# -*- coding: utf-8 -*- """ Demonstration of some of the shader programs included with pyqtgraph that can be used to affect the appearance of a surface. """ ## Add path to library (just for examples; you do not need this) import initExample import numpy as np from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph as pg import pyqtgraph.opengl as gl app = pg.mkQApp("GLShaders Example") w = gl.GLViewWidget() w.show() w.setWindowTitle('pyqtgraph example: GL Shaders') w.setCameraPosition(distance=15, azimuth=-90) g = gl.GLGridItem() g.scale(2,2,1) w.addItem(g) md = gl.MeshData.sphere(rows=10, cols=20) x = np.linspace(-8, 8, 6) m1 = gl.GLMeshItem(meshdata=md, smooth=True, color=(1, 0, 0, 0.2), shader='balloon', glOptions='additive') m1.translate(x[0], 0, 0) m1.scale(1, 1, 2) w.addItem(m1) m2 = gl.GLMeshItem(meshdata=md, smooth=True, shader='normalColor', glOptions='opaque') m2.translate(x[1], 0, 0) m2.scale(1, 1, 2) w.addItem(m2) m3 = gl.GLMeshItem(meshdata=md, smooth=True, shader='viewNormalColor', glOptions='opaque') m3.translate(x[2], 0, 0) m3.scale(1, 1, 2) w.addItem(m3) m4 = gl.GLMeshItem(meshdata=md, smooth=True, shader='shaded', glOptions='opaque') m4.translate(x[3], 0, 0) m4.scale(1, 1, 2) w.addItem(m4) m5 = gl.GLMeshItem(meshdata=md, smooth=True, color=(1, 0, 0, 1), shader='edgeHilight', glOptions='opaque') m5.translate(x[4], 0, 0) m5.scale(1, 1, 2) w.addItem(m5) m6 = gl.GLMeshItem(meshdata=md, smooth=True, color=(1, 0, 0, 1), shader='heightColor', glOptions='opaque') m6.translate(x[5], 0, 0) m6.scale(1, 1, 2) w.addItem(m6) #def psi(i, j, k, offset=(25, 25, 50)): #x = i-offset[0] #y = j-offset[1] #z = k-offset[2] #th = np.arctan2(z, (x**2+y**2)**0.5) #phi = np.arctan2(y, x) #r = (x**2 + y**2 + z **2)**0.5 #a0 = 1 ##ps = (1./81.) * (2./np.pi)**0.5 * (1./a0)**(3/2) * (6 - r/a0) * (r/a0) * np.exp(-r/(3*a0)) * np.cos(th) #ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1) #return ps ##return ((1./81.) * (1./np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * (r/a0) * np.exp(-r/(3*a0)) * np.sin(th) * np.cos(th) * np.exp(2 * 1j * phi))**2 #print("Generating scalar field..") #data = np.abs(np.fromfunction(psi, (50,50,100))) ##data = np.fromfunction(lambda i,j,k: np.sin(0.2*((i-25)**2+(j-15)**2+k**2)**0.5), (50,50,50)); #print("Generating isosurface..") #verts = pg.isosurface(data, data.max()/4.) #md = gl.MeshData.MeshData(vertexes=verts) #colors = np.ones((md.vertexes(indexed='faces').shape[0], 4), dtype=float) #colors[:,3] = 0.3 #colors[:,2] = np.linspace(0, 1, colors.shape[0]) #m1 = gl.GLMeshItem(meshdata=md, color=colors, smooth=False) #w.addItem(m1) #m1.translate(-25, -25, -20) #m2 = gl.GLMeshItem(vertexes=verts, color=colors, smooth=True) #w.addItem(m2) #m2.translate(-25, -25, -50) if __name__ == '__main__': pg.exec()