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Chapter 1

Overview of LRFTubes

1.1 Introduction

Welcome to the documentation of LRFTubes. LRFTubes is a numerical code to solve one-dimensional
acoustic duct systems using the transfer matrix method. Segments can be connected to generate simple one-
dimensional acoustic systems to model acoustic propagation problems in ducts in the frequency domain.
Viscothermal dissipation mechanisms are taken into account such that the damping eects can be modeled
accurately, below the cut-on frequency of the duct. For more information regarding themodels and the theory
behind the models, the reader is referred to the work of [4], [5] and [15].
This documentation serves as a reference for the implemented models. For examples on how to use the
code, please take a look at the example models as worked out in the IPython Notebooks. For installation
instructions, please refer the the README in the main repository.
This document is very brief on the theory and it is assumed that the reader has some knowledge on the basics
of acoustics in general and viscothermal acoustics as well. If you are not falling in this category, I would
please refer you rst to the book of Swift [13]. A more detailed introduction to the notation used in this
documentation can be found in the PhD thesis of de Jong [3].
Besides that, if you nd the work interesting, but you are not sure how to apply it, please contact ASCEE for
more information.

1.2 License and disclaimer

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and
this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other
materials related to such distribution and use acknowledge that the software was developed by the ASCEE.
The name of the ASCEE may not be used to endorse or promote products derived from this software without
specic prior written permission.

THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING,WITHOUT LIMITATION, THE IMPLIEDWARRANTIES OFMERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

1.3 Features

Currently the LRFTubescode provides acoustic models for the following physical entities:

• Prismatic ducts with circular cross section,
• Prismatic ducts with triangular cross section,
• Prismatic ducts with parallel plate cross section,
• Prismatic ducts with square cross section,
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• Acoustic compliance volumes
• Discontinuity correction
• End correction for a baed piston
• Lumped series impedance

These segments can be connected to form one-dimensional acoustic systems to model wave propagation
below the cut-on frequency of higher order modes. For a circular cross section, the cut-on frequency is [4]:

𝑓𝑐 ≈ 𝑐0
3.4𝑟 , (1.1)

where 𝑟 is the tube radius and 𝑐𝑜 is the speed of sound. Above the cut-on frequency, besides evanescent
waves, there are also propagating waves with a non-constant pressure distribution along the cross section of
the duct.

1.3.1 Limitations and future features

The current version of has some limitations that will be resolved in a future release. These are:

1.3.1.1 Ducts with (turbulent) ow

For thermoacoustic and HVAC (Heating, ventilation and Air Conditioning) duct modeling it is imperative that
mean ows can be taken into account. An acoustic wave superimposed on a mean ow results in asymmetric
wave propagation. More specically, the phase velocity is higher in the direction of the mean ow, and slower
in the opposite direction. In a future release, we will provide models for ducts including a mean ow.

1.3.1.2 Porous acoustic absorbers

To model absorption of sound, a one-dimensional porous material model should be implemented. This work
has been postponed to a later stage.
Prismatic and spherical ducts lled with porous material are dened in dbmduct.py. These use the Delaney-
Bazley-Miki model.

1.4 Overview of this documentation

The next chapter of this documentation will describe the basic framework of the LRFTubes code: the
transfer matrix method. After that, in Chapter 4, an overview of the provided acoustic models is given, with
which acoustic networks can be built. For each of the segments, the resulting transfer matrix model is derived.
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Chapter 2

Material properties

2.1 Air

Nonlinearity parameter:

2.2 Exhaust gas

2.2.1 Composition

Denitions:

• 𝜔𝑖 mass fraction of species 𝑖
• 𝑥𝑖 molar / volume fraction of species 𝑖 (assuming ideal gas behavior)
• 𝑀 average molar mass of (exhaust gas) mixture
• 𝑀𝑖 molar mass of species 𝑖

The following equations hold in a mixture: ∑︁
𝑖

𝜔𝑖 = 1 (2.1)∑︁
𝑖

𝑥𝑖 = 1 (2.2)

𝑀 =
∑︁

𝑖
𝑥𝑖𝑀𝑖 (2.3)

We can convert mass fractions to mole fractions with the following rule:

𝜔𝑖 = 𝑥𝑖
𝑀𝑖

𝑀
⇐⇒ 𝑥𝑖 = 𝜔𝑖

𝑀

𝑀𝑖

(2.4)

Henceforth, what is often used, is to compute the average molar mass given only the mass fractions:

𝑀 =
1∑
𝑖
𝜔𝑖

𝑀𝑖

(2.5)

2.2.2 Ideal gas mixtures

For an ideal gas, the components of a gas mixture can be represented by their “partial pressure”, which is
the total pressure times the volume fraction of the component in the mixture. For an ideal gas, the volume
fraction equals to mole fraction. Hence:

𝑉𝑖

𝑉

ideal gas
= 𝑥𝑖 =

𝑝𝑖

𝑅𝑢𝑇
(2.6)

The mass fraction can be computed from the mole fraction.

9



Substance 𝑀 𝑇𝑐 𝐺 𝐶𝑟

Carbon dioxide 44.01·10−3 kg/mol 304 K 44.6 0.766

Oxygen 32.00·10−3 kg/mol 154 K 32.8 0.712

Nitrogen 28.02·10−3 kg/mol 126 K 24.6 0.881

Water vapor 18.02·10−3 kg/mol 647 K 52.2 1.018

Table 2.1 – Critical values and constants of common diatomic gases

2.2.3 Transport properties

2.2.3.1 Dynamic viscosity of pure gases

Here we assume the dynamic viscosity of a pure substance can be modeled using Sutherland’s equation:

` = `𝑐

(
𝑇0 +𝐶
𝑇 +𝐶

) (
𝑇

𝑇0

)3/2
, (2.7)

where the subscript 𝑐 denotes the value at its “critical point”. In convenient form we solve:

` = `𝑐`𝑟 , (2.8)

where `𝑐 is the critical viscosity and `𝑟 is the “reduced viscosity dened as `/`𝑐 . For `𝑐 we have the reduced
form of Sutherland’s equation:

`𝑐 =
1 +𝐶𝑟

𝑇𝑟 +𝐶𝑟

𝑇
3/2
𝑟 (2.9)

The value for `𝑐 can be calculated as:
`𝑐 = 3.5·10−6𝐺 (2.10)

Values for 𝑇𝑟 , 𝐶𝑟 and 𝐺 are listed in Table 2.1 [8].

2.2.3.2 Dynamic viscosity of a gas mixture

The dynamic viscosity of a gas mixture can be derived from the dynamic viscosities of pure gases as [1, p.
27]:

`mix =
𝑁−1∑︁
𝛼=0

𝑥𝛼`𝛼∑𝑁−1
𝛽=0 𝛷𝛼𝛽𝑥𝛽

, (2.11)

where `𝛼 is the dynamic viscosity of pure chemical species 𝛼 and 𝑥𝛼denotes its mole fraction in the mixture.
𝛷𝛼𝛽 is dened as:

𝛷𝛼𝛽 =
1√
8

(
1 + 𝑀𝛼

𝑀𝛽

)−1/2 [
1 +

(
`𝛼

`𝛽

)1/2 (𝑀𝛽

𝑀𝛼

)1/4]2
, (2.12)

where𝑀𝛼 is the molar mass of species 𝛼 . The denominator of Eq. 2.11 can eciently be solved by noting that
𝑑𝛼 =

∑𝑁−1
𝛽=0 𝛷𝛼𝛽𝑥𝛽 is a matrix-vector product, which can be written as 𝒅 = 𝜱 · 𝒙 .

2.2.3.3 Thermal conductivity of a gas mixture

The thermal conductivity of a gas mixture can be derived from the thermal conductivities of pure gases as [1,
p. 276]:

𝑘𝑚𝑖𝑥 =

𝑁−1∑︁
𝛼=0

𝑥𝛼𝑘𝛼∑𝑁−1
𝛽=0 𝛷𝛼𝛽𝑥𝛽

(2.13)

where𝑘𝛼 is the thermal conductivity of pure chemical species 𝛼 and 𝑥𝛼denotes its mole fraction in themixture
and𝛷𝛼𝛽 is identical to that appearing in the viscosity equation, see 2.12.
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Mass fraction Wood1 Dutch Natural gas

Carbon 50 %

Oxygen 42 % 0 %

Hydrogen 6 %

Nitrogen 0 %

Table 2.2 – Mixture mass composition of fuels

2.2.4 Combustion

To compute the gas constant, rst the mixture components of the exhaust gas need to be computed. We
assume that the oxidizer is air with 79% vol of nitrogen (molecules) and 21% oxygen molecules. The tiny part
of argon and other components is ignored. Then, the gross formula for combustion is:

𝑥 𝑓 ,𝐶𝐶 + 𝑥 𝑓 ,𝑂𝑂 + 𝑥𝐻,𝑓𝐻 + 𝑥 𝑓 ,𝑁𝑁︸                                    ︷︷                                    ︸
fuel

+𝑦ox (0.79𝑁2 + 0.21𝑂2)︸                      ︷︷                      ︸
oxidizer

→ 𝑦𝑔,water𝐻2𝑂 + 𝑦𝑔,𝐶𝑂2𝐶𝑂2 + 𝑦𝑔,𝑁2𝑁2︸                                       ︷︷                                       ︸
exhaust gas

. (2.14)

Above reaction formula can be read as: “take 𝑥 𝑓 ,𝐶 moles of carbon in the fuel, add𝑦ox moles of air, and it should
result in 𝑦𝑔,𝐶𝑂2 moles of 𝐶𝑂2” And so on for the other elements. The mole fractions in the fuel composition
can be derived from its mass fractions, upon utilizing Eqs. 2.4 and 2.5. From Eq. 2.14, the following system of
equations can be created:

𝑥 𝑓 ,𝐶

𝑥 𝑓 ,𝑂

𝑥 𝑓 ,𝐻

𝑥 𝑓 ,𝑁


+


0 0 −1 0

2 × 0.21 −1 −2 0
0 −2 0 0

2 × 0.79 0 0 −2




𝑦ox

𝑦𝑔,water

𝑦𝑔,𝐶𝑂2

𝑦𝑔,𝑁2


=


0
0
0
0


(2.15)

Solving this results in:

𝑦𝑔,𝐶𝑂2 = 𝑥 𝑓 ,𝐶 (2.16)

𝑦𝑔,water =
1
2𝑥 𝑓 ,𝐻 (2.17)

𝑦ox =
1
2𝑥 𝑓 ,𝐻 + 2𝑥 𝑓 ,𝐶 − 𝑥 𝑓 ,𝑂

2 × 0.21 (2.18)

𝑦𝑔,𝑁2 =0.79𝑦ox +
1
2𝑥 𝑓 ,𝑁 (2.19)

Note that the mole fractions are unnormalized (that is why we use symbol 𝑦, not 𝑥 ): they denote the number
of moles required to burn 1 mole of fuel. To compute the mole fractions in the exhaust gas,

𝑥𝑔,water =
𝑦1

𝑦1 + 𝑦2 + 𝑦3 (2.20)

Table 2.2 gives an overview of the composition of typical combustion fuels. Once the molar fractions of the
exhaust gas are known, the average molar mass can be computed using Eq. 2.3. Then, the specic gas constant
can be computed according to:

𝑅𝑠 =
𝑅𝑢

𝑀
, (2.21)

where 𝑅𝑢 is the universal gas constant.

1https://www.engineeringtoolbox.com/co2-emission-fuels-d_1085.html
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Name Basotect TG2

Description Melamine resin foam (re retardant)

Density [kg·m−3 3

Flow resistivity [Pa·s·m−1] 8.5·103, source: [7], Table 2 average value.

