#LyX 2.3 created this file. For more info see http://www.lyx.org/ \lyxformat 544 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass memoir \begin_preamble \input{tex/preamble.tex} \end_preamble \options a4paper \use_default_options true \maintain_unincluded_children false \language american \language_package babel \inputencoding utf8 \fontencoding global \font_roman "libertine" "FreeSerif" \font_sans "default" "Courier New" \font_typewriter "default" "default" \font_math "libertine-ntxm" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures false \graphics default \default_output_format pdf2 \output_sync 1 \output_sync_macro "\synctex=1" \bibtex_command biber \index_command default \paperfontsize default \spacing single \use_hyperref true \pdf_author "Dr.ir. J.A. de Jong - ASCEE" \pdf_bookmarks true \pdf_bookmarksnumbered false \pdf_bookmarksopen false \pdf_bookmarksopenlevel 1 \pdf_breaklinks false \pdf_pdfborder true \pdf_colorlinks true \pdf_backref false \pdf_pdfusetitle true \papersize default \use_geometry true \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 0 \use_minted 0 \index Index \shortcut idx \color #008000 \end_index \leftmargin 3cm \topmargin 3cm \rightmargin 2.5cm \bottommargin 3.5cm \headsep 1cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash thispagestyle{empty} \end_layout \end_inset \end_layout \begin_layout Title LRFTubes documentation - v1.0 \end_layout \begin_layout Author Dr.ir. J.A. de Jong \end_layout \begin_layout Standard \align center \begin_inset Graphics filename img_default/ascee_beeldmerk.pdf width 65text% \end_inset \end_layout \begin_layout Standard \begin_inset VSpace vfill \end_inset \end_layout \begin_layout Standard \begin_inset VSpace bigskip \end_inset \end_layout \begin_layout Standard \begin_inset Tabular \begin_inset Text \begin_layout Plain Layout \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout ASCEE \begin_inset Newline newline \end_inset Vildersveenweg 19 \begin_inset Newline newline \end_inset 7443 RZ Nijverdal \begin_inset Newline newline \end_inset The Netherlands \begin_inset Newline newline \end_inset \end_layout \begin_layout Plain Layout T: \begin_inset space \hspace{} \length -1.8cm \end_inset \begin_inset ERT status open \begin_layout Plain Layout \backslash phantom{info@ascee.nl} \end_layout \end_inset +31 6 18971622 \begin_inset Newline newline \end_inset E: \begin_inset space \hspace{} \length -1.8cm \end_inset \begin_inset ERT status open \begin_layout Plain Layout \backslash phantom{+31 6 18971622} \end_layout \end_inset info@ascee.nl \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Internal document ID: \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 628318 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Document status: \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Draft \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Document revision: \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout Revision history: \end_layout \end_inset \begin_inset Text \begin_layout Plain Layout 2018-02-21: rev. 1 \end_layout \end_inset \end_inset \end_layout \begin_layout Standard Copyright ( \begin_inset ERT status open \begin_layout Plain Layout \backslash textcopyright \end_layout \end_inset ) \begin_inset ERT status open \begin_layout Plain Layout \backslash the \backslash year \backslash \end_layout \end_inset ASCEE. All rights reserved. \end_layout \begin_layout Standard \begin_inset Newpage clearpage \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash pagestyle{fancy} \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset CommandInset toc LatexCommand tableofcontents \end_inset \end_layout \begin_layout Standard \begin_inset Newpage clearpage \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout % \backslash cleardoublepage \end_layout \begin_layout Plain Layout \backslash markboth{ \backslash nomname}{ \backslash nomname}% maybe with \backslash MakeUppercase \end_layout \begin_layout Plain Layout \backslash addcontentsline{toc}{chapter}{List of symbols} \end_layout \begin_layout Plain Layout \backslash setlength{ \backslash nomitemsep}{-0.2pt} \end_layout \begin_layout Plain Layout \backslash thispagestyle{empty} \end_layout \begin_layout Plain Layout % Roman (A) \end_layout \begin_layout Plain Layout \end_layout \end_inset \begin_inset Note Note status open \begin_layout Plain Layout Unused: \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{e}_x$" description "Unit vector in $x$-direction\\nomunit{-}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$H$" description "Total enthalpy per unit mass \\nomunit{\\si{\\joule\\per\\kilogram}}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{I}$" description "Identity tensor\\nomunit{-}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$h_\\nu$" description "Viscothermal shape function for the velocity\\nomunit{-}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$h_\\kappa$" description "Viscothermal shape function for the temperature\\nomunit{-}" literal "true" \end_inset \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$E$" description "Total energy per unit mass \\nomunit{\\si{\\joule\\per\\kilogram}}" literal "true" \end_inset \end_layout \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$c$" description "Speed of sound\\nomunit{\\si{\\metre\\per\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$c_p$" description "Specific heat at constant pressure \\nomunit{\\si{\\joule\\per\\kilogram\\kelvin}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$c_s$" description "Specific heat of the solid\\nomunit{\\si{\\joule\\per\\kilogram\\kelvin}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$c_v$" description "Specific heat at constant density \\nomunit{\\si{\\joule\\per\\kilogram\\kelvin}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$D$" description "Diameter\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$f_\\kappa$" description "Thermal Rott function \\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$f_\\nu$" description "Viscous Rott function \\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$f$" description "Frequency\\nomunit{\\si{\\hertz}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$i$" description "Imaginary unit\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$J_\\alpha$" description "Bessel function of the first kind and order $\\alpha$\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$k$" description "Wave number\\nomunit{\\si{\\radian\\per\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$L$" description "Length\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\ell$" description "Characteristic length scale of a fluid space \\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$N$" description "Number of\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{n}$" description "Normal vector pointing from the solid into the fluid\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$p$" description "Pressure, acoustic pressure \\nomunit{\\si{\\pascal}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$r_h$" description "Hydraulic radius \\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{r}$" description "Transverse position vector\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$S$" description "Cross-sectional area, surface area\\nomunit{\\si{\\square\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$t$" description "Time \\nomunit{\\si{\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$T$" description "Temperature\\nomunit{\\si{\\kelvin}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{u}$" description "Velocity vector\\nomunit{\\si{\\metre\\per\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$u$" description "Velocity in wave propagation direction\\nomunit{\\si{\\metre\\per\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$U$" description "Volume flow\\nomunit{\\si{\\cubic\\metre\\per\\second}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$V$" description "Volume \\nomunit{\\si{\\cubic\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$\\mathbf{x}$" description "Position vector \\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$z$" description "Specific acoustic impedance\\nomunit{\\si{\\pascal\\second\\per\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$Z$" description "Volume flow impedance\\nomunit{\\si{\\pascal\\second\\per\\cubic\\metre}}" literal "true" \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout % Greek (G) \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout Unused: \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\Delta$" description "Difference\\nonomunit" literal "true" \end_inset \end_layout \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\gamma$" description "Ratio of specific heats\\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\Gamma$" description "Viscothermal wave number for a prismatic duct \\nomunit{\\si{\\radian\\per\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\delta_{\\kappa}$" description "Thermal penetration depth\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\delta_{\\nu}$" description "Viscous penetration depth\\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\epsilon_s$" description "Ideal stack correction factor \\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\lambda$" description "Wavelength \\nomunit{\\si{\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\pi$" description "Ratio of the circumference to the diameter of a circle \\nomunit{-}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "G" symbol "$\\Pi$" description "Wetted perimeter (contact length between solid and fluid) \\nomunit{\\si{\\metre}}" literal "true" \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout % Miscellaneous symbols and operators (M) \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout Unused: \end_layout \begin_layout Plain Layout \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\otimes$" description "Dyadic product\\nonomunit" literal "true" \end_inset \end_layout \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\Re$" description "Real part\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\Im$" description "Imaginary part\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\nabla$" description "Gradient \\nomunit{\\si{\\per\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\nabla^2$" description "Laplacian\\nomunit{\\si{\\per\\square\\metre}}" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\sim$" description "Same order of magnitude\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\left\\Vert \\bullet \\right\\Vert $" description "Eucledian norm\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "d" description "Infinitesimal\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\partial$" description "Infinitesimal\\nonomunit" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "M" symbol "$\\bullet$" description "Placeholder for an operand\\nonomunit" literal "true" \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout % Subscripts (S) \end_layout \begin_layout Plain Layout \end_layout \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "wall" description "At the wall" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "0" description "Evaluated at the reference condition" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$f$" description "Fluid" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$s$" description "Solid" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$w$" description "Wall" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$R$" description "Right side" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$L$" description "Left side" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$s$" description "Solid" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$s$" description "Squeeze" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$i$" description "Inner" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$o$" description "Outer" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "S" symbol "$t$" description "Tube" literal "true" \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout % Often used abbreviations (O) \end_layout \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "O" symbol "Sec(s)." description "Section(s)" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "O" symbol "Eq(s)." description "Equation(s)" literal "true" \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "O" symbol "LRF" description "Low Reduced Frequency" literal "true" \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash printnomenclature[1.8cm] \end_layout \end_inset \end_layout \begin_layout Chapter Overview of \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset \end_layout \begin_layout Section Introduction \end_layout \begin_layout Standard Welcome to the documentation of \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset . \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubes \backslash \end_layout \end_inset is a numerical code to solve one-dimensional acoustic duct systems using the transfer matrix method. Segments can be connected to generate simple one-dimensional acoustic systems to model acoustic propagation problems in ducts in the frequency domain. Viscothermal dissipation mechanisms are taken into account such that the damping effects can be modeled accurately, below the cut-on frequency of the duct. For more information regarding the models and the theory behind the models, the reader is referred to the work of \begin_inset CommandInset citation LatexCommand cite key "van_der_eerden_noise_2000" literal "true" \end_inset , \begin_inset CommandInset citation LatexCommand cite key "kampinga_viscothermal_2010" literal "true" \end_inset and \begin_inset CommandInset citation LatexCommand cite key "ward_deltaec_2017" literal "true" \end_inset . \end_layout \begin_layout Standard This documentation serves as a reference for the implemented models. For examples on how to use the code, please take a look at the example models as worked out in the IPython Notebooks. For installation instructions, please refer the the \begin_inset CommandInset href LatexCommand href name "README" target "https://github.com/asceenl/lrftubes" literal "false" \end_inset in the main repository. \end_layout \begin_layout Standard This document is very brief on the theory and it is assumed that the reader has some knowledge on the basics of acoustics in general and viscothermal acoustics as well. If you are not falling in this category, I would please refer you first to the book of Swift \begin_inset CommandInset citation LatexCommand cite key "swift_thermoacoustics:_2003" literal "true" \end_inset . A more detailed introduction to the notation used in this documentation can be found in the PhD thesis of de Jong \begin_inset CommandInset citation LatexCommand cite key "de_jong_numerical_2015" literal "true" \end_inset . \end_layout \begin_layout Standard Besides that, if you find the work interesting, but you are not sure how to apply it, please contact ASCEE for more information. \end_layout \begin_layout Section License and disclaimer \end_layout \begin_layout Standard Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials related to such distribution and use acknowledge that the software was developed by the ASCEE. The name of the ASCEE may not be used to endorse or promote products derived from this software without specific prior written permission. \begin_inset Newline newline \end_inset \end_layout \begin_layout Standard THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIE S, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. \end_layout \begin_layout Section Features \end_layout \begin_layout Standard Currently the \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset code provides acoustic models for the following physical entities: \end_layout \begin_layout Itemize Prismatic ducts with circular cross section, \end_layout \begin_layout Itemize Prismatic ducts with triangular cross section, \end_layout \begin_layout Itemize Prismatic ducts with parallel plate cross section, \end_layout \begin_layout Itemize Prismatic ducts with square cross section, \end_layout \begin_layout Itemize Acoustic compliance volumes \end_layout \begin_layout Itemize Discontinuity correction \end_layout \begin_layout Itemize End correction for a baffled piston \end_layout \begin_layout Itemize Lumped series impedance \end_layout \begin_layout Standard These segments can be connected to form one-dimensional acoustic systems to model wave propagation below the cut-on frequency of higher order modes. For a circular cross section, the cut-on frequency is \begin_inset CommandInset citation LatexCommand cite key "van_der_eerden_noise_2000" literal "true" \end_inset : \begin_inset Formula \begin{equation} f_{c}\approx\frac{c_{0}}{3.4r}, \end{equation} \end_inset where \begin_inset Formula $r$ \end_inset is the tube radius and \begin_inset Formula $c_{o}$ \end_inset is the speed of sound. Above the cut-on frequency, besides evanescent waves, there are also propagatin g waves with a non-constant pressure distribution along the cross section of the duct. \end_layout \begin_layout Subsection Limitations and future features \end_layout \begin_layout Standard The current version of has some limitations that will be resolved in a future release. These are: \end_layout \begin_layout Subsubsection Ducts with (turbulent) flow \end_layout \begin_layout Standard For thermoacoustic and HVAC (Heating, ventilation and Air Conditioning) duct modeling it is imperative that mean flows can be taken into account. An acoustic wave superimposed on a mean flow results in asymmetric wave propagation. More specifically, the phase velocity is higher in the direction of the mean flow, and slower in the opposite direction. In a future release, we will provide models for ducts including a mean flow. \end_layout \begin_layout Subsubsection Porous acoustic absorbers \end_layout \begin_layout Standard To model absorption of sound, a one-dimensional porous material model should be implemented. This work has been postponed to a later stage. \end_layout \begin_layout Section Overview of this documentation \end_layout \begin_layout Standard The next chapter of this documentation will describe the basic framework of the \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset code: the transfer matrix method. After that, in Chapter \begin_inset CommandInset ref LatexCommand ref reference "chap:Provided-acoustic-models" \end_inset , an overview of the provided acoustic models is given, with which acoustic networks can be built. For each of the segments, the resulting transfer matrix model is derived. \end_layout \begin_layout Chapter The transfer matrix method \end_layout \begin_layout Section Introduction \end_layout \begin_layout Standard Each part of an acoustic system in \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset is modeled using a so-called transfer matrix. A transfer matrix maps the state quantities on one side of the segment (node) to the other side of the segment (node). \end_layout \begin_layout Standard For one-dimensional wave propagation, analytical solutions for the velocity, temperature and density field in the transverse direction can be found. The state variables in frequency domain satisfy a system of first order ordinary differential equations. Once the solution is known on one end of a segment, the solution on the other end can be deduced. The transfer matrix couples the state variables \begin_inset Formula $\boldsymbol{\phi}$ \end_inset on one end of a segment to the other end, in frequency domain: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \boldsymbol{\phi}_{R}(\omega)=\boldsymbol{T}(\omega)\boldsymbol{\phi}_{L}(\omega)+\mathbf{s}(\omega), \end{equation} \end_inset where \begin_inset Formula $L$ \end_inset and \begin_inset Formula $R$ \end_inset denote the left and right side, respectively, \begin_inset Formula $\boldsymbol{T}$ \end_inset denotes the transfer matrix and \begin_inset Formula $\boldsymbol{s}$ \end_inset is a source term. In the code and in this documentation \begin_inset Formula $e^{+i\omega t}$ \end_inset convention is used. A common choice of state variables is such that their product has the unit of power. For the acoustic systems in this work the state variables are acoustic pressure \begin_inset Formula $p\left(\omega\right)$ \end_inset and volume flow \begin_inset Formula $U\left(\omega\right)$ \end_inset . The acoustic power flow can then be computed