# -*- coding: utf-8 -*- """ This example demonstrates the use of ImageView, which is a high-level widget for displaying and analyzing 2D and 3D data. ImageView provides: 1. A zoomable region (ViewBox) for displaying the image 2. A combination histogram and gradient editor (HistogramLUTItem) for controlling the visual appearance of the image 3. A timeline for selecting the currently displayed frame (for 3D data only). 4. Tools for very basic analysis of image data (see ROI and Norm buttons) """ ## Add path to library (just for examples; you do not need this) import initExample import numpy as np from pyqtgraph.Qt import QtCore, QtGui import pyqtgraph as pg app = pg.mkQApp() ## Create window with ImageView widget win = QtGui.QMainWindow() win.resize(1000,800) lw = pg.GraphicsLayoutWidget() lw.setFixedWidth(1000) lw.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) scr = QtGui.QScrollArea() scr.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn) scr.setWidget(lw) win.setCentralWidget(scr) win.show() win.setWindowTitle('pyqtgraph example: Color maps') ## Create color map test image width = 3*256 height = 32 img = np.zeros( (width, height) ) gradient = np.linspace(0.05, 0.95, width) modulation = np.zeros(width) for idx in range(width): modulation[idx] = -0.05 * np.sin( 200 * np.pi * idx/width ) for idx in range(height): img[:,idx] = gradient + (idx/(height-1)) * modulation num_bars = 0 lw.addLabel('=== monochrome generator ===') num_bars += 1 lw.nextRow() monochrome_colors = ('blue', 'green', 'amber', 'red', 'pink', 'lavender', (0.5, 0.5, 0.0) ) for mono_val in monochrome_colors: num_bars += 1 lw.addLabel(str(mono_val)) cmap = pg.colormap.make_monochrome(mono_val) imi = pg.ImageItem() imi.setImage(img) imi.setLookupTable( cmap.getLookupTable(alpha=True) ) vb = lw.addViewBox(lockAspect=True, enableMouse=False) vb.addItem(imi) lw.nextRow() lw.addLabel('=== local color maps ===') num_bars += 1 lw.nextRow() list_of_maps = pg.colormap.listMaps() for map_name in list_of_maps: num_bars += 1 lw.addLabel(map_name) cmap = pg.colormap.get(map_name) imi = pg.ImageItem() imi.setImage(img) imi.setLookupTable( cmap.getLookupTable(alpha=True) ) vb = lw.addViewBox(lockAspect=True, enableMouse=False) vb.addItem(imi) lw.nextRow() lw.addLabel('=== Matplotlib import ===') num_bars += 1 lw.nextRow() list_of_maps = pg.colormap.listMaps('matplotlib') for map_name in list_of_maps: num_bars += 1 lw.addLabel(map_name) cmap = pg.colormap.get(map_name, source='matplotlib', skipCache=True) if cmap is not None: imi = pg.ImageItem() imi.setImage(img) imi.setLookupTable( cmap.getLookupTable(alpha=True) ) vb = lw.addViewBox(lockAspect=True, enableMouse=False) vb.addItem(imi) lw.nextRow() lw.addLabel('=== ColorCET import ===') num_bars += 1 lw.nextRow() list_of_maps = pg.colormap.listMaps('colorcet') for map_name in list_of_maps: num_bars += 1 lw.addLabel(map_name) cmap = pg.colormap.get(map_name, source='colorcet', skipCache=True) if cmap is not None: imi = pg.ImageItem() imi.setImage(img) imi.setLookupTable( cmap.getLookupTable(alpha=True) ) vb = lw.addViewBox(lockAspect=True, enableMouse=False) vb.addItem(imi) lw.nextRow() lw.setFixedHeight(num_bars * (height+5) ) ## Start Qt event loop unless running in interactive mode. if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()