#LyX 2.1 created this file. For more info see http://www.lyx.org/ \lyxformat 474 \begin_document \begin_header \textclass article \use_default_options true \maintain_unincluded_children false \language english \language_package default \inputencoding auto \fontencoding global \font_roman default \font_sans default \font_typewriter default \font_math auto \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 \font_tt_scale 100 \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \quotes_language english \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Title 1D Euler time domain \end_layout \begin_layout Standard \begin_inset Formula \begin{eqnarray*} \frac{\partial\rho}{\partial t}+\frac{\partial m}{\partial x} & = & 0\\ \frac{\partial m}{\partial t}+\frac{\partial\left(\rho u^{2}+p_{0}+p\right)}{\partial x} & = & 0\\ \frac{\partial E}{\partial t}+\frac{\partial\left[\left(E+p\right)u\right]}{\partial x} & = & 0 \end{eqnarray*} \end_inset \end_layout \begin_layout Standard with \begin_inset Note Note status open \begin_layout Plain Layout \begin_inset Formula $\rho e=\rho c_{v}T=\frac{c_{v}}{R}\rho R_{s}T=\frac{c_{v}}{R}\left(p_{0}+p\right)=\frac{1}{\gamma-1}\left(p_{0}+p\right)$ \end_inset \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset Formula \[ E=\rho e+\rho\tfrac{1}{2}u^{2}=\frac{p_{0}+p}{\left(\gamma-1\right)}+\rho\tfrac{1}{2}u^{2} \] \end_inset \end_layout \begin_layout Standard If we replace \begin_inset Formula $E$ \end_inset with \end_layout \begin_layout Standard \begin_inset Formula \begin{equation} E=\hat{E}+\frac{p_{0}}{\gamma-1} \end{equation} \end_inset then \begin_inset Formula \[ \frac{\partial\hat{E}}{\partial t}+\frac{\partial\left(\hat{E}+p_{0}+p\right)u}{\partial x}=0 \] \end_inset so \begin_inset Formula $E$ \end_inset is internal energy per unit volume! \end_layout \begin_layout Section Scheme \end_layout \begin_layout Standard If we say: \end_layout \begin_layout Standard \begin_inset Formula \[ \frac{\partial U}{\partial t}+\frac{\partial}{\partial x}\left(F(U)\right)=0 \] \end_inset which is \begin_inset Formula \begin{equation} \frac{U_{i}^{n+1}-\left(\frac{1}{2}\left(U_{i+1}+U_{i-1}^{^{2}}\right)\right)}{\Delta t}+\frac{F(U_{i+1}^{n})-F(U_{i-1}^{n})}{2\Delta x}=0 \end{equation} \end_inset in its discrete form \end_layout \begin_layout Standard then \begin_inset Formula \[ U=\left\{ \begin{array}{c} \rho\\ \rho u\\ \rho E \end{array}\right\} \] \end_inset and Lax-Friedrichs says for a middle node \begin_inset Formula \[ U_{i}^{n+1}=\frac{1}{2}\left(U_{i+1}^{n}+U_{i-1}^{n}\right)-\lambda\left(F\left(U_{i+1}^{n}\right)-F(U_{i-1}^{n})\right) \] \end_inset with \end_layout \begin_layout Standard \begin_inset Formula \[ \lambda=\frac{\Delta t}{2\Delta x} \] \end_inset Total domain length: \begin_inset Formula $L$ \end_inset . If number of gridpoints is 3, one left, one right, than \begin_inset Formula $dx=L/(gp-1$ \end_inset \end_layout \begin_layout Standard \begin_inset Formula \[ L \] \end_inset \end_layout \begin_layout Section Right wall bc \end_layout \begin_layout Standard At a wall: \begin_inset Formula \[ m=0 \] \end_inset and \begin_inset Formula \[ \frac{\partial}{\partial x}\left(F(U)\right)\approx\frac{F\left(U_{i}^{n}\right)-F(U_{i-1}^{n})}{\Delta x} \] \end_inset but \end_layout \begin_layout Section Left pressure bc \end_layout \begin_layout Standard \begin_inset Formula \[ \frac{\partial}{\partial x}\left(F(U)\right)\approx\frac{F\left(U_{i+1}^{n}\right)-F(U_{i}^{n})}{\Delta x} \] \end_inset for continuity, energy for momentum: \begin_inset Formula \[ \frac{\partial}{\partial x}\left(F(U)\right)\approx\frac{\left[\rho u^{2}+p\right]_{i+1}-(\rho u^{2})|_{i}-P_{pres}}{\Delta x} \] \end_inset \end_layout \end_body \end_document