as: \begin_inset Formula \begin{equation} E=\frac{1}{2}\Re\left[pU^{*}\right], \end{equation} \end_inset where \begin_inset Formula $\Re[\bullet]$ \end_inset denotes the real part of \begin_inset Formula $\bullet$ \end_inset , and * denotes the complex conjugation. \end_layout \begin_layout Section Example transfer matrix of an acoustic duct \end_layout \begin_layout Standard This section will provide the derivation of the transfer matrix of a simple acoustic duct. Starting with the isentropic acoustic continuity and momentum equation : \begin_inset Formula \begin{align} \frac{1}{c_{0}^{2}}\frac{\partial\hat{p}}{\partial\hat{t}}+\rho_{0}\nabla\cdot\hat{\boldsymbol{u}} & =0,\\ \rho_{0}\frac{\partial\hat{\boldsymbol{u}}}{\partial t}+\nabla\hat{p} & =0. \end{align} \end_inset The next step is to transform these equations to frequency domain and assuming only wave propagation in the \begin_inset Formula $x-$ \end_inset direction, integrating over the cross section we find: \begin_inset Formula \begin{align} \frac{i\omega}{c_{0}^{2}}p+\frac{\rho_{0}}{S_{f}}\frac{\mathrm{d}U}{\mathrm{d}x} & =0,\label{eq:contU}\\ \rho_{0}i\omega U+S_{f}\frac{\mathrm{d}p}{\mathrm{d}x} & =0,\label{eq:momU} \end{align} \end_inset where \begin_inset Formula $U$ \end_inset denotes the acoustic volume flow in \begin_inset ERT status open \begin_layout Plain Layout \backslash si{ \backslash cubic \backslash metre \backslash per \backslash second} \end_layout \end_inset . Eqs. ( \begin_inset CommandInset ref LatexCommand ref reference "eq:contU" \end_inset - \begin_inset CommandInset ref LatexCommand ref reference "eq:momU" \end_inset ) is a coupled set of ordinary differential equations, which can be solved for the acoustic pressure to find \begin_inset Formula \begin{equation} p(x)=A\exp\left(-ikx\right)+B\exp\left(ikx\right),\label{eq:HH_sol_prismaticinviscid} \end{equation} \end_inset where \begin_inset Formula $A$ \end_inset and \begin_inset Formula $B$ \end_inset are constants, to be determined from the boundary conditions. Setting \begin_inset Formula $p=p_{L}$ \end_inset , and \begin_inset Formula $U=U_{L}$ \end_inset at \begin_inset Formula $x=0$ \end_inset , we can solve for the acoustic pressure, upon using Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:momU" \end_inset as: \begin_inset Formula \begin{equation} p(x)=p_{L}\cos\left(kx\right)-iZ_{0}\sin\left(kx\right)U_{L}, \end{equation} \end_inset and for the acoustic volume flow we find: \begin_inset Formula \begin{equation} U(x)=U_{L}\cos\left(kx\right)-\frac{i}{Z_{0}}\sin\left(kx\right)p_{L}. \end{equation} \end_inset Now, we have all ingredients to derive the transfer matrix of an acoustic duct. Setting \begin_inset Formula $p(x=L)=p_{R}$ \end_inset , and \begin_inset Formula $U(x=L)=U_{R}$ \end_inset , we find the following two-port coupling between the pressure and the velocity from the left side of the duct to the right side of the duct: \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} =\left[\begin{array}{cc} \cos\left(kL\right) & -iZ_{0}\sin\left(kL\right)\\ -iZ_{0}^{-1}\sin\left(kL\right) & \cos\left(kL\right) \end{array}\right]\left\{ \begin{array}{c} p_{L}\\ U_{L} \end{array}\right\} .\label{eq:transfer_inviscid} \end{equation} \end_inset \end_layout \begin_layout Section Setting up the system of equations \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset has been set up to solve systems of acoustic segments such as this prismatic duct. The advantage of the transfer matrix method is the ease with which mixed (impedance/pressure/velocity) boundary conditions can be implemented. \end_layout \begin_layout Standard In this section, the assembly of the global system of equations is explained. The state variables of each segment are stacked in a column vector \series bold \begin_inset Formula $\boldsymbol{\phi}_{\mbox{sys}}$ \end_inset \series default , which has the size of \begin_inset Formula $4N_{\mbox{segs}}$ \end_inset , where \begin_inset Formula $N_{\mbox{segs}}$ \end_inset denotes the number of segments in the system. The coupling equations between the nodes of each segment, are the transfer matrices. Since the transfer matrices are \begin_inset Formula $2\times2$ \end_inset , this fills only half of the required amount of equations. The other half is filled with boundary conditions. Each segments transfer matrix can be regarded as the element matrix, which all have a form like: \begin_inset Formula \begin{equation} \boldsymbol{\phi}_{R}=\boldsymbol{T}\cdot\boldsymbol{\phi}_{L}+\boldsymbol{s}, \end{equation} \end_inset where \begin_inset Formula $\boldsymbol{\phi}_{L},\boldsymbol{\phi}_{R}$ \end_inset are the state vectors on the left and right sides of the segment, respectively, \begin_inset Formula $\boldsymbol{T}$ \end_inset is the transfer matrix, and \begin_inset Formula $\boldsymbol{s}$ \end_inset is a source term. \end_layout \begin_layout Standard There are two kind of boundary conditions, called external and internal boundary conditions. External boundary conditions apply where a prescribed condition is given, such as a prescribed pressure, voltage, volume flow, current or acoustic/electr ic impedance. Internal boundary conditions are used to couple different segments at a connection point, which is recognized by a shared node number. At a connection point, the effort variable is shared, which means that the pressure at the node is equal for each connected segment sharing the node. The flow variable is conserved, so the sum of the volume flow out of all segments connected at the node is 0. \end_layout \begin_layout Subsection* Example: two ducts \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/tfm_expl.pdf width 80text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Example of two simple duct segments connected together. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:coupling_example" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard This procedure of creating a system matrix is explained by an example where only two ducts are coupled. A schematic of the situation is depicted in Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:coupling_example" \end_inset . For the example situation, at the left node of segment (1), an impedance boundary \begin_inset Formula $Z_{L}$ \end_inset is prescribed. The right node of segment (1) is connected to the left node of segment (2), and at the right side of segment (2), a volume flow boundary condition is prescribed of \begin_inset Formula $U_{R}$ \end_inset . The corresponding system of equations for this case is \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \left[\begin{array}{cccc} \mathbf{T}_{1} & -\mathbf{I} & \mathbf{0} & \mathbf{0}\\ \mathbf{0} & \mathbf{0} & \mathbf{T}_{2} & -\mathbf{I}\\ \mathbf{0} & \left[\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right] & \left[\begin{array}{cc} -1 & 0\\ 0 & -1 \end{array}\right] & \mathbf{0}\\ \left[\begin{array}{cc} 1 & Z_{L}\\ 0 & 0 \end{array}\right] & \mathbf{0} & \mathbf{0} & \left[\begin{array}{cc} 0 & 0\\ 0 & 1 \end{array}\right] \end{array}\right]\left\{ \begin{array}{c} p_{1L}\\ U_{1L}\\ p_{1R}\\ U_{1R}\\ p_{2L}\\ U_{2L}\\ p_{2R}\\ U_{2R} \end{array}\right\} =\left\{ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ U_{R} \end{array}\right\} , \end{equation} \end_inset \end_layout \begin_layout Standard In this system matrix, \begin_inset Formula $\mathbf{0}$ \end_inset denotes a \begin_inset Formula $2\times2$ \end_inset sub matrix of zeros and \begin_inset Formula $\mathbf{I}$ \end_inset denotes a \begin_inset Formula $2\times2$ \end_inset identity sub matrix. \begin_inset Formula $\mathbf{T}_{i}$ \end_inset is the transfer matrix of the \begin_inset Formula $i$ \end_inset -th segment. The solution can be obtained by Gaussian elimination, for which in \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset the \family typewriter numpy.linalg.solve() \family default solver is used. Once the solution on the nodes is known, the solution in each segment can be computed as a post processing step. \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset provides some post processing routines to aid in visualization of the acoustic field inside a non-lumped segment, such as an acoustic duct. \end_layout \begin_layout Chapter Provided acoustic models \begin_inset CommandInset label LatexCommand label name "chap:Provided-acoustic-models" \end_inset \end_layout \begin_layout Section Introduction \end_layout \begin_layout Standard This chapter provides a concise overview of the provided acoustic models implemented in \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubes \end_layout \end_inset . \end_layout \begin_layout Section Prismatic duct \begin_inset CommandInset label LatexCommand label name "subsec:Prismatic-duct" \end_inset \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/prsduct.pdf width 80text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Geometry of the prismatic duct \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:prsduct" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard A prismatic duct is used to model one-dimensional acoustic wave propagation. The prismatic duct is implemented in \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset in the \family typewriter PrsDuct \family default class. Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:prsduct" \end_inset shows this segment schematically. In the thermal boundary layer, heat and momentum diffuse to the wall. The thermal boundary layer can be a small layer w.r.t. to the transverse characteristic length scale of the tube, or can fully occupy the tube. In the latter case, the solution converges to the classic laminar Poisseuille flow solution. The basic assumptions behind this model are \end_layout \begin_layout Itemize Prismatic cross sectional area. \end_layout \begin_layout Itemize \begin_inset Formula $L\gg r_{h}$ \end_inset , (tube is long compared to its transverse length scale). \end_layout \begin_layout Itemize Radius is much smaller than the wave length. \end_layout \begin_layout Itemize Wave length is much larger than viscous penetration depth. \end_layout \begin_layout Itemize End effects and entrance effects are negligible. \end_layout \begin_layout Standard For a formal derivation of the model for prismatic cylindrical tubes, the reader is referred to the work of Tijdeman \begin_inset CommandInset citation LatexCommand cite key "tijdeman_propagation_1975" literal "true" \end_inset and Nijhof \begin_inset CommandInset citation LatexCommand cite key "nijhof_viscothermal_2010" literal "true" \end_inset . For a somewhat more pragmatic derivation, we would like to refer to the work of Swift \begin_inset CommandInset citation LatexCommand cite key "swift_thermoacoustics:_2003,swift_thermoacoustic_1988" literal "true" \end_inset and Rott \begin_inset CommandInset citation LatexCommand cite key "rott_damped_1969" literal "true" \end_inset . \end_layout \begin_layout Standard \begin_inset Formula \begin{align} \frac{\mathrm{d}p}{\mathrm{d}x} & =\frac{\omega\rho_{0}}{i\left(1-f_{\nu}\right)S_{f}}U,\label{eq:momentum_LRF}\\ \frac{\mathrm{d}U}{\mathrm{d}x} & =\frac{k}{iZ_{0}}\left(1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\varepsilon_{s}}\right)p,\label{eq:continuity_LRF} \end{align} \end_inset where \begin_inset Formula $S_{f}$ \end_inset is the cross-sectional area filled with fluid, \begin_inset Formula $k$ \end_inset is the inviscid wave number, and \begin_inset Formula $Z_{0}$ \end_inset the inviscid characteristic impedance of a tube ( \begin_inset Formula $Z_{0}=z_{0}/S_{f}$ \end_inset ). \begin_inset Formula $f_{\nu}$ \end_inset and \begin_inset Formula $f_{\kappa}$ \end_inset are the viscous and thermal Rott functions, respectively \begin_inset CommandInset citation LatexCommand cite key "rott_damped_1969" literal "true" \end_inset . They model the viscous and thermal effects with the wall. For circular tubes, the \begin_inset Formula $f$ \end_inset 's are defined as \begin_inset CommandInset citation LatexCommand cite after "p. 88" key "swift_thermoacoustics:_2003" literal "true" \end_inset : \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} f_{j,\mathrm{circ}}=\frac{J_{1}\left[\left(i-1\right)\frac{2r_{h}}{\delta_{j}}\right]}{\left(i-1\right)\frac{r_{h}}{\delta}J_{0}\left[\left(i-1\right)\frac{2r_{h}}{\delta_{j}}\right]},\label{eq:f_cylindrical} \end{equation} \end_inset \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$j$" description "Index, subscript placeholder\\nomunit{-}" literal "true" \end_inset where \begin_inset Formula $\delta_{j}=\delta_{\nu}$ \end_inset for \begin_inset Formula $f_{\nu,\mathrm{circ}}$ \end_inset and \begin_inset Formula $\delta_{j}=\delta_{\kappa}$ \end_inset for \begin_inset Formula $f_{\kappa,\mathrm{circ}}$ \end_inset . \begin_inset Formula $J_{\alpha}$ \end_inset denotes the cylindrical Bessel function of the first kind and order \begin_inset Formula $\alpha$ \end_inset . \begin_inset Formula $r_{h}$ \end_inset is the hydraulic radius, defined as the ratio of the cross sectional area to the \begin_inset Quotes eld \end_inset wetted perimeter \begin_inset Quotes erd \end_inset : \begin_inset Formula \begin{equation} r_{h}=S_{f}/\Pi. \end{equation} \end_inset Note that for a circular tube with diameter \begin_inset Formula $D$ \end_inset , \begin_inset Formula $r_{h}=\nicefrac{D}{4}$ \end_inset . The parameter \begin_inset Formula $\epsilon_{s}$ \end_inset in Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:continuity_LRF" \end_inset is the ideal solid correction factor, which corrects for solids that have a finite heat capacity. This parameter is dependent on the thermal properties and the geometry of the solid. An example of \begin_inset Formula $\epsilon_{s}$ \end_inset is derived in Section \begin_inset CommandInset ref LatexCommand ref reference "subsec:Thermal-relaxation-effect" \end_inset . For the case of an thermally ideal solid, \begin_inset Formula $\epsilon_{s}$ \end_inset can be set to 0. \end_layout \begin_layout Standard Upon solving for Eqs. \begin_inset CommandInset ref LatexCommand ref reference "eq:momentum_LRF" \end_inset - \begin_inset CommandInset ref LatexCommand ref reference "eq:continuity_LRF" \end_inset , a transfer matrix can be derived which couples the pressure and volume flow on the left side to the right side as: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula \begin{align*} \frac{\mathrm{d}p}{\mathrm{d}x} & =\frac{\omega\rho_{0}}{i\left(1-f_{\nu}\right)S_{f}}U,\\ \frac{\mathrm{d}U}{\mathrm{d}x} & =\frac{k}{iZ_{0}}\left(1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\varepsilon_{s}}\right)p, \end{align*} \end_inset \end_layout \begin_layout Plain Layout We know the solution for \begin_inset Formula $p$ \end_inset is \end_layout \begin_layout Plain Layout \begin_inset Formula $p=A\exp\left(-i\Gamma x\right)+B\exp\left(i\Gamma x\right)$ \end_inset where \begin_inset Formula $\Gamma^{2}=k^{2}\frac{\left(1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\varepsilon_{s}}\right)}{1-f_{\nu}}$ \end_inset \end_layout \begin_layout Plain Layout Then \end_layout \begin_layout Plain Layout \begin_inset Formula $U=\frac{i\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\frac{\mathrm{d}p}{\mathrm{d}x}=\frac{i\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\Gamma i\left(-A\exp\left(-i\Gamma x\right)+B\exp\left(i\Gamma x\right)\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $U=-\frac{\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\Gamma\left(B\exp\left(i\Gamma x\right)-A\exp\left(-i\Gamma x\right)\right)$ \end_inset \end_layout \begin_layout Plain Layout Now: \begin_inset Formula $p(x=0)=p_{L}$ \end_inset \end_layout \begin_layout Plain Layout And: \begin_inset Formula $U(x=0)=U_{L}$ \end_inset \end_layout \begin_layout Plain Layout Then: \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{L}=\frac{\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\Gamma\left(A-B\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p_{L}=A+B\Rightarrow B=p_{L}-A$ \end_inset \end_layout \begin_layout Plain Layout Hence: \end_layout \begin_layout Plain Layout \begin_inset Formula $U_{L}=\frac{\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\Gamma\left(2A-p_{L}\right)$ \end_inset or \begin_inset Formula $A=\frac{1}{2}p_{L}+\frac{1}{2}\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f}\Gamma}U_{L}$ \end_inset \end_layout \begin_layout Plain Layout And: \begin_inset Formula $B=p_{L}-A=\frac{1}{2}p_{L}-\frac{1}{2}\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f}\Gamma}U_{L}$ \end_inset \end_layout \begin_layout Plain Layout So, finally for \begin_inset Formula $p$ \end_inset we find: \end_layout \begin_layout Plain Layout \begin_inset Formula $p=\left(\frac{1}{2}p_{L}+\frac{1}{2}\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f}\Gamma}U_{L}\right)\exp\left(-i\Gamma x\right)+\left(\frac{1}{2}p_{L}-\frac{1}{2}\frac{\omega\rho_{0}}{\left(1-f_{\nu}\right)S_{f}\Gamma}U_{L}\right)\exp\left(i\Gamma x\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p=\left(\frac{1}{2}p_{L}+\frac{1}{2}Z_{c}U_{L}\right)\exp\left(-i\Gamma x\right)+\left(\frac{1}{2}p_{L}-\frac{1}{2}Z_{c}U_{L}\right)\exp\left(i\Gamma x\right)$ \end_inset where \begin_inset Formula $Z_{c}=\frac{kZ_{0}}{\left(1-f_{\nu}\right)\Gamma}$ \end_inset \end_layout \begin_layout Plain Layout Or, working to transfer matrices \end_layout \begin_layout Plain Layout \begin_inset Formula $p=\frac{1}{2}p_{L}\exp\left(-i\Gamma x\right)+\frac{1}{2}Z_{c}U_{L}\exp\left(-i\Gamma x\right)+\frac{1}{2}p_{L}\exp\left(i\Gamma x\right)-Z_{c}U_{L}\exp\left(i\Gamma x\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p=p_{L}\cos\left(\Gamma x\right)+\frac{1}{2}Z_{c}U_{L}\exp\left(-i\Gamma x\right)-Z_{c}U_{L}\exp\left(i\Gamma x\right)$ \end_inset \end_layout \begin_layout Plain Layout Using the rule: \begin_inset Formula $\sin\left(x\right)=\frac{1}{2i}\left(e^{ix}-e^{-ix}\right)$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $p=p_{L}\cos\left(\Gamma x\right)-iZ_{c}U_{L}\sin\left(\Gamma x\right)$ \end_inset \end_layout \begin_layout Plain Layout Using \end_layout \begin_layout Plain Layout \begin_inset Formula $U=\frac{i\left(1-f_{\nu}\right)S_{f}}{\omega\rho_{0}}\frac{\mathrm{d}p}{\mathrm{d}x}=\frac{i}{Z_{c}}\left[-p_{L}\sin\left(\Gamma x\right)-iZ_{c}U_{L}\cos\left(\Gamma x\right)\right]=\left[-\frac{i}{Z_{c}}p_{L}\sin\left(\Gamma x\right)+U_{L}\cos\left(\Gamma x\right)\right]$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \left\{ \begin{array}{c} p_{R}\\ U_{R} \end{array}\right\} =\left[\begin{array}{cc} \cos\left(\Gamma L\right) & -iZ_{c}\sin\left(\Gamma L\right)\\ -iZ_{c}^{-1}\sin\left(\Gamma L\right) & \cos\left(\Gamma L\right) \end{array}\right]\left\{ \begin{array}{c} p_{L}\\ U_{L} \end{array}\right\} ,\label{eq:transfer_matrix_prismatic_duct} \end{equation} \end_inset where \begin_inset Formula $Z_{c}$ \end_inset is the characteristic impedance of the duct, i.e. the impedance \begin_inset Formula $p/U$ \end_inset of a plane (although damped) propagating wave: \begin_inset Formula \begin{equation} Z_{c}=\frac{kZ_{0}}{\left(1-f_{\nu}\right)\Gamma}.\label{eq:Z_c_prismduct} \end{equation} \end_inset The parameter \begin_inset Formula $\Gamma$ \end_inset in Eqs. \begin_inset CommandInset ref LatexCommand ref reference "eq:transfer_matrix_prismatic_duct" \end_inset and \begin_inset CommandInset ref LatexCommand ref reference "eq:Z_c_prismduct" \end_inset is the viscothermal wave number, i.e. the wave number corrected for viscothermal losses: \begin_inset Formula \begin{equation} \Gamma=k\sqrt{\frac{1+\tfrac{\left(\gamma-1\right)f_{\kappa}}{1+\epsilon_{s}}}{1-f_{\nu}}}.\label{eq:Gamma} \end{equation} \end_inset Due to the numerical implementation of the Bessel functions in many libraries, the \begin_inset Formula $f_{j}$ \end_inset function for cylindrical ducts (Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:f_cylindrical" \end_inset ) cannot be computed for high \begin_inset Formula $r_{h}/\delta$ \end_inset by computing this ratio \begin_inset Formula $J_{1}/J_{0}$ \end_inset . The numerical result starts to break down at \begin_inset Formula $r_{h}/\delta\sim100$ \end_inset . To resolve this problem, the \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset code applies a smooth transition from the Bessel function ratio to the boundary layer limit solution for \begin_inset Formula $f$ \end_inset : \begin_inset Formula \begin{equation} f_{j,\mathrm{bl}}=\frac{\left(1-i\right)\delta_{j}}{2r_{h}} \end{equation} \end_inset in the range of \begin_inset Formula $1000.07$ \end_inset . To limit possible faulty results, the \begin_inset ERT status open \begin_layout Plain Layout \backslash lrftubess \end_layout \end_inset code gives a warning when the tube ratio is chosen such that an invalid \begin_inset Formula $\chi$ \end_inset is computed. When an \begin_inset Formula $\alpha<0.07$ \end_inset is desired, the user should choose a higher value of \begin_inset Formula $N$ \end_inset . \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/chi_vs_alpha.pdf width 90text% \end_inset \end_layout \begin_layout Plain Layout \begin_inset Caption Standard \begin_layout Plain Layout \begin_inset Formula $\chi$ \end_inset vs \begin_inset Formula $\alpha$ \end_inset for different truncations \begin_inset Formula $\left(N\right)$ \end_inset of the infinite system of equations. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:chi_vs_alpha" \end_inset \end_layout \end_inset \end_layout \begin_layout Section Hard wall \end_layout \begin_layout Standard A hard wall is the wall perpendicular to the wave propagation direction. Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:hardwall" \end_inset shows the schematic configuration for this segment. Due to thermal relaxation a hard wall consumes acoustic energy is consumed. The hard wall segment models this thermal relaxation loss. The assumptions behind the model are: \end_layout \begin_layout Itemize Normal incident waves. \end_layout \begin_layout Itemize Uniform normal velocity. \end_layout \begin_layout Itemize The wavelength is much larger than the thermal penetration depth ( \begin_inset Formula $\lambda\gg\delta_{\kappa}$ \end_inset ). \end_layout \begin_layout Standard We can derive the following impedance boundary condition \begin_inset CommandInset citation LatexCommand cite after "p. 157" key "ward_deltaec_2017" literal "true" \end_inset : \begin_inset Note Note status collapsed \begin_layout Plain Layout Delta EC User guide: \end_layout \begin_layout Plain Layout \begin_inset Formula \[ U_{R}=U_{L}-\frac{\omega p}{\rho_{0}c_{0}^{2}}\frac{\gamma-1}{1+\epsilon_{s}}S\frac{\delta_{\kappa}}{2} \] \end_inset \end_layout \begin_layout Plain Layout Or: \end_layout \begin_layout Plain Layout \begin_inset Formula \[ U_{L}=\frac{k}{z_{0}}\frac{\gamma-1}{1+\epsilon_{s}}S\frac{\delta_{\kappa}}{2}p \] \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} U=k\delta_{\kappa}\frac{S}{z_{0}}\frac{\left(\gamma-1\right)\left(1+i\right)}{2\left(1+\epsilon_{s}\right)}p. \end{equation} \end_inset Hence the impedance of a hard wall scales with \begin_inset Formula $Z\sim Z_{0}\frac{\lambda}{\delta_{\kappa}}$ \end_inset . For 1 kHz, this results in \begin_inset Formula $\sim4100Z_{0}$ \end_inset , which is practically already close to \begin_inset Formula $\infty$ \end_inset . Except for really high frequencies this segment can often be replaced with a boundary condition of \begin_inset Formula $U=0$ \end_inset . An important point to make here is that this boundary condition is inconsistent with the LRF solution for 1D wave propagation in ducts, as the velocity profile in a duct is not uniform. This is especially true for the case of small ducts where \begin_inset Formula $r_{h}\sim\delta$ \end_inset . \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/hardwall.pdf width 50text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Schematic of a hard acoustic wall where the thermal boundary layer dissipates a bit of the acoustic energy ( \begin_inset Formula $Z\neq\infty$ \end_inset ). \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:hardwall" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset CommandInset bibtex LatexCommand bibtex bibfiles "lrftubes" options "plain" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash printbibliography \end_layout \end_inset \end_layout \begin_layout Chapter \start_of_appendix Thermal relaxation in thick tubes \end_layout \begin_layout Section \begin_inset CommandInset label LatexCommand label name "subsec:Thermal-relaxation-effect" \end_inset Thermal relaxation effect in thick tubes \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/prsduct_thermal_relax.pdf width 80text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Schematic situation of a tube surrounded by a thick solid. Note that the transverse acoustic temperature is drawn to be not zero at the wall. This happens in case of thermal interaction with a solid with finite thermal effusivity. \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:prsduct-heatwave-solid" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard In this section, a formulation for \begin_inset Formula $\epsilon_{s}$ \end_inset is given for tubes where the temperature wave in the solid is present. Figure \begin_inset CommandInset ref LatexCommand ref reference "fig:prsduct-heatwave-solid" \end_inset shows a schematic overview of the situation. As shown in the figure, the temperature wave accompanied with an acoustic wave results in heat conduction to/from the wall of the tube. To solve this interaction mathematically, the heat equation in the solid has to be solved. For constant thermal conductivity, density and heat capacity the heat equation of the solid is \begin_inset Formula \begin{equation} \rho_{s}c_{s}\frac{\partial\tilde{T}_{s}}{\partial t}=\kappa_{s}\nabla^{2}\tilde{T}_{s}, \end{equation} \end_inset where \begin_inset Formula $\rho_{s},c_{s},\tilde{T}_{s}$ \end_inset and \begin_inset Formula $\kappa_{s}$ \end_inset are the density, specific heat, temperature and thermal conductivity of the solid, respectively. In frequency domain and using cylindrical coordinates, assuming axial symmetry, this can be written as \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$r$" description "Radial position in cylindrical coordinates\\nomunit{\\si{\\m}}" literal "true" \end_inset \begin_inset Formula \begin{equation} \left(r^{2}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial x^{2}}\right)+r\frac{\partial}{\partial r}+\frac{2}{i\delta_{s}^{2}}r^{2}\right)T_{s}=0, \end{equation} \end_inset where \begin_inset Formula $\delta_{s}$ \end_inset is \begin_inset Formula \begin{equation} \delta_{s}=\sqrt{\frac{2\kappa_{s}}{\rho_{s}c_{s}\omega}}. \end{equation} \end_inset Now, since \begin_inset Formula $\partial T_{s}/\partial x\sim\frac{\delta_{s}}{\lambda}\frac{\partial T_{s}}{\partial r}$ \end_inset , the second order derivative of the temperature in the axial direction can be neglected. In that case, the differential equation to solve for is \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\rho_{s}c_{s}i\omega T_{s}=\kappa_{s}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}\right)T_{s}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $-\kappa_{s}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}\right)T_{s}+\rho_{s}c_{s}i\omega T_{s}=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}\right)T_{s}+2\frac{\rho_{s}c_{s}\omega}{2\kappa_{s}i}T_{s}=0$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\delta_{s}^{2}=\frac{2\kappa_{s}}{\rho_{s}c_{s}\omega}$ \end_inset <<< subst \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}\right)T_{s}+\frac{2}{i\delta_{s}^{2}}T_{s}=0$ \end_inset \end_layout \begin_layout Plain Layout Multiply with \begin_inset Formula $r^{2}$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(r^{2}\frac{\partial^{2}}{\partial r^{2}}+r\frac{\partial}{\partial r}+\frac{2}{i\delta_{s}^{2}}r^{2}\right)T_{s}=0$ \end_inset \end_layout \begin_layout Plain Layout Say: \begin_inset Formula $\xi^{2}=\frac{2}{i\delta_{s}^{2}}r^{2}\Rightarrow$ \end_inset \end_layout \begin_layout Plain Layout Then: \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{\partial^{2}}{\partial r^{2}}=$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \left(r^{2}\frac{\partial^{2}}{\partial r^{2}}+r\frac{\partial}{\partial r}+\frac{2}{i\delta_{s}^{2}}r^{2}\right)T_{s}=0, \end{equation} \end_inset which is a Bessel differential equation of the zero'th order in \begin_inset Formula $T_{s}$ \end_inset . The solutions is sought in terms of traveling cylindrical waves: \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\sqrt{\frac{2}{i}}=\sqrt{-2i}=\pm\left(i-1\right)$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} T_{s}=C_{1}H_{0}^{(1)}\left(\left(i-1\right)\frac{r}{\delta_{s}}\right)+C_{2}H_{0}^{(2)}\left(\left(i-1\right)\frac{r}{\delta_{s}}\right), \end{equation} \end_inset where \begin_inset Formula $C_{1}$ \end_inset and \begin_inset Formula $C_{2}$ \end_inset constants to be determined from the boundary conditions, and \begin_inset Formula $H_{\alpha}^{(i)}$ \end_inset is the cylindrical Hankel function of the \begin_inset Formula $(i)^{\mathrm{th}}$ \end_inset kind and order \begin_inset Formula $\alpha$ \end_inset . If we require \begin_inset Formula $T_{s}\to0$ \end_inset as \begin_inset Formula $r\to\infty$ \end_inset , the constant \begin_inset Formula $C_{2}$ \end_inset is required to be \begin_inset Formula $0$ \end_inset . From the acoustic energy equation, a similar differential equation can be found for the acoustic temperature in the fluid: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $\rho_{0}c_{p}i\omega T=i\omega\alpha_{P}T_{0}p+\kappa\nabla^{2}T$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\nabla^{2}-2\frac{\omega\rho_{0}c_{p}}{2\kappa}i\right)T=-\frac{1}{\kappa}i\omega\alpha_{P}T_{0}p$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\left(\nabla^{2}+\frac{2}{i\delta_{\kappa}^{2}}\right)T=\frac{2}{i\delta_{s}^{2}}\frac{\alpha_{P}T_{0}}{\rho_{0}c_{p}}p$ \end_inset \end_layout \end_inset \begin_inset Formula \[ \left(r^{2}\frac{\partial^{2}}{\partial r^{2}}+r\frac{\partial}{\partial r}+\frac{2}{i\delta_{s}^{2}}r^{2}\right)T=\frac{2}{i\delta_{s}^{2}}\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p, \] \end_inset for which the (partial) solution is \begin_inset Formula \begin{equation} T=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\left(1-C_{3}J_{0}\left(\left(i-1\right)\frac{r}{\delta_{\kappa}}\right)\right).