(\frac{\alpha_{n}}{b}b)}{\left(\frac{\alpha_{q}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}=$ \end_inset \end_layout \begin_layout Plain Layout \lang english Using: \begin_inset Formula $J_{1}\left(\alpha_{i}\right)=0$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=u_{B}^{0}J_{1}(\alpha_{q}\frac{b}{c})\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{b}{\left(\frac{\alpha_{q}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}\frac{\alpha_{q}}{c}J_{1}(\frac{\alpha_{q}}{c}b)J_{0}(\frac{\alpha_{n}}{b}b)=$ \end_inset \end_layout \begin_layout Plain Layout \lang english Using: \begin_inset Formula $\rho=\frac{b}{c}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=u_{B}^{0}J_{1}(\alpha_{q}\frac{b}{c})\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{q}\rho}{\left(\frac{\alpha_{q}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\frac{\alpha_{q}}{c}b)J_{0}(\frac{\alpha_{n}}{b}b)=$ \end_inset \end_layout \begin_layout Plain Layout \lang english Setting: \begin_inset Formula $q=m$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{m}\rho}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})$ \end_inset \end_layout \begin_layout Plain Layout \lang english ——————————————————————— \end_layout \begin_layout Plain Layout \lang english And the rhs: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=\int\limits _{0}^{c}\left[u_{C}^{0}J_{0}(\alpha_{q}\frac{r}{c})r+\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)J_{0}(\alpha_{q}\frac{r}{c})r\right]\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=\int\limits _{0}^{c}\left[\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)J_{0}(\alpha_{q}\frac{r}{c})r\right]\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english Setting: \begin_inset Formula $q=m$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=\int\limits _{0}^{c}\left[\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)J_{0}(\alpha_{m}\frac{r}{c})r\right]\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english Using the rule: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \int J_{0}(C_{1}x)^{2}x\mathrm{d}x=\frac{1}{2}x^{2}\left(J_{0}(C_{1}x)^{2}+J_{1}(C_{1}x)^{2}\right) \] \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $C_{1}=\alpha_{m}\frac{r}{c}$ \end_inset , \begin_inset Formula $x=c$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=Y_{C,m}C_{m}\frac{1}{2}c^{2}\left(J_{0}(\alpha_{m}\frac{c}{c})^{2}+J_{1}(\alpha_{m}\frac{c}{c})^{2}\right)$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=Y_{C,m}C_{m}\frac{1}{2}c^{2}J_{0}(\alpha_{m})^{2}$ \end_inset \end_layout \begin_layout Plain Layout \lang english — OR: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{m}\rho}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})=Y_{C,m}C_{m}\frac{1}{2}c^{2}J_{0}(\alpha_{m})^{2} \] \end_inset \end_layout \begin_layout Plain Layout \lang english – Divide by bc: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{1}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{m}\rho}{\left[\rho\alpha_{m}^{2}-\rho^{-1}\alpha_{n}^{2}\right]}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})=Y_{C,m}C_{m}\frac{1}{2}\rho^{-1}J_{0}(\alpha_{m})^{2} \] \end_inset \end_layout \begin_layout Plain Layout \lang english - Deel teller en noemer in breuk door \begin_inset Formula $\rho$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{1}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{m}}{\alpha_{m}^{2}-\frac{\alpha_{n}^{2}}{\rho^{2}}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})=Y_{C,m}C_{m}\frac{1}{2}\rho^{-1}J_{0}(\alpha_{m})^{2} \] \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{1}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}T_{mn}B_{n}=Y_{C,m}\frac{1}{2}\rho^{-1}J_{0}(\alpha_{m})^{2}C_{m}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} T_{mn}=\frac{\alpha_{m}}{\alpha_{m}^{2}-\frac{\alpha_{n}^{2}}{\rho^{2}}}J_{0}\left(\alpha_{n}\right)J_{1}\left(\alpha_{m}\rho\right). \end{equation} \end_inset \end_layout \begin_layout Standard Setting \begin_inset Formula $p_{B}=p_{C}$ \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)r\mathrm{d}r=\int_{0}^{b}\left[p_{B}^{0}+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)\right]r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)r\mathrm{d}r=\frac{b^{2}}{2}p_{B}^{0}$ \end_inset \end_layout \begin_layout Plain Layout \lang english ———————————————– \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)r\mathrm{d}r=\int_{0}^{b}\left[p_{C}^{0}+\sum_{m=1}^{\infty}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)\right]r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)r\mathrm{d}r=\frac{b^{2}}{2}p_{C}^{0}+\sum_{m=1}^{\infty}\frac{bc}{\alpha_{m}}C_{m}J_{1}\left(\alpha_{m}\rho\right)$ \end_inset \end_layout \begin_layout Plain Layout \lang english Such that \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \frac{b^{2}}{2}p_{B}^{0}=\frac{b^{2}}{2}p_{C}^{0}+\sum_{m=1}^{\infty}\frac{bc}{\alpha_{m}}C_{m}J_{1}\left(\alpha_{m}\rho\right) \] \end_inset \end_layout \begin_layout Plain Layout \lang english Divide by \begin_inset Formula $\frac{b^{2}}{2}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ p_{B}^{0}=p_{C}^{0}+2\sum_{m=1}^{\infty}\frac{J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}C_{m} \] \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} p_{B}^{0}=p_{C}^{0}+2\sum_{m=1}^{\infty}\frac{J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}C_{m} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\int_{0}^{b}\left[p_{B}^{0}J_{0}\left(\alpha_{p}\frac{r}{b}\right)r+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\right]\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{n=1}^{\infty}B_{n}\int_{0}^{b}J_{0}\left(\alpha_{n}\frac{r}{b}\right)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english Setting \begin_inset Formula $p=n$ \end_inset en \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \int J_{0}(C_{1}x)^{2}x\mathrm{d}x=\frac{1}{2}x^{2}\left(J_{0}(C_{1}x)^{2}+J_{1}(C_{1}x)^{2}\right) \] \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $C_{1}=\frac{\alpha_{n}}{b}$ \end_inset en \begin_inset Formula $x=b$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=B_{n}\frac{1}{2}b^{2}J_{0}(\alpha_{n})^{2}$ \end_inset \end_layout \begin_layout Plain Layout \lang english – Zelfde voor integraal voor \begin_inset Formula $p_{C}$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\int_{0}^{b}\left[P_{C}^{0}+\sum_{m=1}^{\infty}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)\right]J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{m=1}^{\infty}C_{m}\int_{0}^{b}J_{0}\left(\alpha_{m}\frac{r}{c}\right)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english Gebruik de regel: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \int J_{0}(C_{1}x)J_{0}(C_{2}x)x\mathrm{d}x=x\frac{C_{1}J_{1}(C_{1}x)J_{0}(C_{2}x)-C_{2}J_{0}\left(C_{1}x\right)J_{1}(C_{2}x)}{C_{1}^{2}-C_{2}^{2}} \] \end_inset \end_layout \begin_layout Plain Layout \lang english Waarbij: \begin_inset Formula $C_{1}=\frac{\alpha_{m}}{c}$ \end_inset , \begin_inset Formula $C_{2}=\frac{\alpha_{p}}{b}$ \end_inset ; \begin_inset Formula $x=b$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{m=1}^{\infty}C_{m}b\frac{\frac{\alpha_{m}}{c}J_{1}(\frac{\alpha_{m}}{c}b)J_{0}(\frac{\alpha_{p}}{b}b)-\frac{\alpha_{p}}{b}J_{0}\left(\frac{\alpha_{m}}{c}x\right)J_{1}(\frac{\alpha_{p}}{b}b)}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{p}}{b}\right)^{2}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{m=1}^{\infty}C_{m}\frac{\rho\alpha_{m}}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{p}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{p})$ \end_inset \end_layout \begin_layout Plain Layout \lang english Zet \begin_inset Formula $p=n$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{m=1}^{\infty}C_{m}\frac{\rho\alpha_{m}}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})$ \end_inset \end_layout \begin_layout Plain Layout \lang english Zodat: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ B_{n}\frac{1}{2}b^{2}J_{0}(\alpha_{n})^{2}=\sum_{m=1}^{\infty}C_{m}\frac{\rho\alpha_{m}}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n}) \] \end_inset \end_layout \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula \[ B_{n}\frac{1}{2}b^{2}J_{0}(\alpha_{n})^{2}=\sum_{m=1}^{\infty}C_{m}\frac{\rho\alpha_{m}}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n}) \] \end_inset \end_layout \begin_layout Plain Layout \lang english Deel linker en rechterzijde door \begin_inset Formula $\frac{1}{2}b^{2}$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ B_{n}J_{0}(\alpha_{n})^{2}=2\sum_{m=1}^{\infty}\rho^{-1}C_{m}\frac{\alpha_{m}}{\alpha_{m}^{2}-\frac{\alpha_{n}^{2}}{\rho^{2}}}J_{0}(\alpha_{n})J_{1}(\alpha_{m}\rho) \] \end_inset \end_layout \begin_layout Plain Layout \lang english Oftewel: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ B_{n}J_{0}(\alpha_{n})^{2}=\frac{2}{\rho}\sum_{m=1}^{\infty}T_{mn}C_{m} \] \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} B_{n}J_{0}(\alpha_{n})^{2}=\frac{2}{\rho}\sum_{m=1}^{\infty}T_{mn}C_{m} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $B_{n}=\frac{2}{\rho J_{0}(\alpha_{n})^{2}}\sum_{q=1}^{\infty}T_{qn}C_{q}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{1}{\alpha_{m}}+\sum_{n=1}^{\infty}Y_{B,n}T_{mn}\frac{2}{\rho J_{0}(\alpha_{n})^{2}}\sum_{q=1}^{\infty}T_{qn}C_{q}=Y_{C,m}\frac{1}{2\rho}J_{0}(\alpha_{m})^{2}C_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\sum_{n=1}^{\infty}\frac{2Y_{B,n}}{J_{0}(\alpha_{n})^{2}}T_{mn}\sum_{q=1}^{\infty}T_{qn}C_{q}-\frac{1}{2}Y_{C,m}J_{0}(\alpha_{m})^{2}C_{m}=-u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{m}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english —————Setting ——- \begin_inset Formula $C_{m}=ikbu_{B}^{0}z_{0}D_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\sum_{n=1}^{\infty}\frac{2Y_{B,n}}{J_{0}(\alpha_{n})^{2}}ikbu_{B}^{0}z_{0}T_{mn}\sum_{q=1}^{\infty}T_{qn}D_{q}-\frac{1}{2}Y_{C,m}ikbD_{m}u_{B}^{0}z_{0}J_{0}(\alpha_{m})^{2}D_{m}=-u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{q}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english Using: \begin_inset Formula $z_{0}Y_{B,n}=\frac{i\beta_{n}}{k}$ \end_inset and \begin_inset Formula $z_{0}Y_{C,m}=-\frac{i\gamma_{m}}{k}$ \end_inset and , \begin_inset Formula $\gamma_{m}=\sqrt{\left(\frac{\alpha_{m}}{c}\right)^{2}-k^{2}}$ \end_inset and \begin_inset Formula $\beta_{n}=\sqrt{\left(\frac{\alpha_{n}}{b}\right)^{2}-k^{2}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\sum_{n=1}^{\infty}\frac{2}{J_{0}(\alpha_{n})^{2}}\sqrt{\left(\frac{\alpha_{n}}{bk}\right)^{2}-1}kbT_{mn}\sum_{q=1}^{\infty}T_{qn}D_{q}+\sqrt{\left(\frac{\alpha_{m}}{kc}\right)^{2}-1}\frac{1}{2}kbD_{m}J_{0}(\alpha_{m})^{2}D_{m}=+J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{m}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english When \begin_inset Formula $kc\sim kb\ll1$ \end_inset , this can be rewritten to: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\sum_{n=1}^{\infty}\frac{2\alpha_{n}}{J_{0}(\alpha_{n})^{2}}T_{mn}\sum_{q=1}^{\infty}T_{qn}D_{q}+\frac{\alpha_{m}\rho}{2}D_{m}J_{0}(\alpha_{m})^{2}D_{m}=J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{m}}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \sum_{n=1}^{\infty}\frac{2\alpha_{n}}{J_{0}(\alpha_{n})^{2}}T_{mn}\sum_{q=1}^{\infty}T_{qn}D_{q}+\frac{1}{2}\rho\alpha_{m}J_{0}(\alpha_{m})^{2}D_{m}=J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{m}},\label{eq:D_meq} \end{equation} \end_inset where \begin_inset Formula \begin{equation} D_{m}=\frac{C_{m}}{ikbu_{B}^{0}z_{0}} \end{equation} \end_inset Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:D_meq" \end_inset is a set of infinite equations in terms of an infinite number of unknowns for \begin_inset Formula $D_{m}$ \end_inset . In matrix algebra for a finite set, this can be written as \begin_inset Formula \begin{equation} (\boldsymbol{M}_{1}\cdot\boldsymbol{M}_{2}+\boldsymbol{K})\cdot\boldsymbol{D}=\boldsymbol{R} \end{equation} \end_inset where \begin_inset Formula \begin{align} M_{1,ij} & =\frac{2\alpha_{j}}{J_{0}(\alpha_{j})^{2}}T_{ij}\\ M_{2,ij} & =T_{ji}\\ K_{ij} & =\frac{1}{2}\rho\alpha_{j}J_{0}(\alpha_{j})^{2} & ;\quad i=j\\ K_{ij} & =0 & ;\quad i\neq j\\ R_{i} & =J_{1}(\alpha_{i}\rho)\frac{\rho}{\alpha_{q}} \end{align} \end_inset \end_layout \begin_layout Standard Finally, the added acoustic mass, \begin_inset Formula \begin{equation} p_{C}^{0}=p_{B}^{0}-i\omega M_{A}U_{B}, \end{equation} \end_inset can be computed as \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $p_{B}^{0}=p_{C}^{0}+\sum_{m=1}^{\infty}\frac{2J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}C_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $p_{B}^{0}=p_{C}^{0}+ikbu_{B}^{0}z_{0}\sum_{m=1}^{\infty}\frac{2J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}D_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english Filling in: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $p_{C}^{0}=p_{B}^{0}-i\omega M_{A}U_{B}$ \end_inset \end_layout \begin_layout Plain Layout \lang english Then: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $p_{B}^{0}=p_{C}^{0}+i\omega M_{A}U_{B}$ \end_inset \end_layout \begin_layout Plain Layout \lang english or: \begin_inset Formula $i\omega M_{A}U_{B}=ikbu_{B}^{0}z_{0}\sum_{m=1}^{\infty}\frac{2J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}D_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english And since: \begin_inset Formula $M_{A}=\chi(\alpha)\frac{8\rho_{0}}{3\pi^{2}a_{L}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\chi(\alpha)=\frac{3\pi}{4}\sum_{m=1}^{\infty}\frac{J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}D_{m}$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \rho_{0}\sum_{m=1}^{\infty}\frac{2}{\pi b}\frac{J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}D_{m} \end{equation} \end_inset \end_layout \begin_layout Standard For a given velocity \begin_inset Formula $u_{C,0}$ \end_inset the velocity profile at \begin_inset Formula $z=0$ \end_inset is \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $u_{C}(z)=u_{C}^{0}(z)+\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)e^{-\gamma_{m}z}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $u_{C}=u_{C}^{0}+u_{B}^{0}\sum_{m=1}^{\infty}\gamma_{m}bD_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} u_{C}=u_{C}^{0}+bu_{B}^{0}\sum_{m=1}^{\infty}\gamma_{m}D_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right) \end{equation} \end_inset \end_layout \end_body \end_document