Table 2.3 – Resistivity values are given for room temperature

2.2.5 Specic heat ratio

The specic heat is build-up according to mass percentages of the ue gas. Carbon dioxide has a 𝑐𝑝 of 840
J/kg/K, water vapor of 1930:

𝑐𝑝 =
∑︁

𝑖
𝜔𝑖𝑐𝑝,𝑖 . (2.22)

2.3 Sound absorbing solid materials

High porosity soft materials can be modeled adequately with the Delaney-Bazley-Miki model. The model has
a single input, namely the static ow resistivity. Table
Conversion

2A.k.a.Flamex Basic (akoestiekwinkel.nl)
3https://www.forman.co.nz/media/emizen_banner/b/a/basf_basotect_datasheet.pdf
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Chapter 3

The transfer matrix method

3.1 Introduction

Each part of an acoustic system in LRFTubes is modeled using a so-called transfer matrix. A transfer matrix
maps the state quantities on one side of the segment (node) to the other side of the segment (node).
For one-dimensional wave propagation, analytical solutions for the velocity, temperature and density eld in
the transverse direction can be found. The state variables in frequency domain satisfy a system of rst order
ordinary dierential equations. Once the solution is known on one end of a segment, the solution on the
other end can be deduced. The transfer matrix couples the state variables 𝝓 on one end of a segment to the
other end, in frequency domain:

𝝓𝑅 (𝜔) = 𝑻 (𝜔)𝝓𝐿 (𝜔) + s(𝜔), (3.1)

where 𝐿 and 𝑅 denote the left and right side, respectively, 𝑻 denotes the transfer matrix and 𝒔 is a source term.
In the code and in this documentation 𝑒+𝑖𝜔𝑡 convention is used. A common choice of state variables is such
that their product has the unit of power. For all systems in this code, the state variables satisfy this property.
For example in an acoustic segment, the power is the product of acoustic pressure 𝑝 (𝜔) and volume ow
𝑈 (𝜔). For complex phasors and, the acoustic power ow can then be computed as:

𝐸 =
1
2< [𝑝𝑈 ∗] , (3.2)

where <[•] denotes the real part of •, and * denotes the complex conjugation.

3.2 Example transfer matrix of an acoustic duct

This section will provide the derivation of the transfer matrix of a simple acoustic duct. Starting with the
isentropic acoustic continuity and momentum equation :

1
𝑐20

𝜕𝑝

𝜕𝑡
+ 𝜌0∇ · �̂� = 0, (3.3)

𝜌0
𝜕�̂�

𝜕𝑡
+ ∇𝑝 = 0. (3.4)

The next step is to transform these equations to frequency domain and assuming only wave propagation in
the 𝑥−direction, integrating over the cross section we nd:

𝑖𝜔

𝑐20
𝑝 + 𝜌0

𝑆 𝑓

d𝑈
d𝑥 = 0, (3.5)

𝜌0𝑖𝜔𝑈 + 𝑆 𝑓
d𝑝
d𝑥 = 0, (3.6)
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where 𝑈 denotes the acoustic volume ow in m3 ·s−1. Eqs. (3.5-3.6) is a coupled set of ordinary dierential
equations, which can be solved for the acoustic pressure to nd

𝑝 (𝑥) = 𝐴 exp (−𝑖𝑘𝑥) + 𝐵 exp (𝑖𝑘𝑥) , (3.7)

where 𝐴 and 𝐵 are constants, to be determined from the boundary conditions. Setting 𝑝 = 𝑝𝐿 , and𝑈 = 𝑈𝐿 at
𝑥 = 0, we can solve for the acoustic pressure, upon using Eq. 3.6 as:

𝑝 (𝑥) = 𝑝𝐿 cos (𝑘𝑥) − 𝑖𝑍0 sin (𝑘𝑥)𝑈𝐿, (3.8)

and for the acoustic volume ow we nd:

𝑈 (𝑥) = 𝑈𝐿 cos (𝑘𝑥) − 𝑖

𝑍0
sin (𝑘𝑥) 𝑝𝐿 . (3.9)

Now, we have all ingredients to derive the transfer matrix of an acoustic duct. Setting 𝑝 (𝑥 = 𝐿) = 𝑝𝑅 , and
𝑈 (𝑥 = 𝐿) = 𝑈𝑅 , we nd the following two-port coupling between the pressure and the velocity from the left
side of the duct to the right side of the duct:{

𝑝𝑅

𝑈𝑅

}
=

[
cos (𝑘𝐿) −𝑖𝑍0 sin (𝑘𝐿)

−𝑖𝑍−1
0 sin (𝑘𝐿) cos (𝑘𝐿)

] {
𝑝𝐿

𝑈𝐿

}
. (3.10)

3.3 Setting up the system of equations

LRFTubeshas been set up to solve systems of acoustic segments such as this prismatic duct. The advan-
tage of the transfer matrix method is the ease with which mixed (impedance/pressure/velocity) boundary
conditions can be implemented.
In this section, the assembly of the global system of equations is explained. The state variables of each
segment are stacked in a column vector 𝝓sys, which has the size of 4𝑁segs, where 𝑁segs denotes the number
of segments in the system. The coupling equations between the nodes of each segment, are the transfer
matrices. Since the transfer matrices are 2 × 2, this lls only half of the required amount of equations. The
other half is lled with boundary conditions. Each segments transfer matrix can be regarded as the element
matrix, which all have a form like:

𝝓𝑅 = 𝑻 · 𝝓𝐿 + 𝒔, (3.11)

where 𝝓𝐿, 𝝓𝑅 are the state vectors on the left and right sides of the segment, respectively, 𝑻 is the transfer
matrix, and 𝒔 is a source term.
There are two kind of boundary conditions, called external and internal boundary conditions. External bound-
ary conditions apply where a prescribed condition is given, such as a prescribed pressure, voltage, volume
ow, current or acoustic/electric impedance. Internal boundary conditions are used to couple dierent seg-
ments at a connection point, which is recognized by a shared node number. At a connection point, the eort
variable is shared, which means that the pressure at the node is equal for each connected segment sharing
the node. The ow variable is conserved, so the sum of the volume ow out of all segments connected at the
node is 0.

Example: two ducts

This procedure of creating a system matrix is explained by an example where only two ducts are coupled.
A schematic of the situation is depicted in Figure 3.1. For the example situation, at the left node of segment
(1), an impedance boundary 𝑍𝐿 is prescribed. The right node of segment (1) is connected to the left node of
segment (2), and at the right side of segment (2), a volume ow boundary condition is prescribed of 𝑈𝑅 . The
corresponding system of equations for this case is
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Acoustic waves
Duct (segment) 1

Duct (segment) 2

Node 2Node 1Node 0

Z = ZL U = UR

Figure 3.1 – Example of two simple duct segments connected together.



T1 −I 0 0
0 0 T2 −I

0

[
1 0
0 1

] [
−1 0
0 −1

]
0[

1 𝑍𝐿

0 0

]
0 0

[
0 0
0 1

]




𝑝1𝐿

𝑈1𝐿

𝑝1𝑅

𝑈1𝑅

𝑝2𝐿

𝑈2𝐿

𝑝2𝑅

𝑈2𝑅


=



0
0
0
0
0
0
0
𝑈𝑅


, (3.12)

In this system matrix, 0 denotes a 2 × 2 sub matrix of zeros and I denotes a 2 × 2 identity sub matrix. T𝑖
is the transfer matrix of the 𝑖-th segment. The solution can be obtained by Gaussian elimination, for which
in LRFTubes the numpy.linalg.solve() solver is used. Once the solution on the nodes is known,
the solution in each segment can be computed as a post processing step. LRFTubes provides some post
processing routines to aid in visualization of the acoustic eld inside a non-lumped segment, such as an
acoustic duct.

3.4 Input impedance, output impedance

The acoustic input impedance 𝑍in ≡ 𝑝𝐿/𝑈𝐿 on the left side of a segment is dened as the impedance a con-
necting segment “feels” for a certain boundary condition on the right side. 1 There are two special load cases
for the segment, either on the right side, the circuit is open, resulting in 𝑈𝑅 = 0, or the circuit is shorted,
which results in 𝑝𝑅 = 0. For the open circuit, the input impedance can be computed from the transfer matrix
as:

𝑍in,open = −𝑇22
𝑇21

(3.13)

𝑍in,short = −𝑇12
𝑇11

(3.14)

For a passive component (and passive load on the right side), the real part of the input impedance should be
positive:

< [𝑍in] ≥ 0. (3.15)

The acoustic output impedance 𝑍out ≡ 𝑝𝑅/𝑈𝑅 on the right side of a segment is dened as the impedance a
connecting segment “feels” for a certain boundary condition on the left side.

𝑍out,open =
𝑇11
𝑇21

(3.16)

𝑍out,short =
𝑇12
𝑇22

(3.17)

1Note that the denitions of open and closed below are relating to electrical circuits, not open or closed in the acoustical sense. I.e.
an open impedance corresponds to a hard acoustic wall (which is acoustically closed).
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For passive segments, the real part of the output impedance should be negative:

< [𝑍out] ≤ 0. (3.18)
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Chapter 4

Provided acoustic models

4.1 Introduction

This chapter provides a concise overview of the provided acoustic models implemented in LRFTubes.

4.2 Prismatic duct

A prismatic duct is used to model one-dimensional acoustic wave propagation. The prismatic duct is imple-
mented in LRFTubes in the PrsDuct class. Figure 4.1 shows this segment schematically. In the thermal
boundary layer, heat and momentum diuse to the wall. The thermal boundary layer can be a small layer
w.r.t. to the transverse characteristic length scale of the tube, or can fully occupy the tube. In the latter case,
the solution converges to the classic laminar Poisseuille ow solution. The basic assumptions behind this
model are

• Prismatic cross sectional area.
• 𝐿 � 𝑟ℎ , (tube is long compared to its transverse length scale).
• Radius is much smaller than the wave length.
• Wave length is much larger than viscous penetration depth.
• End eects and entrance eects are negligible.

For a formal derivation of the model for prismatic cylindrical tubes, the reader is referred to the work of
Tijdeman [14] and Nijhof [9]. For a somewhat more pragmatic derivation, we would like to refer to the work
of Swift [13, 12] and Rott [11].

d𝑝
d𝑥 =

𝜔𝜌0
𝑖 (1 − 𝑓a ) 𝑆 𝑓

𝑈 , (4.1)

d𝑈
d𝑥 =

𝑘

𝑖𝑍0

(
1 + (𝛾−1) 𝑓^

1+Y𝑠

)
𝑝, (4.2)

Viscothermal boundary layer

Transverse velocity profile

δ

Acoustic wavespL, UL

x

L

Sf pR, UR

Figure 4.1 – Geometry of the prismatic duct
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where 𝑆 𝑓 is the cross-sectional area lled with uid, 𝑘 is the inviscid wave number, and 𝑍0 the inviscid char-
acteristic impedance of a tube (𝑍0 = 𝑧0/𝑆 𝑓 ). 𝑓a and 𝑓^ are the viscous and thermal Rott functions, respectively
[11]. They model the viscous and thermal eects with the wall. For circular tubes, the 𝑓 ’s are dened as [13,
p. 88]:

𝑓𝑗,circ =
𝐽1
[
(𝑖 − 1) 2𝑟ℎ

𝛿 𝑗

]
(𝑖 − 1) 𝑟ℎ

𝛿
𝐽0
[
(𝑖 − 1) 2𝑟ℎ

𝛿 𝑗

] , (4.3)

where 𝛿 𝑗 = 𝛿a for 𝑓a,circ and 𝛿 𝑗 = 𝛿^ for 𝑓^,circ. 𝐽𝛼 denotes the cylindrical Bessel function of the rst kind and
order 𝛼 . 𝑟ℎ is the hydraulic radius, dened as the ratio of the cross sectional area to the “wetted perimeter”:

𝑟ℎ = 𝑆 𝑓 /𝛱. (4.4)

Note that for a circular tube with diameter𝐷 , 𝑟ℎ = 𝐷/4. The parameter 𝜖𝑠 in Eq. 4.2 is the ideal solid correction
factor, which corrects for solids that have a nite heat capacity. This parameter is dependent on the thermal
properties and the geometry of the solid. An example of 𝜖𝑠 is derived in Section A.1. For the case of an
thermally ideal solid, 𝜖𝑠 can be set to 0.