\label{eq:temp_partial_sol} \end{equation} \end_inset To attain at Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:temp_partial_sol" \end_inset , use has been made of the fact that the temperature should be finite at \begin_inset Formula $r=0$ \end_inset . \begin_inset Formula $C_{3}$ \end_inset is a constant that is to be determined from the boundary conditions at the solid-fluid interface. These boundary conditions are: \begin_inset Formula \begin{align} T_{s}|_{r=a} & =T|_{r=a},\\ -\kappa_{s}\frac{\partial T_{s}}{\partial r}|_{r=a} & =-\kappa\frac{\partial T}{\partial r}|_{r=a}, \end{align} \end_inset i.e. continuity of the temperature and the heat flux at the interface. This yields two equations for two unknowns ( \begin_inset Formula $C_{1}$ \end_inset and \begin_inset Formula $C_{3}$ \end_inset , \begin_inset Formula $C_{2}$ \end_inset is already argued to be \begin_inset Formula $0$ \end_inset ). Solving for the acoustic temperature yields: \begin_inset Note Note status collapsed \begin_layout Plain Layout \begin_inset Formula $T|_{r=a}=T_{s}|_{r=a}$ \end_inset \end_layout \begin_layout Plain Layout – \end_layout \begin_layout Plain Layout \begin_inset Formula $C_{1}H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\left(1-C_{3}J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right)\Rightarrow C_{1}=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(1-C_{3}J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right)}{H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}$ \end_inset (1) \end_layout \begin_layout Plain Layout Derivative b.c. \end_layout \begin_layout Plain Layout – \begin_inset Formula $-\frac{\partial T}{\partial r}|_{r=a}=-\frac{\kappa_{s}}{\kappa}\frac{\partial T_{s}}{\partial r}|_{r=a}$ \end_inset \end_layout \begin_layout Plain Layout where \begin_inset Formula $-\frac{\partial T}{\partial r}|_{r=a}=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(i-1\right)}{\delta_{\kappa}}C_{3}J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)$ \end_inset \end_layout \begin_layout Plain Layout using \begin_inset Formula $\frac{\partial H_{0}^{(1)}(z)}{\partial z}=-H_{1}^{(1)}(z)$ \end_inset ==> \begin_inset Formula $-\frac{\kappa}{\kappa_{s}}\frac{\partial T_{s}}{\partial r}|_{r=a}=\frac{\kappa}{\kappa_{s}}C_{1}\frac{\left(i-1\right)}{\delta_{s}}H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)$ \end_inset \end_layout \begin_layout Plain Layout Such that: \begin_inset Formula $\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(i-1\right)}{\delta_{\kappa}}C_{3}J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)=\frac{\kappa_{s}}{\kappa}C_{1}\frac{\left(i-1\right)}{\delta_{s}}H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)$ \end_inset \end_layout \begin_layout Plain Layout Filling in \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(i-1\right)}{\delta_{\kappa}}C_{3}J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)=\frac{\kappa_{s}}{\kappa}\left(\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}p\frac{\left(1-C_{3}J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right)}{H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}\right)\frac{\left(i-1\right)}{\delta_{s}}H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)$ \end_inset \end_layout \begin_layout Plain Layout Solving for \begin_inset Formula $C_{3}$ \end_inset gives: \end_layout \begin_layout Plain Layout \begin_inset Formula $C_{3}=\frac{1}{\left[\frac{J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}{\frac{\kappa_{s}}{\kappa}\frac{\delta_{\kappa}}{\delta_{s}}H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}+J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right]}$ \end_inset \end_layout \begin_layout Plain Layout or: \end_layout \begin_layout Plain Layout \begin_inset Formula $C_{3}=\frac{1}{\left[\left(1+\epsilon_{s}\right)J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)\right]}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\epsilon_{s}=\frac{\kappa\delta_{s}}{\delta_{\kappa}\kappa_{s}}\frac{H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}{H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}$ \end_inset \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{\kappa\delta_{s}}{\delta_{\kappa}\kappa_{s}}=\sqrt{\frac{\kappa^{2}\delta_{s}^{2}}{\kappa_{s}^{2}\delta_{\kappa}^{2}}}=\sqrt{\frac{\kappa\rho_{0}c_{p}}{\kappa\rho_{s}c_{s}}}$ \end_inset \end_layout \end_inset \begin_inset Formula \[ T=\frac{\alpha_{p}T_{0}}{\rho_{0}c_{p}}\left(1-\frac{1}{\left(1+\epsilon_{s}\right)}\frac{J_{0}\left(\left(i-1\right)\frac{r}{\delta_{\kappa}}\right)}{J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}\right)p, \] \end_inset where \begin_inset Formula \begin{equation} \epsilon_{s}=\frac{e_{f}}{e_{s}}\frac{J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}{J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}, \end{equation} \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout - \end_layout \begin_layout Plain Layout -Asymptotic form of the Hankel function for large argument, and \end_layout \begin_layout Plain Layout \begin_inset Formula $-\pi<\arg(z)<2\pi$ \end_inset : \end_layout \begin_layout Plain Layout \begin_inset Formula $H_{\alpha}^{(1)}(z)\sim\sqrt{\frac{2}{\pi z}}e^{i\left(z-\pi\frac{1+2\alpha}{4}\right)}$ \end_inset \end_layout \begin_layout Plain Layout And for \end_layout \begin_layout Plain Layout \begin_inset Formula $J_{\alpha}(z)\sim\sqrt{\frac{2}{\pi z}}\cos\left(z-\pi\frac{1+2\alpha}{4}\right)$ \end_inset \end_layout \begin_layout Plain Layout Filling this in into \end_layout \begin_layout Plain Layout \begin_inset Formula $\frac{e_{f}}{e_{s}}\cdot-ii=\frac{e_{f}}{e_{s}}$ \end_inset \end_layout \end_inset where \begin_inset Formula $e_{f}$ \end_inset is the thermal effusivity \begin_inset CommandInset nomenclature LatexCommand nomenclature prefix "A" symbol "$e$" description "Thermal effusivity\\nomunit{\\si{\\joule\\per\\square\\metre\\kelvin\\second\\tothe{ \\frac{1}{2} } }}" literal "true" \end_inset of the fluid, and \begin_inset Formula $e_{s}$ \end_inset the thermal effusivity of the solid, such that the ratio is \begin_inset Formula \begin{equation} \frac{e_{f}}{e_{s}}=\sqrt{\frac{\kappa\rho_{0}c_{p}}{\kappa_{s}\rho_{s}c_{s}}}. \end{equation} \end_inset \end_layout \begin_layout Standard Note that for large \begin_inset Formula $a/\delta_{\kappa}$ \end_inset : \begin_inset Formula \begin{equation} \frac{J_{1}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}{J_{0}\left(\left(i-1\right)\frac{a}{\delta_{\kappa}}\right)}\to i, \end{equation} \end_inset and for large \begin_inset Formula $a/\delta_{s}$ \end_inset \begin_inset Formula \begin{equation} \frac{H_{0}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}{H_{1}^{(1)}\left(\left(i-1\right)\frac{a}{\delta_{s}}\right)}\to-i, \end{equation} \end_inset such that for both numbers large \begin_inset Formula \begin{equation} \epsilon_{s}\to\frac{e_{f}}{e_{s}}. \end{equation} \end_inset \end_layout \begin_layout Chapter Derivation of Karal's discontinuity factor \begin_inset CommandInset label LatexCommand label name "chap:Derivation-of-Karal's" \end_inset \end_layout \begin_layout Standard \series bold Note: this documentation is imcomplete. \end_layout \begin_layout Standard \begin_inset Float figure wide false sideways false status open \begin_layout Plain Layout \align center \begin_inset Graphics filename img/discontinuity_appendix.pdf width 60text% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Schematic of a discontinuity at the interface between two tubes with different radius. Domain B is the smaller tube and domain C is the larger tube. The radius of the tube in domain B is \begin_inset Formula $b$ \end_inset , and the radius of the tube in domain C is \begin_inset Formula $c$ \end_inset . \end_layout \end_inset \begin_inset CommandInset label LatexCommand label name "fig:karal-1" \end_inset \end_layout \end_inset \end_layout \begin_layout Standard This appendix describes the derivation of Karal's discontinuity factor. The following assumptions underlie the model: \end_layout \begin_layout Itemize \begin_inset Formula $z=0$ \end_inset : position of the discontinuity \end_layout \begin_layout Itemize Assume \begin_inset Formula $f\ll f_{c}$ \end_inset , such that far away from the discontinuity, only propagating modes exist. \end_layout \begin_layout Itemize Assume axial symmetry, so dependence of \begin_inset Formula $\theta$ \end_inset is dropped \end_layout \begin_layout Standard In cylindrical coordinates, the solution of the Helmholtz equation can be written in terms of cylindrical harmonics \begin_inset CommandInset citation LatexCommand cite key "blackstock_fundamentals_2000" literal "true" \end_inset . Assuming axial symmetrySuch that the acoustic pressure in for example tube \begin_inset Formula $B$ \end_inset can be written as: \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} p_{B}=\left\{ \begin{array}{c} J_{m}\left(k_{r}r\right)\\ N_{m}\left(k_{r}r\right) \end{array}\right\} \left\{ \begin{array}{c} e^{im\phi}\\ e^{-im\phi} \end{array}\right\} \left\{ \begin{array}{c} e^{\beta z}\\ e^{-\beta z} \end{array}\right\} \end{equation} \end_inset where \begin_inset Formula $J_{m}$ \end_inset is the cylindrical Bessel function of order \begin_inset Formula \begin{equation} k_{r}^{2}-\beta^{2}=k^{2}. \end{equation} \end_inset Using the boundary condition that \begin_inset Formula \begin{equation} \frac{\partial p_{B}}{\partial r}|_{r=b}=0, \end{equation} \end_inset and assuming axial symmetry (only the \begin_inset Formula $m=0$ \end_inset modes) it follows that \begin_inset Formula \begin{equation} \frac{\partial J_{0}}{\partial r}\left(k_{r}b\right)|_{r=b}=0. \end{equation} \end_inset Assuming that \begin_inset Formula $\alpha_{k}$ \end_inset is the \begin_inset Formula $k^{\mathrm{th}}$ \end_inset zero of \begin_inset Formula $J_{0}^{'}(x)$ \end_inset , we can write for \begin_inset Formula $k_{r,k}$ \end_inset : \begin_inset Formula \begin{equation} k_{r,k}=\frac{\alpha_{k}}{b}. \end{equation} \end_inset Hence we find the following reduced expression for the pressure in tube \begin_inset Formula $B$ \end_inset : \begin_inset Formula \begin{equation} p_{B}=B_{0}^{0}\exp\left(ikz\right)+B_{0}^{1}\exp\left(-ikz\right)+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)\left\{ \begin{array}{c} e^{\beta_{n}z}\\ e^{-\beta_{n}z} \end{array}\right\} , \end{equation} \end_inset where accordingly, \begin_inset Formula \begin{equation} \beta_{k}^{2}=\left(\frac{\alpha_{k}}{b}\right)^{2}-k^{2}\label{eq:beta_k} \end{equation} \end_inset