# -*- coding: utf-8 -*- """ This example uses the isosurface function to convert a scalar field (a hydrogen orbital) into a mesh for 3D display. """ ## Add path to library (just for examples; you do not need this) import initExample from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph as pg import pyqtgraph.opengl as gl app = QtGui.QApplication([]) w = gl.GLViewWidget() w.show() w.setWindowTitle('pyqtgraph example: GLIsosurface') w.setCameraPosition(distance=40) g = gl.GLGridItem() g.scale(2,2,1) w.addItem(g) import numpy as np ## Define a scalar field from which we will generate an isosurface def psi(i, j, k, offset=(25, 25, 50)): x = i-offset[0] y = j-offset[1] z = k-offset[2] th = np.arctan2(z, (x**2+y**2)**0.5) phi = np.arctan2(y, x) r = (x**2 + y**2 + z **2)**0.5 a0 = 1 #ps = (1./81.) * (2./np.pi)**0.5 * (1./a0)**(3/2) * (6 - r/a0) * (r/a0) * np.exp(-r/(3*a0)) * np.cos(th) ps = (1./81.) * 1./(6.*np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * np.exp(-r/(3*a0)) * (3 * np.cos(th)**2 - 1) return ps #return ((1./81.) * (1./np.pi)**0.5 * (1./a0)**(3/2) * (r/a0)**2 * (r/a0) * np.exp(-r/(3*a0)) * np.sin(th) * np.cos(th) * np.exp(2 * 1j * phi))**2 print("Generating scalar field..") data = np.abs(np.fromfunction(psi, (50,50,100))) print("Generating isosurface..") verts, faces = pg.isosurface(data, data.max()/4.) md = gl.MeshData(vertexes=verts, faces=faces) colors = np.ones((md.faceCount(), 4), dtype=float) colors[:,3] = 0.2 colors[:,2] = np.linspace(0, 1, colors.shape[0]) md.setFaceColors(colors) m1 = gl.GLMeshItem(meshdata=md, smooth=False, shader='balloon') m1.setGLOptions('additive') #w.addItem(m1) m1.translate(-25, -25, -20) m2 = gl.GLMeshItem(meshdata=md, smooth=True, shader='balloon') m2.setGLOptions('additive') w.addItem(m2) m2.translate(-25, -25, -50) ## Start Qt event loop unless running in interactive mode. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()