4.2.1 Other cross-sectional geometries

4.2.1.1 Rectangular duct

Analytical functions exist for prismatic geometries, such as parallel plates, rectangular holes, and even trian-
gular holes. For parallel plates with sides 2𝑦0 × 2𝑧0, the Rott function reads:

𝑓 = 1 − 64
𝜋4

∞∑︁
𝑛=1

∞∑︁
𝑚=1

1
(2𝑚 − 1)2

1
(2𝑛 − 1)2𝐶𝑚𝑛

, (4.5)

where
𝐶𝑚𝑛 = 1 − 𝑖𝜋2𝛿2

8𝑦20𝑧20

((2𝑚 − 1)2 𝑧20 + (2𝑛 − 1)2 𝑦20
)
. (4.6)

The hydraulic radius is related to 𝑦0 and 𝑧0 as:

𝑟ℎ =
𝑦0𝑧0
𝑦0 + 𝑧0 (4.7)

Dening the aspect ratio asA = 𝑧0/𝑦0, a useful equation is to derive 𝑦0 and 𝑧0 from 𝑟ℎ andA:

𝑦0 = 𝑟ℎ
(1 +A)
A

(4.8)

𝑧0 = 𝑟ℎ (1 +A) (4.9)

4.2.1.2 Annular ring

The dierential equation that is required to be solved

𝑖`0
𝜔𝜌0

∇2
⊥ℎa + ℎa = 0, ℎa |wall = 0 (4.10)

For an annular duct the Rott function reads:

ℎa =

(
𝐽0
(
𝑟0 (1−𝑖)

𝛿a

)
− 𝐽0

(
𝑟1 (1−𝑖)

𝛿a

))
𝑌0

(
𝑟 (1−𝑖)
𝛿a

)
+
(
𝑌0

(
𝑟1 (1−𝑖)

𝛿a

)
− 𝑌0

(
𝑟0 (1−𝑖)

𝛿a

))
𝐽0
(
𝑟 (1−𝑖)
𝛿a

)
𝐽0
(
𝑟0 (1−𝑖)

𝛿a

)
𝑌0

(
𝑟1 (1−𝑖)

𝛿a

)
− 𝐽0

(
𝑟1 (1−𝑖)

𝛿a

)
𝑌0

(
𝑟0 (1−𝑖)

𝛿a

)

18



Where

𝛼0 =
𝑟0 (1 − 𝑖)

𝛿𝑖

𝛼1 =
𝑟1 (1 − 𝑖)

𝛿𝑖

And:

𝐶1 =
𝑌0 (𝛼1) − 𝑌0 (𝛼0)

𝐽0 (𝛼0) 𝑌0 (𝛼1) − 𝐽0 (𝛼1) 𝑌0 (𝛼0) (4.11)

𝐶2 =
𝐽0 (𝛼0) − 𝐽0 (𝛼1)

𝐽0 (𝛼0) 𝑌0 (𝛼1) − 𝐽0 (𝛼1) 𝑌0 (𝛼0) (4.12)

𝑓𝑖 = 𝛿𝑖 (1 + 𝑖)

{
𝐻

(1)
0 (𝛼0) − 𝐻 (1)

0 (𝛼1)
} [
𝑟0𝐻

(2)
−1 (𝛼0) − 𝑟1𝐻 (2)

−1 (𝛼1)
]
+
{
𝐻

(2)
0 (𝛼0) − 𝐻 (2)

0 (𝛼1)
} [
𝑟1𝐻

(1)
−1 (𝛼1) − 𝑟0𝐻 (1)

−1 (𝛼0)
]

(
𝑟 21 − 𝑟 20

) [
𝐻

(1)
0 (𝛼0)𝐻 (2)

0 (𝛼1) − 𝐻 (1)
0 (𝛼1)𝐻 (2)

0 (𝛼0)
]

(4.13)

4.2.2 Transfer matrix

Upon solving for Eqs. 4.1-4.2, a transfer matrix can be derived which couples the pressure and volume ow
on the left side to the right side as:{

𝑝𝑅

𝑈𝑅

}
=

[
cos (𝛤𝐿) −𝑖𝑍𝑐 sin (𝛤𝐿)

−𝑖𝑍−1
𝑐 sin (𝛤𝐿) cos (𝛤𝐿)

] {
𝑝𝐿

𝑈𝐿

}
, (4.14)

where 𝑍𝑐 is the characteristic impedance of the duct, i.e. the impedance 𝑝/𝑈 of a plane (although damped)
propagating wave:

𝑍𝑐 =
𝑘𝑍0

(1 − 𝑓a ) 𝛤 . (4.15)

The parameter 𝛤 in Eqs. 4.14 and 4.15 is the viscothermal wave number, i.e. the wave number corrected for
viscothermal losses:

𝛤 =
𝜔

𝑐0

√√
1 + (𝛾−1) 𝑓^

1+𝜖𝑠
1 − 𝑓a . (4.16)

Due to the numerical implementation of the Bessel functions in many libraries, the 𝑓𝑗 function for cylindrical
ducts (Eq. 4.3) cannot be computed for high 𝑟ℎ/𝛿 by computing this ratio 𝐽1/𝐽0. The numerical result starts to
break down at 𝑟ℎ/𝛿 ∼ 100. To resolve this problem, the LRFTubes code applies a smooth transition from
the Bessel function ratio to the boundary layer limit solution for 𝑓 :

𝑓𝑗,bl =
(1 − 𝑖) 𝛿 𝑗

2𝑟ℎ
(4.17)

in the range of 100 < 𝑟ℎ/𝛿 ≤ 200.
Note that in the limit of 𝑟ℎ → ∞, or ^ and ` → 0, < [𝛤 ] → 𝑘 and < [𝑍𝑐 ] → 𝑍0 whereas = [𝛤 ] and = [𝑍𝑐 ]
→ 0. Hence in these limits the lossless wave equation is resolved from the result. This is not true in the limit
of 𝜔 → ∞, as in that limit it can be computed that < [𝛤 ] → 𝑘 , while the imaginary part

− = [𝛤 ] → √
𝜔

√︃
1
8

`

𝜌0

𝑐0𝑟ℎ

[
1 + (𝛾 − 1)√

Pr

]
. (4.18)

In other words the imaginary part of the wave number keeps growing, although with a smaller rate than real
part of the wave number. So the higher the frequency, the smaller the viscothermal damping per wavelength,
but the higher the viscothermal damping per meter of duct.
Figure 4.2 shows the imaginary part of the wave number as a function of the frequency. As visible, the
magnitude of the viscothermal damping grows monotonically with frequency.
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Figure 4.2 – Logarithmic plot of the negative of imaginary part of the viscothermal wave number (−= [𝛤 ]) , for a tube with a
diameter of 1 mm. In blue, the full 𝑓a and 𝑓^ of Eq. 4.16 and 4.3 is used. The orange curve corresponds to Eq. 4.18.

4.3 Duct with varying cross-sectional area

For ducts with variation in the cross-sectional area, an approximately valid ordinary dierential equation can
be derived, which is a viscothermal correction to Webster’s horn equation [10, p. 181]:

d2𝑝
d𝑥2 + 1

𝑆 𝑓

d𝑆 𝑓
d𝑥

d𝑝
d𝑥 + 𝛤 2𝑝 = 0 (4.19)

4.3.1 Exponential duct (horn)

𝑆 𝑓 = exp (𝛼𝑥) (4.20)

4.3.2 Conical ducts

For conical ducts, i.e. ducts with quadratic variation in the cross-sectional area (linear variation in the diam-
eter, or cross-sectional length scale),
such that for a conical tube the radius 𝑟 (𝑥) varies as:

𝑟 (𝑥) = 𝑟0 + [𝑥, (4.21)

where
[ =

𝑥

𝐿
(𝑟1 − 𝑟0) (4.22)

Filling in for 𝑆 𝑓 = 𝜋 (𝑟0 + [𝑥)2 yields
d2𝑝
d𝑥2 + 2[

𝑟0 + [𝑥
d𝑝
d𝑥 + 𝛤 2𝑝 = 0, (4.23)

for which the solution is:
𝑝 =

𝐶1 exp (−𝑖𝛤𝑥) +𝐶1 exp (−𝑖𝛤𝑥)
𝑟0 + [𝑥 (4.24)

Tcone =

[ 𝛤𝑟0 cos(𝛤𝐿)+[ sin(𝛤𝐿)
𝛤𝑟1

−𝑖𝑍𝑐,0 𝑘𝑟0 sin(𝛤𝐿)𝛤𝑟1
𝑖𝐿[2 cos(𝛤𝐿)

𝛤𝑍𝑐0𝑟 20
− 𝑖

𝑍𝑐0

(
𝑟1
𝑟0
+ [2

𝛤 2𝑟 20

)
sin (𝛤𝐿) 𝑟1

𝑟0
cos (𝛤𝐿) − [ sin(𝛤𝐿)

𝛤𝑟0

]
, (4.25)

where
𝑍𝑐,0 =

𝜔𝜌0
(1 − 𝑓a ) 𝑆 𝑓 ,0𝛤0

(4.26)
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4.4 Prismatic lined circular duct

The Fourier transformed wave equation in axisymmetric cylindrical coordinates can be written as:

𝜕2𝑝

𝜕𝑟 2
+ 1
𝑟

𝜕𝑝

𝜕𝑟
+ 𝜕2𝑝

𝜕𝑥2
+ 𝑘2𝑝 = 0, (4.27)

Using separation of variables:
𝑝 = 𝜌 (𝑟 )b (𝑥), (4.28)

this can be written as:
𝜌
′′

𝜌
+ 1
𝑟

𝜌 ′

𝜌
+ b

′′

b
+ 𝑘2 = 0 (4.29)

Solutions:

b = exp (−𝑖𝛼𝑥) , (4.30)
𝜌 = 𝐽0 (𝜖𝑟 ) , (4.31)

such that the solution for the pressure is:

𝑝 = 𝐽0 (𝜖𝑟 ) exp (𝛼𝑥) (4.32)

under the condition:
𝛼2 = 𝑘2 − 𝜖2. (4.33)

At 𝑟 = 𝑅 we have the boundary condition that 𝑍0Z𝑅𝑢 = 𝑝 . After lling in and using the rule 𝐽 ′0 (𝑥) = 𝐽−1 (𝑥):

𝜖𝑅
𝐽−1 (𝜖𝑅)
𝐽0 (𝜖𝑅) = −𝑖𝜐, (4.34)

where 𝜐 = 𝑘𝑅
Z𝑅
. This is the characteristic equation for 𝜖𝑅. Solutions for

𝜖 ≈ + 1
𝑅

√︄
96 + 36𝑖𝜐 ±

√
9216 + 2304𝑖𝜐 − 912𝜐2
12 + 𝑖𝜐 (4.35)

where 0 ≤ <[𝜖𝑅] ≤ 2 and 0 ≤ = [𝜖𝑅] ≤ 3 should be satised in order to guarantee precision, see Mechel, p.
630.