For \begin_inset Formula $k^{2}<\left(\alpha_{k}/b\right)^{2}$ \end_inset , \begin_inset Formula $\beta_{k}^{2}>0$ \end_inset , the modes are evanescent. And since we only allow finite solutions for \begin_inset Formula $z\leq0$ \end_inset , the final results for \begin_inset Formula $p_{B}$ \end_inset is \begin_inset Formula \begin{equation} p_{B}=B_{0}^{0}\exp\left(ikz\right)+B_{0}^{1}\exp\left(-ikz\right)+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}, \end{equation} \end_inset where \begin_inset Formula $\beta_{n}$ \end_inset is defined as the positive root of the r.h.s. of Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:beta_k" \end_inset . We simplify this relation to: \begin_inset Formula \begin{equation} p_{B}(z)=p_{B}^{0}(z)+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}. \end{equation} \end_inset For the velocity we find \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $u=\frac{i}{\omega\rho_{0}}\frac{\partial p_{B}}{\partial z}=u_{B}^{0}(z)+\sum_{n=1}^{\infty}\frac{i\beta_{n}}{\omega\rho_{0}}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} u_{B}(z)=u_{B}^{0}(z)+\sum_{n=1}^{\infty}Y_{B,n}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} Y_{B,n}=\frac{i\beta_{n}}{\omega\rho_{0}}. \end{equation} \end_inset \end_layout \begin_layout Standard Similarly, for the positive \begin_inset Formula $z$ \end_inset we find \begin_inset Formula \begin{equation} p_{C}(z)=P_{C}^{0}(z)+\sum_{m=1}^{\infty}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)e^{-\gamma_{m}z}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} \gamma_{m}=\sqrt{\left(\frac{\alpha_{m}}{c}\right)^{2}-k^{2}}. \end{equation} \end_inset and \begin_inset Formula \begin{equation} u_{C}(z)=u_{C}^{0}(z)+\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)e^{-\gamma_{m}z}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} Y_{C,m}=-\frac{i\gamma_{m}}{\omega\rho_{0}} \end{equation} \end_inset \end_layout \begin_layout Section Boundary conditions \end_layout \begin_layout Standard At the interface ( \begin_inset Formula $z=0$ \end_inset ), the following boundary conditions are valid: \begin_inset Formula \begin{align} u_{B}|_{z=0} & =u_{C}|_{z=0} & 0\leq r\leq b\label{eq:derivative1bc}\\ u_{C}|_{z=0} & =0 & b\leq r\leq c\label{eq:derivative2bc}\\ p_{B} & =p_{C} & 0\leq r\leq b\label{eq:continuitybc} \end{align} \end_inset Taking Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:derivative1bc" \end_inset , multiply by \begin_inset Formula $r$ \end_inset and integrating from \begin_inset Formula $0$ \end_inset to \begin_inset Formula $c$ \end_inset , taking into account Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:derivative2bc" \end_inset yields: \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $u_{B}(z)=u_{B}^{0}(z)+\sum_{n=1}^{\infty}\zeta_{B,n}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)e^{\beta_{n}z}$ \end_inset \end_layout \begin_layout Plain Layout \lang english Integrating from 0 to \begin_inset Formula $b$ \end_inset for \begin_inset Formula $u_{B}$ \end_inset and integrating from 0 to \begin_inset Formula $c$ \end_inset for \begin_inset Formula $u_{C}$ \end_inset cancels out the Bessel functions, as the primitive of \begin_inset Formula $J_{0}(x)x$ \end_inset is \begin_inset Formula $J_{1}(x)x$ \end_inset , for which due to the no-slip b.c. the resulting integral is zero, and at \begin_inset Formula $r=0$ \end_inset , the integral is zero as well. Hence we obtain only the propagating mode contribution to the volume flow. \end_layout \end_inset \begin_inset Formula \begin{equation} b^{2}u_{B}^{0}=c^{2}u_{C}^{0} \end{equation} \end_inset We require one more equation at the interface, which is found from the continuit y boundary conditions as well. Multiplying Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:derivative1bc" \end_inset with \begin_inset Formula $J_{0}(\alpha_{q}\frac{r}{c})r$ \end_inset and integrating setting \begin_inset Formula $q=m$ \end_inset and dividing by \begin_inset Formula $bc$ \end_inset yields: \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $u_{B}=u_{B}^{0}+\sum_{n=1}^{\infty}\zeta_{B,n}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $u_{C}=u_{C}^{0}+\sum_{m=1}^{\infty}\zeta_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)$ \end_inset \end_layout \begin_layout Plain Layout \lang english – \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english – Work out stuff, first line: \end_layout \begin_layout Plain Layout \lang english - Using the rule: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \int J_{0}(C_{1}x)J_{0}(C_{2}x)x\mathrm{d}x=x\frac{C_{1}J_{1}(C_{1}x)J_{0}(C_{2}x)-C_{2}J_{0}\left(C_{1}x\right)J_{1}(C_{2}x)}{C_{1}^{2}-C_{2}^{2}} \] \end_inset \end_layout \begin_layout Plain Layout \lang english –> \begin_inset Formula $C_{1}=\frac{\alpha_{q}}{c}$ \end_inset ; \begin_inset Formula $C_{2}=\frac{\alpha_{n}}{b}$ \end_inset \begin_inset Formula $x=b$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=u_{B}^{0}J_{1}(\alpha_{q}\frac{b}{c})\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}b\frac{\frac{\alpha_{q}}{c}J_{1}(\frac{\alpha_{q}}{c}b)J_{0}(\frac{\alpha_{n}}{b}b)-\frac{\alpha_{n}}{b}J_{0}\left(\frac{\alpha_{q}}{c}b\right)J_{1}(\frac{\alpha_{n}}{b}b)}{\left(\frac{\alpha_{q}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}=$ \end_inset \end_layout \begin_layout Plain Layout \lang english Using: \begin_inset Formula $J_{1}\left(\alpha_{i}\right)=0$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=u_{B}^{0}J_{1}(\alpha_{q}\frac{b}{c})\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{b}{\left(\frac{\alpha_{q}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}\frac{\alpha_{q}}{c}J_{1}(\frac{\alpha_{q}}{c}b)J_{0}(\frac{\alpha_{n}}{b}b)=$ \end_inset \end_layout \begin_layout Plain Layout \lang english Using: \begin_inset Formula $\rho=\frac{b}{c}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=u_{B}^{0}J_{1}(\alpha_{q}\frac{b}{c})\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{q}\rho}{\left(\frac{\alpha_{q}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\frac{\alpha_{q}}{c}b)J_{0}(\frac{\alpha_{n}}{b}b)=$ \end_inset \end_layout \begin_layout Plain Layout \lang english Setting: \begin_inset Formula $q=m$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{b}u_{B}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{m}\rho}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})$ \end_inset \end_layout \begin_layout Plain Layout \lang english ——————————————————————— \end_layout \begin_layout Plain Layout \lang english And the rhs: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=\int\limits _{0}^{c}\left[u_{C}^{0}J_{0}(\alpha_{q}\frac{r}{c})r+\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)J_{0}(\alpha_{q}\frac{r}{c})r\right]\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=\int\limits _{0}^{c}\left[\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)J_{0}(\alpha_{q}\frac{r}{c})r\right]\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english Setting: \begin_inset Formula $q=m$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=\int\limits _{0}^{c}\left[\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)J_{0}(\alpha_{m}\frac{r}{c})r\right]\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english Using the rule: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \int J_{0}(C_{1}x)^{2}x\mathrm{d}x=\frac{1}{2}x^{2}\left(J_{0}(C_{1}x)^{2}+J_{1}(C_{1}x)^{2}\right) \] \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $C_{1}=\alpha_{m}\frac{r}{c}$ \end_inset , \begin_inset Formula $x=c$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=Y_{C,m}C_{m}\frac{1}{2}c^{2}\left(J_{0}(\alpha_{m}\frac{c}{c})^{2}+J_{1}(\alpha_{m}\frac{c}{c})^{2}\right)$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int\limits _{0}^{c}u_{C}J_{0}(\alpha_{q}\frac{r}{c})r\mathrm{d}r=Y_{C,m}C_{m}\frac{1}{2}c^{2}J_{0}(\alpha_{m})^{2}$ \end_inset \end_layout \begin_layout Plain Layout \lang english — OR: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{bc}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{m}\rho}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})=Y_{C,m}C_{m}\frac{1}{2}c^{2}J_{0}(\alpha_{m})^{2} \] \end_inset \end_layout \begin_layout Plain Layout \lang english – Divide by bc: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{1}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{m}\rho}{\left[\rho\alpha_{m}^{2}-\rho^{-1}\alpha_{n}^{2}\right]}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})=Y_{C,m}C_{m}\frac{1}{2}\rho^{-1}J_{0}(\alpha_{m})^{2} \] \end_inset \end_layout \begin_layout Plain Layout \lang english - Deel teller en noemer in breuk door \begin_inset Formula $\rho$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{1}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}B_{n}\frac{\alpha_{m}}{\alpha_{m}^{2}-\frac{\alpha_{n}^{2}}{\rho^{2}}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})=Y_{C,m}C_{m}\frac{1}{2}\rho^{-1}J_{0}(\alpha_{m})^{2} \] \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{1}{\alpha_{q}}+\sum_{n=1}^{\infty}Y_{B,n}T_{mn}B_{n}=Y_{C,m}\frac{1}{2}\rho^{-1}J_{0}(\alpha_{m})^{2}C_{m}, \end{equation} \end_inset where \begin_inset Formula \begin{equation} T_{mn}=\frac{\alpha_{m}}{\alpha_{m}^{2}-\frac{\alpha_{n}^{2}}{\rho^{2}}}J_{0}\left(\alpha_{n}\right)J_{1}\left(\alpha_{m}\rho\right). \end{equation} \end_inset \end_layout \begin_layout Standard Setting \begin_inset Formula $p_{B}=p_{C}$ \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)r\mathrm{d}r=\int_{0}^{b}\left[p_{B}^{0}+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)\right]r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)r\mathrm{d}r=\frac{b^{2}}{2}p_{B}^{0}$ \end_inset \end_layout \begin_layout Plain Layout \lang english ———————————————– \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)r\mathrm{d}r=\int_{0}^{b}\left[p_{C}^{0}+\sum_{m=1}^{\infty}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)\right]r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)r\mathrm{d}r=\frac{b^{2}}{2}p_{C}^{0}+\sum_{m=1}^{\infty}\frac{bc}{\alpha_{m}}C_{m}J_{1}\left(\alpha_{m}\rho\right)$ \end_inset \end_layout \begin_layout Plain Layout \lang english Such that \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \frac{b^{2}}{2}p_{B}^{0}=\frac{b^{2}}{2}p_{C}^{0}+\sum_{m=1}^{\infty}\frac{bc}{\alpha_{m}}C_{m}J_{1}\left(\alpha_{m}\rho\right) \] \end_inset \end_layout \begin_layout Plain Layout \lang english Divide by \begin_inset Formula $\frac{b^{2}}{2}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ p_{B}^{0}=p_{C}^{0}+2\sum_{m=1}^{\infty}\frac{J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}C_{m} \] \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} p_{B}^{0}=p_{C}^{0}+2\sum_{m=1}^{\infty}\frac{J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}C_{m} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\int_{0}^{b}\left[p_{B}^{0}J_{0}\left(\alpha_{p}\frac{r}{b}\right)r+\sum_{n=1}^{\infty}B_{n}J_{0}\left(\alpha_{n}\frac{r}{b}\right)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\right]\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{n=1}^{\infty}B_{n}\int_{0}^{b}J_{0}\left(\alpha_{n}\frac{r}{b}\right)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english Setting \begin_inset Formula $p=n$ \end_inset en \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \int J_{0}(C_{1}x)^{2}x\mathrm{d}x=\frac{1}{2}x^{2}\left(J_{0}(C_{1}x)^{2}+J_{1}(C_{1}x)^{2}\right) \] \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $C_{1}=\frac{\alpha_{n}}{b}$ \end_inset en \begin_inset Formula $x=b$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{B}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=B_{n}\frac{1}{2}b^{2}J_{0}(\alpha_{n})^{2}$ \end_inset \end_layout \begin_layout Plain Layout \lang english – Zelfde voor integraal voor \begin_inset Formula $p_{C}$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\int_{0}^{b}\left[P_{C}^{0}+\sum_{m=1}^{\infty}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)\right]J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{m=1}^{\infty}C_{m}\int_{0}^{b}J_{0}\left(\alpha_{m}\frac{r}{c}\right)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r$ \end_inset \end_layout \begin_layout Plain Layout \lang english Gebruik de regel: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ \int J_{0}(C_{1}x)J_{0}(C_{2}x)x\mathrm{d}x=x\frac{C_{1}J_{1}(C_{1}x)J_{0}(C_{2}x)-C_{2}J_{0}\left(C_{1}x\right)J_{1}(C_{2}x)}{C_{1}^{2}-C_{2}^{2}} \] \end_inset \end_layout \begin_layout Plain Layout \lang english Waarbij: \begin_inset Formula $C_{1}=\frac{\alpha_{m}}{c}$ \end_inset , \begin_inset Formula $C_{2}=\frac{\alpha_{p}}{b}$ \end_inset ; \begin_inset Formula $x=b$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{m=1}^{\infty}C_{m}b\frac{\frac{\alpha_{m}}{c}J_{1}(\frac{\alpha_{m}}{c}b)J_{0}(\frac{\alpha_{p}}{b}b)-\frac{\alpha_{p}}{b}J_{0}\left(\frac{\alpha_{m}}{c}x\right)J_{1}(\frac{\alpha_{p}}{b}b)}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{p}}{b}\right)^{2}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{m=1}^{\infty}C_{m}\frac{\rho\alpha_{m}}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{p}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{p})$ \end_inset \end_layout \begin_layout Plain Layout \lang english Zet \begin_inset Formula $p=n$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\int_{0}^{b}p_{C}(z=0)J_{0}\left(\alpha_{p}\frac{r}{b}\right)r\mathrm{d}r=\sum_{m=1}^{\infty}C_{m}\frac{\rho\alpha_{m}}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n})$ \end_inset \end_layout \begin_layout Plain Layout \lang english Zodat: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ B_{n}\frac{1}{2}b^{2}J_{0}(\alpha_{n})^{2}=\sum_{m=1}^{\infty}C_{m}\frac{\rho\alpha_{m}}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n}) \] \end_inset \end_layout \end_inset \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula \[ B_{n}\frac{1}{2}b^{2}J_{0}(\alpha_{n})^{2}=\sum_{m=1}^{\infty}C_{m}\frac{\rho\alpha_{m}}{\left(\frac{\alpha_{m}}{c}\right)^{2}-\left(\frac{\alpha_{n}}{b}\right)^{2}}J_{1}(\alpha_{m}\rho)J_{0}(\alpha_{n}) \] \end_inset \end_layout \begin_layout Plain Layout \lang english Deel linker en rechterzijde door \begin_inset Formula $\frac{1}{2}b^{2}$ \end_inset : \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ B_{n}J_{0}(\alpha_{n})^{2}=2\sum_{m=1}^{\infty}\rho^{-1}C_{m}\frac{\alpha_{m}}{\alpha_{m}^{2}-\frac{\alpha_{n}^{2}}{\rho^{2}}}J_{0}(\alpha_{n})J_{1}(\alpha_{m}\rho) \] \end_inset \end_layout \begin_layout Plain Layout \lang english Oftewel: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula \[ B_{n}J_{0}(\alpha_{n})^{2}=\frac{2}{\rho}\sum_{m=1}^{\infty}T_{mn}C_{m} \] \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} B_{n}J_{0}(\alpha_{n})^{2}=\frac{2}{\rho}\sum_{m=1}^{\infty}T_{mn}C_{m} \end{equation} \end_inset \end_layout \begin_layout Standard \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $B_{n}=\frac{2}{\rho J_{0}(\alpha_{n})^{2}}\sum_{q=1}^{\infty}T_{qn}C_{q}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{1}{\alpha_{m}}+\sum_{n=1}^{\infty}Y_{B,n}T_{mn}\frac{2}{\rho J_{0}(\alpha_{n})^{2}}\sum_{q=1}^{\infty}T_{qn}C_{q}=Y_{C,m}\frac{1}{2\rho}J_{0}(\alpha_{m})^{2}C_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\sum_{n=1}^{\infty}\frac{2Y_{B,n}}{J_{0}(\alpha_{n})^{2}}T_{mn}\sum_{q=1}^{\infty}T_{qn}C_{q}-\frac{1}{2}Y_{C,m}J_{0}(\alpha_{m})^{2}C_{m}=-u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{m}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english —————Setting ——- \begin_inset Formula $C_{m}=ikbu_{B}^{0}z_{0}D_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\sum_{n=1}^{\infty}\frac{2Y_{B,n}}{J_{0}(\alpha_{n})^{2}}ikbu_{B}^{0}z_{0}T_{mn}\sum_{q=1}^{\infty}T_{qn}D_{q}-\frac{1}{2}Y_{C,m}ikbD_{m}u_{B}^{0}z_{0}J_{0}(\alpha_{m})^{2}D_{m}=-u_{B}^{0}J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{q}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english Using: \begin_inset Formula $z_{0}Y_{B,n}=\frac{i\beta_{n}}{k}$ \end_inset and \begin_inset Formula $z_{0}Y_{C,m}=-\frac{i\gamma_{m}}{k}$ \end_inset and , \begin_inset Formula $\gamma_{m}=\sqrt{\left(\frac{\alpha_{m}}{c}\right)^{2}-k^{2}}$ \end_inset and \begin_inset Formula $\beta_{n}=\sqrt{\left(\frac{\alpha_{n}}{b}\right)^{2}-k^{2}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\sum_{n=1}^{\infty}\frac{2}{J_{0}(\alpha_{n})^{2}}\sqrt{\left(\frac{\alpha_{n}}{bk}\right)^{2}-1}kbT_{mn}\sum_{q=1}^{\infty}T_{qn}D_{q}+\sqrt{\left(\frac{\alpha_{m}}{kc}\right)^{2}-1}\frac{1}{2}kbD_{m}J_{0}(\alpha_{m})^{2}D_{m}=+J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{m}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english When \begin_inset Formula $kc\sim kb\ll1$ \end_inset , this can be rewritten to: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\sum_{n=1}^{\infty}\frac{2\alpha_{n}}{J_{0}(\alpha_{n})^{2}}T_{mn}\sum_{q=1}^{\infty}T_{qn}D_{q}+\frac{\alpha_{m}\rho}{2}D_{m}J_{0}(\alpha_{m})^{2}D_{m}=J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{m}}$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} \sum_{n=1}^{\infty}\frac{2\alpha_{n}}{J_{0}(\alpha_{n})^{2}}T_{mn}\sum_{q=1}^{\infty}T_{qn}D_{q}+\frac{1}{2}\rho\alpha_{m}J_{0}(\alpha_{m})^{2}D_{m}=J_{1}(\alpha_{m}\rho)\frac{\rho}{\alpha_{m}},\label{eq:D_meq} \end{equation} \end_inset where \begin_inset Formula \begin{equation} D_{m}=\frac{C_{m}}{ikbu_{B}^{0}z_{0}} \end{equation} \end_inset Eq. \begin_inset CommandInset ref LatexCommand ref reference "eq:D_meq" \end_inset is a set of infinite equations in terms of an infinite number of unknowns for \begin_inset Formula $D_{m}$ \end_inset . In matrix algebra for a finite set, this can be written as \begin_inset Formula \begin{equation} (\boldsymbol{M}_{1}\cdot\boldsymbol{M}_{2}+\boldsymbol{K})\cdot\boldsymbol{D}=\boldsymbol{R} \end{equation} \end_inset where \begin_inset Formula \begin{align} M_{1,ij} & =\frac{2\alpha_{j}}{J_{0}(\alpha_{j})^{2}}T_{ij}\\ M_{2,ij} & =T_{ji}\\ K_{ij} & =\frac{1}{2}\rho\alpha_{j}J_{0}(\alpha_{j})^{2} & ;\quad i=j\\ K_{ij} & =0 & ;\quad i\neq j\\ R_{i} & =J_{1}(\alpha_{i}\rho)\frac{\rho}{\alpha_{q}} \end{align} \end_inset \end_layout \begin_layout Standard Finally, the added acoustic mass, \begin_inset Formula \begin{equation} p_{C}^{0}=p_{B}^{0}-i\omega M_{A}U_{B}, \end{equation} \end_inset can be computed as \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $p_{B}^{0}=p_{C}^{0}+\sum_{m=1}^{\infty}\frac{2J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}C_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $p_{B}^{0}=p_{C}^{0}+ikbu_{B}^{0}z_{0}\sum_{m=1}^{\infty}\frac{2J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}D_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english Filling in: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $p_{C}^{0}=p_{B}^{0}-i\omega M_{A}U_{B}$ \end_inset \end_layout \begin_layout Plain Layout \lang english Then: \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $p_{B}^{0}=p_{C}^{0}+i\omega M_{A}U_{B}$ \end_inset \end_layout \begin_layout Plain Layout \lang english or: \begin_inset Formula $i\omega M_{A}U_{B}=ikbu_{B}^{0}z_{0}\sum_{m=1}^{\infty}\frac{2J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}D_{m}$ \end_inset \end_layout \begin_layout Plain Layout \lang english And since: \begin_inset Formula $M_{A}=\chi(\alpha)\frac{8\rho_{0}}{3\pi^{2}a_{L}}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $\chi(\alpha)=\frac{3\pi}{4}\sum_{m=1}^{\infty}\frac{J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}D_{m}$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} \rho_{0}\sum_{m=1}^{\infty}\frac{2}{\pi b}\frac{J_{1}\left(\alpha_{m}\rho\right)}{\rho\alpha_{m}}D_{m} \end{equation} \end_inset \end_layout \begin_layout Standard For a given velocity \begin_inset Formula $u_{C,0}$ \end_inset the velocity profile at \begin_inset Formula $z=0$ \end_inset is \begin_inset Note Note status collapsed \begin_layout Plain Layout \lang english \begin_inset Formula $u_{C}(z)=u_{C}^{0}(z)+\sum_{m=1}^{\infty}Y_{C,m}C_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)e^{-\gamma_{m}z}$ \end_inset \end_layout \begin_layout Plain Layout \lang english \begin_inset Formula $u_{C}=u_{C}^{0}+u_{B}^{0}\sum_{m=1}^{\infty}\gamma_{m}bD_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right)$ \end_inset \end_layout \end_inset \begin_inset Formula \begin{equation} u_{C}=u_{C}^{0}+bu_{B}^{0}\sum_{m=1}^{\infty}\gamma_{m}D_{m}J_{0}\left(\alpha_{m}\frac{r}{c}\right) \end{equation} \end_inset \end_layout \end_body \end_document