4.5 Prismatic duct with ow

• Assuming fully developed plug ow in a duct the linearized governing equations in frequency domain
read:

𝑖𝜔𝜌 + 𝜌0 d𝑢d𝑥 + 𝑢0 d𝜌d𝑥 = 0 (4.36)

𝑖𝜌0𝜔𝑢 + 𝜌0𝑢0 d𝑢d𝑥 + d𝑝
d𝑥 = 0 (4.37)

𝑝 = 𝑐20𝜌 (4.38)

• With subscript 0 are the mean ow variables. Eliminating 𝜌 :

1
𝑐20

(
𝑖𝜔𝑝 + 𝑢0 d𝑝d𝑥

)
+ 𝜌0 d𝑢d𝑥 = 0 (4.39)

𝜌0

(
𝑖𝜔𝑢 + 𝑢0 d𝑢d𝑥

)
+ d𝑝
d𝑥 = 0 (4.40)
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• Taking spatial derivative of momentum and subtracting the convective derivative of the continuity
equation from it yields the convective wave equation:(

𝑖𝜔 + 𝑢0 d
d𝑥

)2 1
𝑐20
𝑝 − d2𝑝

d2𝑥 = 0 (4.41)

For constant 𝑢0, we try solutions of the form:

𝑝 = 𝐴 exp (𝛼𝑥) , (4.42)

which yields the characteristic equation for 𝛼 :(
𝑀2 − 1

)︸    ︷︷    ︸
𝑎

𝛼2 + 2𝑀𝑘𝑖︸︷︷︸
𝑏

𝛼 −𝑘2︸︷︷︸
𝑐

= 0, (4.43)

where𝑀 denotes the Mach number 𝑢0/𝑐0. The solutions for 𝛼 are:

𝛼 = 𝑖
𝑀𝑘 ± 𝑘
1 −𝑀2 = ±𝑖𝑘 1

1 ∓𝑀 (4.44)

Written out:

𝑝 = 𝐴 exp
(
− 𝑖𝑘

1 +𝑀𝑥

)
+ 𝐵 exp

(
𝑖𝑘

1 −𝑀𝑥

)
, (4.45)

and the volume ow:

4.6 Cremers impedance

𝑘𝑅

Z
= 2.9803824 + 1.2796025𝑖 (4.46)

Or:
Z = 𝑘𝑅 (0.28 − 0.12𝑖) (4.47)

Attenuation reached when the liner impedance equals Cremer’s impedance is around 15 dB per unit of radius
maximum. It decreases with increasing frequency, when 𝑓 𝑅 ≈ 100.

4.6.1 Locally reacting lining with back-volume

Impedance of concentric liner, outer radius is 𝑅𝑜 , inner radius is 𝑅𝑖

Zback = 𝑖

𝐻
(1)
0 (𝑘𝑅𝑖 ) − 𝐻

(1)
1 (𝑘𝑅𝑜 )

𝐻
(2)
1 (𝑘𝑅𝑜 )

𝐻
(2)
0 (𝑘𝑅𝑖 )

𝐻
(1)
1 (𝑘𝑅𝑖 ) − 𝐻

(1)
1 (𝑘𝑅𝑜 )

𝐻
(2)
1 (𝑘𝑅𝑜 )

𝐻
(2)
1 (𝑘𝑅𝑖 )

(4.48)

Such that the total impedance is
Z = Zback + ZMPP (4.49)

4.7 Cavity silencer

-
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Figure 4.3 – Schematic of the compliance volume segment.

4.8 Compliance volume

Figure 4.3 gives a schematic of the compliance volume. A compliance volume is implemented in theLRFTubes
code in the Volume class. A compliance volume is a volume (tank) which is small compared to the wave-
length. Hence, we can assume that the acoustic pressure is constant throughout the volume 𝑉 . As thermal
relaxation still occurs, the model for this segment takes into account thermal relaxation due to temperature
oscillations. The basic assumptions behind the model are:

• The characteristic length scale of volume is small compared to the wavelength.
• The characteristic length scale of volume is large compared to thermal penetration depth.

The lower the frequency, the more the second assumption is violated, while the higher the frequency, the
more the rst assumption is violated. In practice, violating the rst assumption has a larger impact. For a
compliance, the following governing equations can be derived [15, p. 156]:

𝑝𝐿 = 𝑝 = 𝑝𝑅, (4.50)
𝑈𝑅 = 𝑈𝐿 − 𝑖𝜔𝐶𝑐𝑝, (4.51)

in which 𝐶𝑐 is the acoustic “capacitance”:

𝐶𝑐 =
1
𝑧0𝑐0

(
𝑉 + 1

2
(1 − 𝑖) (𝛾 − 1)

1 + 𝜖𝑠,0 𝑆𝛿^

)
(4.52)

where 𝑉 is the volume, 𝑆 the surface area of the volume in contact with a wall, and

𝜖𝑠,0 =

√︂
^𝜌0𝑐𝑝

^𝑠𝜌𝑠𝑐𝑠
. (4.53)

It should be noticed that in practice, a compliance volume often functions as the end of an acoustic system.
In that case, either𝑈𝐿 or𝑈𝑅 is 0.

4.9 Membrane

A membrane is a mechanical

4.10 Holes in plate

series_impedance.py/class CircHoleNeck(SeriesImpedance)
A plate with several holes can be modelled using CircHoleNeck. It behaves like an acoustic mass with losses
and can represent the neck of a Helmholtz resonator. Typical uses are to connect volumes to eachother or
volumes to ducts, to form Helmholtz resonators.
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Figure 4.4 – Schematic of a waveguide discontinuity.

Limitations are that hole-hole interaction is neglected and that the resistance term is an approximation for
holes with diameter >> length.
Impedance is given by the equation:

𝑍ℎ𝑜𝑙𝑒𝑠 =
1
𝑁ℎ

(𝑅𝑣 + 𝑖𝜔𝑀𝐴) (4.54)

in which 𝑁ℎ is the number of holes, 𝑅𝑣 the acoustic resistance as described in equation 7.40, 𝜔 the angular
frequency and𝑚𝑎 the acoustic mass as described in equation 4.57, except without Karal’s discontinuity factor.

4.11 End corrections and discontinuities

For discontinuities in the cross section of a waveguide, and the case of inviscid adiabatic wave propagation,
an exact expression is available for the added acoustic mass [6]. Figure 4.4 gives a schematic of the situation.
The model is implemented in the Discontinuity class in the LRFTubes code. The assumptions behind
the model are:

• Both tubes on either side of the discontinuity are cylindrical. The tubes are co-axially connected.
• The wavelength is larger than transverse characteristic length scale.
• Other discontinuities are far away from the current one.
• Inviscid and adiabatic wave propagation (Helmholtz equation).

The ratio of tube radii 𝑎𝐿/𝑎𝑅 is denoted by 𝛼 . It turns out that a surface area discontinuity only generates an
acoustic pressure discontinuity. The volume ow is preserved. Hence:

𝑈𝑅 = 𝑈𝐿 (4.55)
𝑝𝑅 = 𝑝𝐿 − 𝑖𝜔𝑀𝐴𝑈𝐿 (4.56)

where𝑀𝐴 is the so-called added acoustic mass in kg·m−4, which equals

𝑀𝐴 = 𝜒 (𝛼, 𝑘) 8𝜌0
3𝜋2𝑎𝐿

, (4.57)

where 𝜒 is Karal’s discontinuity factor, which is in general a function of the tube radii and the wave number.
For _ � 𝑎𝑅 , the dependency of 𝜒 on the wave number 𝑘 can be neglected, which lowers the computational
burden signicantly, as 𝜒 has to be computed only once. For the case 𝛼 → 0 (by letting 𝑎𝑅 → ∞), 𝜒 → 1. In
case of 𝛼 → 1, the acoustic mass gradually reduces to zero as 𝜒 → 0. When 𝛼 = 1, there is no continuity left,
such that𝑀𝐴 = 0.
The derivation of the coecient 𝜒 is documented in Appendix B, except of the following information. To solve
the curve of 𝜒 , a system of innite equations has to be solved for an innite number of unknowns. In the
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Figure 4.5 – 𝜒 vs 𝛼 for dierent truncations (𝑁 ) of the innite system of equations.

LRFTubescode, as a standard this system is truncated up to 𝑁 =100 equations and 100 unknowns. Figure
4.5 shows the eect of truncating this innite system of equations. As visible for the case of 100 equations,
the curves start to deviate from each other for lower values of 𝛼 . Assuming that convergence is obtained as
𝑁 → ∞, the curve of 𝑁 = 100 has acceptable accuracy for 𝛼 > 0.07. To limit possible faulty results, the
LRFTubes code gives a warning when the tube ratio is chosen such that an invalid 𝜒 is computed. When
an 𝛼 < 0.07 is desired, the user should choose a higher value of 𝑁 .

4.12 Hard wall

A hard wall is the wall perpendicular to the wave propagation direction. Figure 4.6 shows the schematic
conguration for this segment. Due to thermal relaxation a hard wall consumes acoustic energy is consumed.
The hard wall segment models this thermal relaxation loss. The assumptions behind the model are:

• Normal incident waves.
• Uniform normal velocity.
• The wavelength is much larger than the thermal penetration depth (_ � 𝛿^ ).

We can derive the following impedance boundary condition [15, p. 157]:

𝑈 = 𝑘𝛿^
𝑆

𝑧0

(𝛾 − 1) (1 + 𝑖)
2 (1 + 𝜖𝑠 ) 𝑝. (4.58)

Hence the impedance of a hard wall scales with 𝑍 ∼ 𝑍0
_
𝛿^
. For 1 kHz, this results in ∼ 4100𝑍0, which is

practically already close to ∞. Except for really high frequencies this segment can often be replaced with a
boundary condition of𝑈 = 0. An important point to make here is that this boundary condition is inconsistent
with the LRF solution for 1D wave propagation in ducts, as the velocity prole in a duct is not uniform. This
is especially true for the case of small ducts where 𝑟ℎ ∼ 𝛿 .
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Figure 4.6 – Schematic of a hard acoustic wall where the thermal boundary layer dissipates a bit of the acoustic energy (𝑍 ≠ ∞).

4.13 Spherical wave propagation models

For spherical waves, the Helmholtz equation reads(
d2
d𝑟 2 + 2

𝑟

d
d𝑟 + 𝛤 2

)
𝑝 = 0. (4.59)

The solution of Eq. 4.59 reads:

𝑝 =
𝐶1 exp (−𝑖𝛤𝑟 ) +𝐶2 exp (−𝑖𝛤𝑟 )

𝑟
. (4.60)

The acoustic volume ow can be computed as

𝑈 = 𝑖
𝛼4𝜋𝑟 2
𝛤𝑧𝑐

d𝑝
d𝑟 , (4.61)

where 𝛼 = 1 for a full sphere and 𝛼 = 1
2 for a hemisphere. We can derive the following transfer matrix for 𝑝

and𝑈 : {
𝑝

𝑈

}
𝑅

=

[
𝑀11 𝑀12

𝑀21 𝑀22

] {
𝑝

𝑈

}
𝐿

, (4.62)

where

𝑀11 =
𝑟𝐿

𝑟𝑅
cos (𝛤 (𝑟𝐿 − 𝑟𝑅)) − 1

𝛤𝑟𝑅
sin (𝛤 (𝑟𝐿 − 𝑟𝑅)) , (4.63)

𝑀12 =
𝑖𝑧𝑐 sin (𝛤 (𝑟𝐿 − 𝑟𝑅))

4𝜋𝛼𝑟𝐿𝑟𝑅
, (4.64)

𝑀21 =
4𝜋𝑖𝛼
𝑧𝑐

[(
𝑟𝐿𝑟𝑅 + 1

𝛤 2

)
sin (𝛤 (𝑟𝐿 − 𝑟𝑅)) + 𝑟𝑅 − 𝑟𝐿

𝛤
cos (𝛤 (𝑟𝐿 − 𝑟𝑅))

]
(4.65)

𝑀22 =
𝑟𝑅

𝑟𝐿
cos (𝛤 (𝑟𝐿 − 𝑟𝑅)) + 1

𝛤𝑟𝐿
sin (𝛤 (𝑟𝐿 − 𝑟𝑅)) , (4.66)

4.14 Boundary conditions

4.14.1 Radiation impedance of a baled piston

• 𝑎: radius of the exit [m]
• 𝑆 : 𝜋𝑎2

𝑝 = 𝑍rad𝑈 , (4.67)

𝑍rad =
𝑧0
𝑆

[
1 − 2𝐽1 (2𝑘𝑎)

2𝑘𝑎 + 𝑖 2𝐻1 (2𝑘𝑎)
2𝑘𝑎

]
(4.68)
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In the low frequency range, a power series expansion of 𝐻1 yields [Aarts]:

𝐻1 (𝑥) = 2
𝜋

[
𝑥2

3 − 𝑥4

45 + 𝑥6

1575 − . . .
]

(4.69)

Filling this in, we obtain the following low-frequency approximation to 𝑍rad:

𝑍rad =
𝑧0
𝑆

[
𝑖
8𝑘𝑎
3𝜋 + 1

2 (𝑘𝑎)2 + O ((𝑘𝑎)3) ] (4.70)

4.14.2 Incident plane wave on small port in innite bale

Situation: an acoustic system, which is connected to the outside world though a port, ending in an innite
wall4.7. There is an incident plane wave with specied amplitude and frequency. It would be benecial for
computing time to replace the outside world by a boundary condition on the port. Here it is approached as
a scattering problem. More information is described in ’Sound absorbing materials’ (1949) Zwikker et al., pp.
132-134. The pressure eld can be written as:

𝑝𝑡 = 𝑝𝑖 + 𝑝𝑠 (4.71)

in which 𝑝𝑡 is the total pressure eld, 𝑝𝑖 the incident pressure eld and 𝑝𝑠 the scattered pressure eld. All
depend on both position and time. If only the innite wall is taken into account and the port and system
behind it are ignored, the amplitude of the incident plane wave and its reection can be described as:

𝑝𝑖 (𝑥, 𝑡) =

𝑃𝑖 · cos(𝑘𝑥) 𝑥 < 0
𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 𝑥 = 0
0 𝑥 > 0

(4.72)

in which 𝑃𝑖 is half the amplitude of the incident plane wave (resulting in sound pressure 𝑃𝑖 on the surface of
a reecting wall), 𝑘 is the wavenumber and 𝑥 the position into the wall. There is no scattered pressure eld,
so this is the total pressure eld right away. When the port and system behind it are added, the total pressure
eld no longer is equal to the incident pressure eld: a correction must be added, which is captured in 𝑝𝑠 . The
correction is due to the air slug within the port moving. At 𝑥 < 0, this has the same eect als a baed piston.
On the condition that the wavelength is much larger than the port size, the scattered eld near the boundary
(but still outside of the port) is given by:

𝑝𝑠 (𝑥 = 0−) = −𝑍𝑟𝑎𝑑𝑈 (4.73)

in which 𝑍𝑟𝑎𝑑 is the radiation impedance of a baed piston and 𝑈 is the acoustic volume ow rate. Note
the minus sign, which stems from the direction in which 𝑈 is dened. The same convention is taken as in
COMSOL: velocity 𝑣 is positive when inwards, so inwards 𝑈 is positive. Filling in equation 4.71, just outside
of the port at 𝑥 = 0−, yields:

𝑝𝑡 (𝑥 = 0−) = 𝑃𝑖 − 𝑍𝑟𝑎𝑑𝑈 (4.74)

It is questionable whether the port acoustically ends at the boundary, so this might be an approximation. In
COMSOL, the pressure is continuous, to it is ne to apply it at 𝑥 = 0 instead of 𝑥 = 0−. 𝑈 can be found by
integrating the inner product of velocity and the normal vector over the boundary, while adding a minus sign
because the normal vector points outwards. In COMSOL it is more convenient to use specic impedances and
velocities. Then the equation is slightly modied to:

𝑝𝑡 (𝑥 = 0) = 𝑃𝑖 − 𝑧𝑟𝑎𝑑𝑣 (4.75)

in which 𝑧𝑟𝑎𝑑 is the specic radiation impedance of a baed piston and 𝑣 the acoustic velocity (inwards). This
equation can be applied as a pressure boundary condition in COMSOL. The required 𝑣 can be ’measured’ by

27



Figure 4.7 – Schematic view of incident wave (green) on an innite wall (blue) containing a port with a system connected to it.
The location of the boundary condition is shown in red.

averaging the normal component of the velocity and adding a minus sign to make it inwards. Alternatively,
the equation can be solved for 𝑣 to obtain a velocity boundary condition:

𝑣 =
𝑃𝑖 − 𝑝𝑡 (𝑥 = 0)

𝑧𝑟𝑎𝑑
(4.76)

in which 𝑝𝑡 (𝑥 = 0) can be ’measured’ by averaging it over the port’s boundary.
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Chapter 5

Speaker

5.1 As an active element, with voltage control

The speaker generates electromotive force

𝐹emf = 𝐵ℓ𝐼, (5.1)

where 𝐵ℓ is the “motor constant”, or force factor, in units N·A−1, or V·s·m−1. The back-emf “force”:

𝑉bemf = 𝐵ℓ𝑢 (5.2)

The “circuit equation”:

𝑉in −𝑉bemf = 𝑍el𝐼 , (5.3)
where 𝑍el is the equivalent impedance of the electrical circuit in Ω. The mechanical impedance comprises a
stiness part, a damping part and a mass part. The equation of motion is:

𝑧𝑚𝑢 = 𝐹emf + 𝑝𝑙𝑆 − 𝑝𝑟𝑆, (5.4)

where 𝑢 denotes the velocity phasor of the membrane. The mechanical impedance 𝑧𝑚 is dened as:

𝑧𝑚 = 𝑖𝜔𝑚𝑚 + 𝑟𝑚 + 𝑘𝑚
𝑖𝜔
, (5.5)

where 𝑚𝑚 is the moving mass, 𝑟𝑚 the damping force and 𝑘𝑚 the spring constant. 𝑧𝑚 can equivalently be
written as:

𝑧𝑚 =𝑚

(
𝑖𝜔 + 2Z𝜔𝑟 +

𝜔2
𝑟

𝑖𝜔

)
, (5.6)
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Figure 5.1 – Electrical and mechanical model of the speaker

29



where
𝜔2
𝑟 =

𝑘𝑚

𝑚𝑚

; Z =
𝑟𝑚

2
√
𝑘𝑚𝑚𝑚

=
𝑟𝑚

2𝜔𝑟𝑚𝑚

=
𝜔𝑟𝑟𝑚

2𝑘𝑚
. (5.7)

After some algebraic manipulations we nd:

1
𝑆𝑙

(
𝑧𝑚 + (𝐵ℓ)2

𝑍el

)
𝑈𝑙 = 𝑝𝑙𝑆𝑙 − 𝑝𝑟𝑆𝑟 +

𝐵ℓ

𝑍el
𝑉in, (5.8)

𝑈𝑟 −𝑈𝑙 = 0, (5.9)

which is in transfer matrix notation: {
𝑝𝑟

𝑈𝑟

}
= 𝑻

{
𝑝𝑙

𝑈𝑙

}
+ 𝒔, (5.10)

where

𝑻 =

[
1 − 1

𝑆2

(
𝑧𝑚 + (𝐵ℓ)2

𝑍el

)
0 1

]
; 𝒔 =

{
𝐵ℓ
𝑍el𝑆

𝑉in

0

}
(5.11)

5.2 As antireciprocal segment

As antireciprocal segment, a voltage controlled speaker has electrical connections on the left side, and acous-
tical connections on the right side: {

𝑝

𝑈

}
𝑅

= 𝑻 spk

{
𝑉

𝐼

}
𝐿

. (5.12)

A model us used for the back cavity pressure build-up which can be added as an extra impedance, placed in
series with the eective acoustic impedance of the front side, hence the force balance reads:

𝐹emf = 𝑍back𝑈 + 𝑍front𝑈 (5.13)

The transfer matrix reads:

𝑻 spk =

[
−𝑆2𝑍back+𝑧𝑚

𝑆𝐵ℓ

(𝐵ℓ)2+𝑍el (𝑧𝑚+𝑆2𝑍back)
𝐵ℓ𝑆

𝑆
𝐵ℓ

−𝑆𝑍el
𝐵ℓ

]
(5.14)

For a closed back-cavity volume, the back-cavity is:
Then again:
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Chapter 6

Optimized reactive silencers

6.1 Parallel Helmholtz resonator transfer function and transmission loss

Equations for a side branch Helmholtz resonator:

𝑝𝑅 = 𝑝𝐿, (6.1)
𝑈𝑅 = 𝑈𝐿 − 𝑝𝐿/𝑍ℎ, (6.2)

where 𝑍ℎ is the side branch impedance of the Helmholtz resonator, dened as

𝑍ℎ =

( 𝜌0𝑧0
𝑖𝜔𝑉

+ 𝑅𝑣 + 𝑖𝜔𝑚neck

)
, (6.3)

where
𝑚neck =

𝜌0ℓe,neck
𝑆neck

, (6.4)

and for relatively large holes, air at STP, the resistance term can be estimated as:

𝑅𝑣 ≈ 7.2 × 10−3𝑧0/𝑆ℎ, (6.5)

Now, the following substitutions are made:

𝐶 =
𝑉

𝜌0𝑧0
, (6.6)

𝑚neck =
1

𝜔2
𝑟𝐶

(6.7)

Z =
1
2𝜔𝑟𝐶𝑅𝑣 . (6.8)

such that we can write:
𝑍ℎ =

1
𝜔𝑟𝐶

(
𝜔𝑟

𝑖𝜔
+ 2Z + 𝑖𝜔

𝜔𝑟

)
(6.9)

The quality factor of the resonator is the ratio of the resonance frequency to its bandwidth measure. If we
take

𝑄
def
=

𝑓𝑟

𝛥𝑓
, (6.10)

where 𝛥𝑓 is the full width at half the maximum value, i.e. the frequency distance between two points lying
at −3 dB w.r.t. the maximum value. The damping ratio Z is related to 𝑄 as:

Z =
1
2𝑄 =

1
2
𝛥𝑓

𝑓𝑟
(6.11)
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Assembling the transfer matrix {
𝑝

𝑈

}
𝑅

=

[
𝑇11 𝑇12

𝑇21 𝑇22

] {
𝑝

𝑈

}
𝐿

, (6.12)

where

𝑇11 = 1 (6.13)
𝑇12 = 0 (6.14)
𝑇21 = −𝑍−1

ℎ
(6.15)

𝑇22 = 1 (6.16)

6.1.1 Transmission loss

The transmission coecient can be computed as:

𝜏 =
𝐶

𝐴
=
𝑍0 (𝑇21𝑝𝐿 +𝑇22𝑈𝐿)

1
2 (𝑝𝐿 + 𝑍0𝑈𝐿)

, (6.17)

using
𝑇11𝑝𝐿 +𝑇12𝑈𝐿 = 𝑝𝑅 = 𝑍0𝑈𝑅 = 𝑍0 (𝑇21𝑝𝐿 +𝑇22𝑈𝐿) , (6.18)

we get
𝑈𝐿 =

(𝑇11 − 𝑍0𝑇21)
(𝑍0𝑇22 −𝑇12) 𝑝𝐿, (6.19)

lling in:
𝜏 =

2
𝑍0

𝑇11𝑇22 −𝑇12𝑇21
𝑇11 −𝑇12/𝑍0 −𝑇21𝑍0 +𝑇22 , (6.20)

assuming that the determinant of the transfer matrix be unity (𝑇11𝑇22 − 𝑇12𝑇21 ≡ 1), this can be further
simplied:

𝜏 =
2

𝑇11 −𝑇12/𝑍0 −𝑇21𝑍0 +𝑇22 , (6.21)

For a Helmholtz resonator, this results in:

𝜏 (𝜔) = 2𝑍ℎ (𝜔)
𝑍0 + 2𝑍ℎ (𝜔)

, (6.22)

Filling in the Helmholtz resonator equation:

𝜏 (𝜔) =
2
(
1 + 2 𝜔

𝜔𝑟
Z −

(
𝜔
𝜔𝑟

)2)
2
(
1 + 2 𝜔

𝜔𝑟
Z −

(
𝜔
𝜔𝑟

)2)
+ 𝑖 𝜔

𝜔𝑟

(
𝐶𝑧0𝜔𝑟

𝑆

) (6.23)

The peak height, lling in for 𝜔/𝜔𝑟 = 1:

𝜏 =
4Z

4Z + 𝛽 , (6.24)

where 𝛽 is dened as the resonator strength:

𝛽 =
𝑉𝜔𝑟

𝑆𝑐0
(6.25)
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In terms of transmission loss:
TL𝜔=𝜔𝑟

= 20 log
(
𝛽 + 4Z
4Z

)
(6.26)

The peak half width is the distance over which the transmission loss has dropped 3 dB w.r.t. the transmission
loss at the resonance frequency. This is an important design parameter. We can compute it by setting

|𝜏 |𝜔𝑟+𝛥𝜔
𝜏 |𝜔𝑟

| =
√
2, (6.27)

For light relative damping, and 𝛥𝜔/𝜔𝑟 ≈ 1,

|𝜏 |𝜔𝑟+𝛥𝜔
𝜏 |𝜔𝑟

| ≈ 𝛼 − 1
Z

, (6.28)

So given the -3 dB point, and the maximum required transmission loss, we can compute Z and 𝛽 :

• Z =
𝛼−3dB−1√

2

• 𝛽 = 4Z
(
10

TLmax
20 − 1

)
Required volume in terms of resonator strength:

𝑉 =
𝑆𝑐0𝛽

𝜔𝑟

(6.29)

6.1.2 Insertion loss

For computation of the insertion loss, we require two more parameters:

• The load impedance at the downstream end of the silencer
• The output impedance of the source (𝑍rad)

Suppose the source strength is dened by S. Situation without silencer:

𝑈𝐿 = S/(𝑍𝑠 + 𝑍𝑙 ) , (6.30)
𝑈𝑅 = 𝑈𝐿, (6.31)
𝑝𝑅 = 𝑍rad𝑈𝑅, (6.32)

where 𝑍𝑠 denotes the source output impedance, and 𝑍𝑙 denotes the load impedance as felt by the source.
For the reference case, the load impedance equals the radiation impedance, and the radiated acoustic power
is:

𝑃ref =
1
2

|S|2
|𝑍rad + 𝑍𝑠 |2

< [𝑍rad] (6.33)

Now, situation including silencer, with in general, transfer matrix 𝑻 .

𝑃with silencer =
1
4 |S|2 < [𝑍rad]

|𝑇22𝑍rad −𝑇12 + 𝑍𝑠 (𝑇11 −𝑇21𝑍rad) |2
(6.34)

From that, computing the power ratio, that det𝑻 ≡ 1 for a reciprocal system:

𝑅𝑃 =
𝑃with silencer

𝑃ref
=

|𝑍rad + 𝑍𝑠 |2
|𝑇22𝑍rad −𝑇12 + 𝑍𝑠 (𝑇11 −𝑇21𝑍rad) |2

(6.35)
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6.1.3 Insertion loss for a Helmholtz side branch resonator

Filling in for a simple Helmholtz side branch resonator:

𝑅𝑃,Helmholtz =
|𝑍rad + 𝑍𝑠 |2

|𝑍rad + 𝑍𝑠
(
1 + 𝑍rad

𝑍ℎ

)
|2
. (6.36)

Comparing this to the transmission loss curve:

|𝜏 |2Helmholtz =
4|𝑍ℎ |2

|2𝑍ℎ + 𝑍0 |2 (6.37)

6.1.3.1 High output impedance limit (𝑍𝑠 � 𝑍rad), volume ow source

𝑅𝑃,Helmholtz =
|𝑍ℎ |2

|𝑍ℎ + 𝑍rad |2
. (6.38)

6.1.3.2 Low output impedance limit (𝑍𝑠 � 𝑍rad), pressure source

𝑅𝑃,Helmholtz =
|𝑍ℎ |2

|𝑍ℎ + 𝑍𝑠 |2
(6.39)

6.1.3.3 Special case: barrier in an innite space (𝑍𝑠 = 𝑍rad)

𝑅𝑃,Helmholtz =
|𝑍ℎ |2

|𝑍ℎ + 1
2𝑍rad |2

. (6.40)

Comparing limits to power transmission ratio

|𝜏 |2 = |𝑍ℎ |2
|𝑍ℎ + 1

2𝑍0 |2
, (6.41)

So the transmission loss is the reduction in transmitted sound power for the situation where the source output
impedance equals the radiation impedance on the other side of the silencer.

6.1.4 Multiple Helmholtz resonators at a single inlet

In case multiple resonators are connected to the same inlet, the parallel impedance can be computed by
computing the equivalent parallel impedance:

1
𝑍ℎ,tot

=
1
𝑍ℎ,1

+ 1
𝑍ℎ,2

+ . . . (6.42)

6.2 Transmission of the duct{
𝑝𝑅

𝑈𝑅

}
=

[
cos (𝑘𝐿) −𝑖𝑍0 sin (𝑘𝐿)

−𝑖𝑍−1
0 sin (𝑘𝐿) cos (𝑘𝐿)

] {
𝑝𝐿

𝑈𝐿

}
(6.43)
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Chapter 7

(Micro)-perforated plate design

Given 𝛽 , Z and 𝜔𝑟 , a proper acoustic mass has to be chosen. Given the resonator equations, the viscous
resistance and required acoustic mass can be determined. This results in requirements for the (eective)
acoustic mass and resistance of the perforate. For arbitrary hole sizes, the denition of the acoustic impedance
of a perforate is:

𝑧 =
𝛥𝑝

𝑢
. (7.1)

where𝑢 denotes the acoustic volume ow per unit of area through the perforate (uncorrected yet for porosity),
such that the area-averaged velocity in a hole is 𝑢ℎ = 𝑢/𝜙 , where 𝜙 denotes the porosity. In Eq. 7.1, it is
assumed that the acoustic wavelength is typically much larger than the length scale(s) of the perforate. The
model for the impedance of a perforate, in the linear range is :

𝑧 =
𝑖𝜔𝜌0
𝜙

[
𝑡𝑤

(1 − 𝑓a ) + 2𝛿 𝑓int
]
+ 𝛼 𝜌0𝜔𝛿a

𝜙
, (7.2)

where 𝑓int is the hole-hole interaction function which→ 1 for 𝜙 → 0, and 𝛿 is the single-sided hole (therefore,
the factor 2 in front) end correction due to the added mass eect, for the situation of negligible hole-hole
interaction. [Paper: Tayong, 2013].

𝑓int (𝜙) = 1 − 1.4092
√︁
𝜙 + 0.33818

√︁
𝜙
3 + 0.06793

√︁
𝜙
5
. (7.3)

− 0.02287
√︁
𝜙
6 + 0.063015

√︁
𝜙
7 − 0.01614

√︁
𝜙
8

(7.4)

For square holes:
where

b2 =
𝜋𝐷2

4𝑃2 (7.5)

𝐷

𝑃
=

√︂
4𝜙
𝜋
. (7.6)

For circular large holes with diameter 𝐷 , the end correction for both sides is

2𝛿 =
8
3𝜋 𝐷 ≈ 0.85𝐷. (7.7)

Here we use a more advanced model, which includes the shear wave number. For unrounded edges and a
perforate thickness of 𝑡𝑝 , the added mass end correction can be computed as:

2𝛿 =
1
2

[
0.97 exp

(
−0.14 𝐷

𝛿a

)
+ 1.54 − 0.003𝐷

𝑡𝑝

]
𝐷 (7.8)

The factor 𝛼

𝛼 = 5.08
(
𝐷√
2𝛿a

)−1.45
+ 1.70 − 0.002𝐷

𝑡𝑝
. (7.9)
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7.1 Tuning the hole diameter for large holes and the negligible hole-hole
interaction

The coarse impedance of a Helmholtz resonator repeated here:

𝑍 (𝜔) = 𝑖𝜔𝑚𝐴 + 𝑅𝑣︸      ︷︷      ︸
𝑍ℎ

+𝜌0𝑐
2
0

𝑖𝜔𝑉
, (7.10)

The resistive and reacting part 𝑖𝜔𝑚𝐴 + 𝑅𝑣 is due to the resonator holes,

𝑍ℎ = 𝑖𝜔𝑚𝐴 + 𝑅𝑣 ≈ 1
𝑆

[
𝑖𝜔𝜌0
𝜙

[
𝑡𝑤

(1 − 𝑓a ) + 2𝛿 𝑓int
]
+ 𝛼𝜌0𝜔𝛿a

𝜙

]
. (7.11)

In the large hole limit, or high shear wave number:

< [𝑖𝜔𝑚𝐴 + 𝑅𝑣] ≈ 𝜌0𝛿a𝜔

𝜙𝑆

[
𝛼 + 2𝑡𝑤

(𝐷 − 4𝛿a )

]
∝︸︷︷︸

approx.

√
𝜔.

In the large hole limit, without hole-hole interaction and 𝛿a → 0, we the resonance frequency of the system
is:

𝜔2
𝑟,lh =

𝜙𝑆𝑐20
𝑉 (1.54𝐷 + 𝑡𝑤) (7.12)

–

𝑍large holes,res (𝜔) =
𝑐20𝜌0

𝑉𝜔2
𝑟,lh


𝜔2
𝑟,lh
𝑖𝜔

+ 𝑖𝜔𝑡𝑤{
1 + 2𝛿a (𝑖−1)

𝐷

}
(2𝛿 𝑓int + 𝑡𝑤)

+ 𝑖𝜔 [2𝛿 𝑓int − 𝑖𝛿a𝛼]
2𝛿 𝑓int + 𝑡𝑤

 (7.13)

7.1.1 COMSOL boundary condition to useful

When using COMSOL to compute Helmholtz resonances, the added mass eect is included just by solving
the Helmholtz equation. Therefore, to model the holes, only the nal wall thickness part of the added mass
(and hole-hole interaction), and the resistive part of the impedance should be added to the simulation. If we
look at Eq. 7.11, it means only the following part:

𝑧bc,COMSOL = 𝑖𝜔𝜌0
𝑡𝑤

1 − 𝑓a + 𝛼𝜌0𝜔𝛿a . (7.14)

7.1.2 Porosity estimator constraint

An estimation for the porosity is a good requirement, as a too large porosity leads to too much hole-hole
interaction and shift away from proper Helmholtz resonators. First of all, we set the surface area at the inner
duct, which is available for holes as

𝑆 = 𝛱𝐿ℎ, (7.15)

and we x 𝐿ℎ to
𝐿ℎ = _𝑟/20 = 2𝜋𝑐0

20𝜔𝑟,lh
=

𝜋𝑐0
10𝜔𝑟,lh

. (7.16)

Rewriting Eq. 7.12 to 𝜙 yields:

𝜙estimation ≈ 10
𝜋

𝑉 (1.54𝐷 + 𝑡𝑤)𝜔3
𝑟,lh

𝛱𝑐30
≤ 0.1 (7.17)

See what this constraint does...*
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7.2 Large hole (boundary layer) limit

𝜙 =
𝑆hole
𝑆tot

(7.18)

𝛿a � 𝐷 . Given Z and 𝜔𝑟 . Note that:

Z =
1
2

𝑅

𝑚𝐴𝜔𝑟

≈ 1
2
< [𝑧]
= [𝑧] (7.19)

Procedure:
In the boundary layer limit:

𝑓a =
(1 − 𝑖) 𝛿a

2𝑟ℎ
, (7.20)

such that:

𝑧perforate =
𝑖𝜔𝜌0
𝜙

𝑡𝑤 + 2𝛿 𝑓int(
1 − 𝛿a

2𝑟ℎ + 𝑖𝛿a
2𝑟ℎ

) (7.21)

Typical resistance: ll in 𝜔 = 𝜔𝑟 . Filling in:
Z ≈ 𝛿a

𝐷
. (7.22)

The real part of the perforate impedance is the resistive part. In a 3D simulation, this impedance can be added
to a surface of the hole, to model the hole resistance in an otherwise inviscid simulation. The real part is:

(7.23)

7.2.1 Lots of holes

Hereby, once we know the hole diameter, the required acoustic mass can be tuned using the porosity:

𝑚𝐴 ≈ = [𝑧 (𝜔 = 𝜔𝑟 ]
𝜔𝑆t

≈ 1
𝑆tot𝜙

(
𝜌08𝐷𝑓int (𝜙)

3𝜋 + 𝜌0𝑡𝑤
)

(7.24)

So that the porosity can be computed as:

𝜙 ≈ 𝐹 (𝜙) = 𝐷𝜌0 (𝐷 − 2𝛿a ) (8𝐷𝑓int + 3𝜋𝑡𝑤)
3𝜋𝑆tot𝑚𝐴

(
𝐷2 − 4𝐷𝛿a + 8𝛿2a

) ≈ 𝜌0 (8𝐷𝑓int (𝜙) + 3𝜋𝑡𝑤)
3𝜋𝑆tot𝑚𝐴

. (7.25)

Note that this is a trancendental equation in 𝜙 , which can easily be solved by iterating 𝜙 :

𝜙1 = 𝐹 (1) (7.26)
𝜙2 = 𝐹 (𝜙1) (7.27)
𝜙3 = 𝐹 (𝜙2) (7.28)
... =

... (7.29)

7.2.2 Some holes

For only “some holes”, far away from each other, we ll in for 𝜙 = 1
4𝑁hole𝜋𝐷

2/𝑆tot:

𝑚𝐴 ≈ 𝜌0
3𝜋𝑁hole𝐷

(
32
𝜋

+ 12𝑡𝑤
𝐷

)
(7.30)

So the number of holes can be chosen as:

𝑁holes ≈
4𝜌0 (8𝐷𝑓int + 3𝜋𝑡𝑤)

3𝜋2𝐷2𝑚𝐴

(7.31)

37



ss

1
2P γ

γ = 30◦

P

Figure 7.1 – Geometry details of a hexagonal hole pattern

7.3 Small hole limit

In the small hole limit,
𝑓a ≈ 1 − 𝑖𝐷2

16𝛿2a
(7.32)

Such that:
Z =

1
2

𝑅

𝑚𝐴𝜔𝑟

≈ 1
2
< [𝑧 (𝜔 = 𝜔𝑟 ]
= [𝑧 (𝜔 = 𝜔𝑟 ]

≈ 3𝜋𝛿2a𝑡𝑤
𝐷3 𝑓int

(7.33)

Such that:

𝐷 =
3

√︄
6𝜋𝛿2a𝑡𝑤
6Z . (7.34)

And:
𝑚𝐴 = 𝜌0

8𝐷𝑓int
3𝜋𝑆tot𝜙

(7.35)

Such that:
𝜙 ≈ 𝜌0 8𝐷𝑓int

3𝜋𝑆tot𝑚𝐴

(7.36)

7.4 Geometry of hole patterns

For a square hole pattern, with hole-hole pitch 𝑃 , the overall surface of a unit cell 𝑆unit = 𝑃2. For a certain
porosity, the pitch can then be computed as:

𝑃 =

√︂
𝜋

4𝜙 𝐷. (7.37)

For a hexagonal hole pattern (Fig. 7.1) with hole-hole pitch 𝑃 , the overall surface of a unit cell 𝑆unit =
√
3
2 𝑃

2.
Henceforth, the pitch can be computed from the porosity and the hole diameter as:

𝑃 =

√︄√
3𝜋
6𝜙 𝐷. (7.38)

The most important design parameters of a perforate are the porosity and the hole diameter.
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7.5 Addition of acoustic hole resistance in an otherwise inviscid simulation

We assume that in a 3D FEM simulation, the imaginary acoustic impedance of a single hole

𝑍hole = 𝑖𝜔𝜌0
4

𝜋𝐷2

[
𝑡𝑤

(1 − 𝑓a ) +
8𝐷𝑓int
3𝜋𝐶𝐷

]
, (7.39)

<[𝑧hole] =
2𝐷𝛿a𝜔𝜌0𝑡𝑤(

4𝛿2a + (𝐷 − 2𝛿a )2
) , (7.40)

7.6 Over-all transmission matrix {
𝑝𝑅

𝑈𝑅

}
1

= 𝑻 1

{
𝑝𝐿

𝑈𝐿

}
1

(7.41){
𝑝𝑅

𝑈𝑅

}
2

= 𝑻 2

{
𝑝𝑅

𝑈𝑅

}
1

(7.42){
𝑝𝑅

𝑈𝑅

}
3

= 𝑻 3

{
𝑝𝑅

𝑈𝑅

}
2

(7.43)

(7.44)

, hence {
𝑝𝑅

𝑈𝑅

}
3

= 𝑻 3 · 𝑻 2 · 𝑻 1︸       ︷︷       ︸
𝑻

{
𝑝𝐿

𝑈𝐿

}
1

(7.45)
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Chapter 8

Miscellaneous models for acoustic components

8.1 Acoustic impedance of small orices

8.1.1 Rectangular orice

8.1.2 Slit orice
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Chapter 9

Lookup model

LRFTubes allows importing transfer matrix data from externally computed sources (i.e. nite element model
results). We focus on the use of COMSOL Multiphysics here. The output data from COMSOL should be
created using the “Port Sweep” functionality. Implementation is only for 2 ports, as this is the only case for
which COMSOL is able to export data. In COMSOL, the transfer matrix is dened as:

{
𝑝𝑖

𝑄𝑖

}
=

[
𝑇11 𝑇12

𝑇21 𝑇22

] {
𝑝𝑜

𝑄𝑜

}
, (9.1)

hence the transfer matrix denition of LRFTubesis the inverse of the denition of COMSOL Multiphysics:

𝑻LRFTubes = 𝑻−1
COMSOL (9.2)

To properly use the Lookupmodel, in COMSOL port 1 should be corresponding to the LEFT side of a segment,
and port 2 should be corresponding to the RIGHT side of a segment. Then, the data should be exported to
a txt le with the columns in the following order: frequency, T11, T12, T21, T22. A le of this format, as
exported by COMSOL can be passed to the constructor of LookupModel.
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Chapter 10

IEC Coupler impedances

The Comsol model with which this data is gathered exports the input impedance correctly, but the transfer
impedance is actually the negative of the actual transfer impedance. This is due to Comsol, which was only
interested in the magnitude of the impedance values, and due to us (sloppy work). The input impedance is
dened as:

𝑍in =
𝑝coupler,entrance

𝑈coupler,entrance
(10.1)

and the transfer impedance as:
𝑍tr =

𝑝DRP
𝑈coupler,entrance

(10.2)
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Chapter 11

Kampinga’s SLNS model in our notation

11.1 Model

∇2ℎ𝑣 + 2
𝑖𝛿2a

ℎ𝑣 = 0, (11.1)

∇2ℎ^ + 2
𝑖𝛿2^

ℎ^ = 0, (11.2)

1
𝑘
∇ · ((1 − ℎa ) ∇𝑝) + 𝑘 (1 + (𝛾 − 1) ℎ^) 𝑝 = 0 (11.3)

The velocity is:

𝒖 =
𝑖

𝜌0𝜔
(1 − ℎa ) ∇𝑝 (11.4)

With boundary conditions:

ℎa = 1 at thewall (11.5)
ℎ^ = 1 at thewall (11.6)

For pressure / velocity b.c.’s
𝒖 =

𝑖

𝜌0𝜔
(1 − ℎa ) ∇𝑝 (11.7)

Weak contribution in pressure acoustics interface:
(hnu*(test(px)*px+test(py)*py+pz*test(pz))+test(p)*p*acpr.ik^2*(1-gamma)*hkappa)*acpr.delta/acpr.rho_c

(11.8)
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Appendix A

Thermal relaxation in thick tubes

A.1 Thermal relaxation eect in thick tubes

In this section, a formulation for 𝜖𝑠 is given for tubeswhere the temperaturewave in the solid is present. Figure
A.1 shows a schematic overview of the situation. As shown in the gure, the temperature wave accompanied
with an acoustic wave results in heat conduction to/from the wall of the tube. To solve this interaction
mathematically, the heat equation in the solid has to be solved. For constant thermal conductivity, density
and heat capacity the heat equation of the solid is

𝜌𝑠𝑐𝑠
𝜕𝑇𝑠

𝜕𝑡
= ^𝑠∇2𝑇𝑠 , (A.1)

where 𝜌𝑠 , 𝑐𝑠 ,𝑇𝑠 and ^𝑠 are the density, specic heat, temperature and thermal conductivity of the solid, respec-
tively. In frequency domain and using cylindrical coordinates, assuming axial symmetry, this can be written
as (

𝑟 2
(
𝜕2

𝜕𝑟 2
+ 𝜕2

𝜕𝑥2

)
+ 𝑟 𝜕

𝜕𝑟
+ 2
𝑖𝛿2𝑠

𝑟 2
)
𝑇𝑠 = 0, (A.2)

where 𝛿𝑠 is

𝛿𝑠 =

√︄
2^𝑠
𝜌𝑠𝑐𝑠𝜔

. (A.3)

Acoustic wavespL, UL

x

L

Sf pR, UR

Thick tube wall

Thick tube wall

Transverse temperature profile

Thermal wave entering solid

r a

Figure A.1 – Schematic situation of a tube surrounded by a thick solid. Note that the transverse acoustic temperature is drawn to
be not zero at the wall. This happens in case of thermal interaction with a solid with nite thermal eusivity.

45



Now, since 𝜕𝑇𝑠/𝜕𝑥 ∼ 𝛿𝑠
_

𝜕𝑇𝑠
𝜕𝑟

, the second order derivative of the temperature in the axial direction can be
neglected. In that case, the dierential equation to solve for is(

𝑟 2
𝜕2

𝜕𝑟 2
+ 𝑟 𝜕

𝜕𝑟
+ 2
𝑖𝛿2𝑠

𝑟 2
)
𝑇𝑠 = 0, (A.4)

which is a Bessel dierential equation of the zero’th order in𝑇𝑠 . The solutions is sought in terms of traveling
cylindrical waves:

𝑇𝑠 = 𝐶1𝐻
(1)
0

(
(𝑖 − 1) 𝑟

𝛿𝑠

)
+𝐶2𝐻

(2)
0

(
(𝑖 − 1) 𝑟

𝛿𝑠

)
, (A.5)

where𝐶1 and𝐶2 constants to be determined from the boundary conditions, and𝐻 (𝑖)
𝛼 is the cylindrical Hankel

function of the (𝑖)th kind and order 𝛼 . If we require 𝑇𝑠 → 0 as 𝑟 → ∞, the constant 𝐶2 is required to be 0.
From the acoustic energy equation, a similar dierential equation can be found for the acoustic temperature
in the uid: (

𝑟 2
𝜕2

𝜕𝑟 2
+ 𝑟 𝜕

𝜕𝑟
+ 2
𝑖𝛿2𝑠

𝑟 2
)
𝑇 =

2
𝑖𝛿2𝑠

𝛼𝑝𝑇0

𝜌0𝑐𝑝
𝑝,

for which the (partial) solution is

𝑇 =
𝛼𝑝𝑇0

𝜌0𝑐𝑝
𝑝

(
1 −𝐶3 𝐽0

(
(𝑖 − 1) 𝑟

𝛿^

))
. (A.6)

To attain at Eq. A.6, use has been made of the fact that the temperature should be nite at 𝑟 = 0. 𝐶3 is a
constant that is to be determined from the boundary conditions at the solid-uid interface. These boundary
conditions are:

𝑇𝑠 |𝑟=𝑎 = 𝑇 |𝑟=𝑎, (A.7)

−^𝑠 𝜕𝑇𝑠
𝜕𝑟

|𝑟=𝑎 = −^ 𝜕𝑇
𝜕𝑟

|𝑟=𝑎, (A.8)

i.e. continuity of the temperature and the heat ux at the interface. This yields two equations for two un-
knowns (𝐶1 and 𝐶3, 𝐶2 is already argued to be 0). Solving for the acoustic temperature yields:

𝑇 =
𝛼𝑝𝑇0

𝜌0𝑐𝑝

©«1 −
1

(1 + 𝜖𝑠 )
𝐽0
(
(𝑖 − 1) 𝑟

𝛿^

)
𝐽0
(
(𝑖 − 1) 𝑎

𝛿^

) ª®®¬𝑝,
where

𝜖𝑠 =
𝑒𝑓

𝑒𝑠

𝐽1
(
(𝑖 − 1) 𝑎

𝛿^

)
𝐻

(1)
0

(
(𝑖 − 1) 𝑎

𝛿𝑠

)
𝐽0
(
(𝑖 − 1) 𝑎

𝛿^

)
𝐻

(1)
1

(
(𝑖 − 1) 𝑎

𝛿𝑠

) , (A.9)

where 𝑒𝑓 is the thermal eusivity of the uid, and 𝑒𝑠 the thermal eusivity of the solid, such that the ratio is

𝑒𝑓

𝑒𝑠
=

√︂
^𝜌0𝑐𝑝

^𝑠𝜌𝑠𝑐𝑠
. (A.10)

Note that for large 𝑎/𝛿^ :
𝐽1
(
(𝑖 − 1) 𝑎

𝛿^

)
𝐽0
(
(𝑖 − 1) 𝑎

𝛿^

) → 𝑖, (A.11)

and for large 𝑎/𝛿𝑠
𝐻

(1)
0

(
(𝑖 − 1) 𝑎

𝛿𝑠

)
𝐻

(1)
1

(
(𝑖 − 1) 𝑎

𝛿𝑠

) → −𝑖, (A.12)

such that for both numbers large
𝜖𝑠 →

𝑒𝑓

𝑒𝑠
. (A.13)
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Appendix B

Derivation of Karal’s discontinuity factor

Note: this documentation is imcomplete.
This appendix describes the derivation of Karal’s discontinuity factor. The following assumptions underlie
the model:

• 𝑧 = 0 : position of the discontinuity
• Assume 𝑓 � 𝑓𝑐 , such that far away from the discontinuity, only propagating modes exist.
• Assume axial symmetry, so dependence of \ is dropped

In cylindrical coordinates, the solution of the Helmholtz equation can be written in terms of cylindrical har-
monics [2]. Assuming axial symmetrySuch that the acoustic pressure in for example tube 𝐵 can be written
as:

𝑝𝐵 =

{
𝐽𝑚 (𝑘𝑟𝑟 )
𝑁𝑚 (𝑘𝑟𝑟 )

} {
𝑒𝑖𝑚𝜙

𝑒−𝑖𝑚𝜙

} {
𝑒𝛽𝑧

𝑒−𝛽𝑧

}
(B.1)

where 𝐽𝑚 is the cylindrical Bessel function of order

𝑘2𝑟 − 𝛽2 = 𝑘2. (B.2)

Using the boundary condition that
𝜕𝑝𝐵

𝜕𝑟
|𝑟=𝑏 = 0, (B.3)

and assuming axial symmetry (only the𝑚 = 0 modes) it follows that

𝜕𝐽0
𝜕𝑟

(𝑘𝑟𝑏) |𝑟=𝑏 = 0. (B.4)

Discontinuity

Added acoustic mass packet

z

Domain B

Domain C

pB
pCb c

Figure B.1 – Schematic of a discontinuity at the interface between two tubes with dierent radius. Domain B is the smaller tube
and domain C is the larger tube. The radius of the tube in domain B is 𝑏, and the radius of the tube in domain C is 𝑐 .
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Assuming that 𝛼𝑘 is the 𝑘 th zero of 𝐽 ′0 (𝑥), we can write for 𝑘𝑟,𝑘 :

𝑘𝑟,𝑘 =
𝛼𝑘

𝑏
. (B.5)

Hence we nd the following reduced expression for the pressure in tube 𝐵:

𝑝𝐵 = 𝐵00 exp (𝑖𝑘𝑧) + 𝐵10 exp (−𝑖𝑘𝑧) +
∞∑︁
𝑛=1

𝐵𝑛 𝐽0
(
𝛼𝑛
𝑟

𝑏

) { 𝑒𝛽𝑛𝑧

𝑒−𝛽𝑛𝑧

}
, (B.6)

where accordingly,
𝛽2
𝑘
=

(𝛼𝑘
𝑏

)2
− 𝑘2 (B.7)

For 𝑘2 < (𝛼𝑘/𝑏)2, 𝛽2𝑘 > 0, the modes are evanescent. And since we only allow nite solutions for 𝑧 ≤ 0, the
nal results for 𝑝𝐵 is

𝑝𝐵 = 𝐵00 exp (𝑖𝑘𝑧) + 𝐵10 exp (−𝑖𝑘𝑧) +
∞∑︁
𝑛=1

𝐵𝑛 𝐽0
(
𝛼𝑛
𝑟

𝑏

)
𝑒𝛽𝑛𝑧, (B.8)

where 𝛽𝑛 is dened as the positive root of the r.h.s. of Eq. B.7. We simplify this relation to:

𝑝𝐵 (𝑧) = 𝑝0𝐵 (𝑧) +
∞∑︁
𝑛=1

𝐵𝑛 𝐽0
(
𝛼𝑛
𝑟

𝑏

)
𝑒𝛽𝑛𝑧 . (B.9)

For the velocity we nd

𝑢𝐵 (𝑧) = 𝑢0𝐵 (𝑧) +
∞∑︁
𝑛=1

𝑌𝐵,𝑛𝐵𝑛 𝐽0
(
𝛼𝑛
𝑟

𝑏

)
𝑒𝛽𝑛𝑧, (B.10)

where
𝑌𝐵,𝑛 =

𝑖𝛽𝑛

𝜔𝜌0
. (B.11)

Similarly, for the positive 𝑧 we nd

𝑝𝐶 (𝑧) = 𝑃0𝐶 (𝑧) +
∞∑︁

𝑚=1
𝐶𝑚 𝐽0

(
𝛼𝑚

𝑟

𝑐

)
𝑒−𝛾𝑚𝑧, (B.12)

where

𝛾𝑚 =

√︂(𝛼𝑚
𝑐

)2
− 𝑘2. (B.13)

and

𝑢𝐶 (𝑧) = 𝑢0𝐶 (𝑧) +
∞∑︁

𝑚=1
𝑌𝐶,𝑚𝐶𝑚 𝐽0

(
𝛼𝑚

𝑟

𝑐

)
𝑒−𝛾𝑚𝑧, (B.14)

where
𝑌𝐶,𝑚 = − 𝑖𝛾𝑚

𝜔𝜌0
(B.15)

B.1 Boundary conditions

At the interface (𝑧 = 0), the following boundary conditions are valid:

𝑢𝐵 |𝑧=0 = 𝑢𝐶 |𝑧=0 0 ≤ 𝑟 ≤ 𝑏 (B.16)
𝑢𝐶 |𝑧=0 = 0 𝑏 ≤ 𝑟 ≤ 𝑐 (B.17)

𝑝𝐵 = 𝑝𝐶 0 ≤ 𝑟 ≤ 𝑏 (B.18)

Taking Eq. B.16, multiply by 𝑟 and integrating from 0 to 𝑐 , taking into account Eq. B.17 yields:

𝑏2𝑢0𝐵 = 𝑐2𝑢0𝐶 (B.19)
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We require one more equation at the interface, which is found from the continuity boundary conditions as
well. Multiplying Eq. B.16 with 𝐽0 (𝛼𝑞 𝑟

𝑐
)𝑟 and integrating setting 𝑞 =𝑚 and dividing by 𝑏𝑐 yields:

𝑢0𝐵 𝐽1 (𝛼𝑚𝜌)
1
𝛼𝑞

+
∞∑︁
𝑛=1

𝑌𝐵,𝑛𝑇𝑚𝑛𝐵𝑛 = 𝑌𝐶,𝑚
1
2𝜌

−1 𝐽0 (𝛼𝑚)2𝐶𝑚, (B.20)

where
𝑇𝑚𝑛 =

𝛼𝑚

𝛼2𝑚 − 𝛼2
𝑛

𝜌2

𝐽0 (𝛼𝑛) 𝐽1 (𝛼𝑚𝜌) . (B.21)

Setting 𝑝𝐵 = 𝑝𝐶

𝑝0𝐵 = 𝑝0𝐶 + 2
∞∑︁

𝑚=1

𝐽1 (𝛼𝑚𝜌)
𝜌𝛼𝑚

𝐶𝑚 (B.22)

𝐵𝑛 𝐽0 (𝛼𝑛)2 = 2
𝜌

∞∑︁
𝑚=1

𝑇𝑚𝑛𝐶𝑚 (B.23)

∞∑︁
𝑛=1

2𝛼𝑛
𝐽0 (𝛼𝑛)2𝑇𝑚𝑛

∞∑︁
𝑞=1

𝑇𝑞𝑛𝐷𝑞 + 1
2𝜌𝛼𝑚 𝐽0 (𝛼𝑚)

2𝐷𝑚 = 𝐽1 (𝛼𝑚𝜌) 𝜌
𝛼𝑚

, (B.24)

where
𝐷𝑚 =

𝐶𝑚

𝑖𝑘𝑏𝑢0
𝐵
𝑧0

(B.25)

Eq. B.24 is a set of innite equations in terms of an innite number of unknowns for 𝐷𝑚 . In matrix algebra
for a nite set, this can be written as

(𝑴1 ·𝑴2 + 𝑲 ) · 𝑫 = 𝑹 (B.26)

where

𝑀1,𝑖 𝑗 =
2𝛼 𝑗

𝐽0 (𝛼 𝑗 )2𝑇𝑖 𝑗 (B.27)

𝑀2,𝑖 𝑗 = 𝑇𝑗𝑖 (B.28)

𝐾𝑖 𝑗 =
1
2𝜌𝛼 𝑗 𝐽0 (𝛼 𝑗 )2 ; 𝑖 = 𝑗 (B.29)

𝐾𝑖 𝑗 = 0 ; 𝑖 ≠ 𝑗 (B.30)

𝑅𝑖 = 𝐽1 (𝛼𝑖𝜌) 𝜌
𝛼𝑞

(B.31)

Finally, the added acoustic mass,
𝑝0𝐶 = 𝑝0𝐵 − 𝑖𝜔𝑀𝐴𝑈𝐵, (B.32)

can be computed as

𝜌0

∞∑︁
𝑚=1

2
𝜋𝑏

𝐽1 (𝛼𝑚𝜌)
𝜌𝛼𝑚

𝐷𝑚 (B.33)

For a given velocity 𝑢𝐶,0 the velocity prole at 𝑧 = 0 is

𝑢𝐶 = 𝑢0𝐶 + 𝑏𝑢0𝐵
∞∑︁

𝑚=1
𝛾𝑚𝐷𝑚 𝐽0

(
𝛼𝑚

𝑟

𝑐

)
(B.34)
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