timedomainresonace/testing.ipynb
2015-02-22 22:19:06 +01:00

134 lines
15 KiB
Plaintext

{
"metadata": {
"name": "",
"signature": "sha256:665d4d927eafbb088c892eb5950f2a0975c691bdbb983ca96c13a6336ba30584"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"from timedomaineuler import *"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"f=85.785 #Frequency of oscillation\n",
"L=1. #Length of tube\n",
"gp=300 #Number of gridpoints\n",
"\n",
"nr_p_period=50 #Number of save per oscillation period\n",
"CFL=0.5; # CFL number\n",
"periods=100 #Number of periods to compute\n",
"\n",
"T=1/f\n",
"gc=cvar.gc #Reference!\n",
"dx=L/(gp-1); # One left and right gp, so\n",
"\n",
"gc.setfreq(f)\n",
"tube=TubeLF(L,gp)\n",
"dt=min(CFL*dx/gc.c0(),T/nr_p_period)\n",
"intsteps=int(floor(1./(gc.getfreq()*dt)/nr_p_period))\n",
"x=linspace(0,L,gp)\n",
"# Create tube instance\n",
"tube=TubeLF(L,gp)\n",
"# To create a ni"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"dt"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": [
"4.873360558484559e-06"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"tube.DoIntegration(dt,1000)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"sol=tube.getSol()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plot(sol.u())"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 9,
"text": [
"[<matplotlib.lines.Line2D at 0x7f3d19ffaa90>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEACAYAAABCl1qQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2c1XP+//HHa6ZLLCORIgohF1/y3e2CMGgzRSUiudys\nZG2urcR+v8J32V1fi1jXoVzUhspIF4pm10UbUgmV5peodOFr2VW5qOb9++P9iTE7c86ZmXPmfT7n\nPO+327nNOZ/z+ZzzevtkXvO+NuccIiIiiRSEDkBERLKfkoWIiCSlZCEiIkkpWYiISFJKFiIikpSS\nhYiIJJU0WZhZiZktMbNlZja8hnNGRe8vNLNOya41s9vNbHF0/kQz26nSeyOi85eYWc/6FlBEROov\nYbIws0LgXqAEOAgYZGYdq5zTG9jPOdcBuAi4P4VrXwIOds4dBnwIjIiuOQgYGJ1fAtxnZqr9iIgE\nluwXcWeg3Dm3wjm3GRgP9KtyTl9gDIBzbi5QZGa7J7rWOTfTOVcRXT8X2DN63g8Y55zb7JxbAZRH\nnyMiIgElSxZ7ACsrvV4VHUvlnDYpXAtwATA1et4mOi/ZNSIi0oCSJYtU1wKxuny5md0AfOecezoN\nMYiISIY0SvL+aqBtpddt+fFf/tWds2d0TuNE15rZL4DewAlJPmt11aDMTAlERKQOnHN1+uMe51yN\nD3wy+X9AO6AJsADoWOWc3sDU6HlX4O/JrsV3Xr8PtKzyWQdF5zUB2kfXWzVxuVx24403hg4ho3K5\nfLlcNudUvriLfncm/L1f0yNhzcI5t8XMhgEzgEJgtHNusZkNjd5/0Dk31cx6m1k5sBEYnOja6KPv\niRLCTDMDmOOcu8Q594GZTQA+ALYAl0QFFBGRgJI1Q+GcmwZMq3LswSqvh6V6bXS8Q4LvuxW4NVlc\nIiLScDSHIQsVFxeHDiGjcrl8uVw2UPnymcWxlcfM1DolIlJLZlbnDu6kzVAitbVhA6xZA59+Cl98\nAd9+C998A1u2QPPmsP32sMMO0KoVtG0LO+2U/DNFJCwlC6mzrVvh3XdhzhxYtAjeew/ef98nhjZt\noHVraNECmjWDpk2hUSP4+mvYuNEnlLVr4ZNPoLAQ9t0X/uM/4PDDoVMn6NzZJxYRyQ5qhpJaWb4c\nSkth5kx4/XWfEI46Cg47DA45BA4+GHbdFSzFiq5z8OWXsGwZLFwICxbAvHk+8fznf0JxMfTuDT/7\nGRSoh02kXurTDKVkIUmVl8MTT8DEibB+PfTpA716wdFHw267ZeY7N2yA116DV16BF16Ar76CU06B\n00/336vEIVJ7ShaSdhs3wvjx8PjjsHQpnHUWnHEGdOnim40a2uLFMGkSjBsHmzbBL34B558Pe+3V\n8LGIxJWShaTNJ5/AvffCo4/CkUfCL3/paxFNmoSOzHPON1M9+ij85S9w7LFw5ZXQvXvqTV8i+ao+\nyUKVeQF87eHss30H8+bN8Oabvm+iX7/sSRTgE8JPfwr33Qcffww9eviE9tOfwoQJUFGR/DNEpPZU\ns8hzy5bBzTfD9OlwxRVw6aWw446ho6qdigp48UW45RY/2urGG+HUU9WvIVKVmqGk1latgv/6L995\nfPnlcNll8Z/v4BxMneqTxebNcNNNvmak5ikRT8lCUvb11/C//wt33QVDh8K110JRUeio0ss5mDIF\nbrjBz/O4804/d0Mk36nPQpJyDp55Bjp29PMZ3n4bbr019xIF+JpEnz7wzjswaJDvoB8yBNatCx2Z\nSHwpWeSB5cuhZ0/43e/8UNhnn4X27UNHlXmNGvna05Ilvont4IPh7rv9zHMRqR0lixy2ZQvccYdf\nOuPEE31tIh8X1Swq8k1vr78OkydD164wf37oqETiRWtD5agFC+DCC/0vyrlz/dpL+e6AA/yM8Mcf\nh5ISP6nvxhv9woYikphqFjlmyxbf3NSzJ/z6134NJyWKH5jB4MF+4cPVq/3iha+9Fjoqkeyn0VA5\nZPlyOPdcv8rr44/75b8lseefh4sv9v/dbrnFr44rkqs0GirPOeeXv+jSBQYM8LUJJYrU9Ovnl1kv\nL/ezwBcsCB2RSHZSzSLm/vUvPyx08WJ46ik49NDQEcWTc/Dkk3D11X7uyVVXaQa45B7VLPLUwoX+\nr+Gdd/ZrOSlR1J2Zb4p66y147jk/T+Ozz0JHJZI9lCxiyDl4+GG/iN7IkfDAA76fQupv773hb3/z\nGzkdcQT89a+hIxLJDmqGipkNG+BXv/LzBJ59Fg48MHREuWv6dD9y6uKL4be/DbOPh0g6qRkqT3z4\noe/EbtTINzspUWRWSYnfO6OsDH7+c79LoEi+UrKIienT/QY/l18Ojz0G220XOqL80KYNzJoF3br5\nfcDfeit0RCJhqBkqyznnl6q4806/uU/37qEjyl+TJsFFF8Hvf+83XBKJGy1RnqM2bfJLdixd6tc0\n0tyJ8JYsgf79/Xaud9+tSXwSL+qzyEErV8LRR/shna+9pkSRLQ480K+1tX69TxirV4eOSKRhKFlk\noXnz/MqoAwf6iWLNm4eOSCrbcUc/F6NvX3+f5s0LHZFI5qkZKss8/7xvenroId/cIdltWz/G/ff7\npVZEsll9mqG0RHkWuftu+MMf4MUX/R4Ukv3694d27fwaU0uXwvXXa89vyU2qWWSBrVvhyivh5Zd9\nomjXLnREUltr1viEsf/+8MgjmlEv2Ukd3DG2YQOccgp88IHfyU2JIp5at/ZLg2zZAscdp/2+Jfco\nWQS0Zg0ccwzsthtMm+Z3tZP4at4cxo3zW9h26QLvvx86IpH0UbIIZNkyOOooOPVU32zRuHHoiCQd\nzPzijr/7HRx/vF8qRCQXqM8igHnz/BLYN9/sRz5JbnrlFTjzTBg1yv8UCU2joWJk5kw4+2y/xHi/\nfqGjkUw6/ng/aOGkk2DVKr+xkkZKSVypZtGAxo/3CwE++6yfnS35YdUq6NXLd3zfeaeWOpdwtDZU\nDIwaBX/8o+/I1o52+eef//RzMoqK/Pa3mpUvIWjobBZzDm64Af78Z7/GkxJFftppJ/+HQvPmfofD\nf/wjdEQitaNkkUEVFTBsGMyY4ROF5lDkt6ZN4Ykn/HpSxx4Ln34aOiKR1ClZZMiWLXDBBfDuu76T\nc9ddQ0ck2aCgwO9PctZZfm+S8vLQEYmkRqOhMuC77/wvg6++8jvcbb996Igkm5jBiBGwyy5+UubU\nqXD44aGjEklMySLNNm2C007zbdOlpdocR2p20UXQogX07OmXPNcIOclmaoZKo3/9yw+RbNnSb4Gq\nRCHJDBjgR0eddhpMmRI6GpGaKVmkyT/+4Ue5HHQQjBkDjVRnkxT9/Oc+UVx4IYwdGzoakerpV1oa\nrF3r/4cvKfFzKTRLV2qrc2eYPdsvQvjFF37ypkg2SVqzMLMSM1tiZsvMbHgN54yK3l9oZp2SXWtm\np5vZ+2a21cyOqHS8nZl9bWbzo8d99S1gpq1e7YdBnn66EoXUT8eO8OqrcO+9cOutoaMR+bGENQsz\nKwTuBXoAq4G3zKzUObe40jm9gf2ccx3MrAtwP9A1ybWLgP7Ag9V8bblzrlM1x7POqlV+CYcLL4Th\n1aZRkdrZe2+/L0aPHn6wxC236A8QyQ7Jahad8b+8VzjnNgPjgarL3/UFxgA45+YCRWa2e6JrnXNL\nnHMfprEcDW7lSiguhqFDlSgkvdq08QljyhS/+GDMVraRHJUsWewBrKz0elV0LJVz2qRwbXXaR01Q\nZWbWPYXzG9zHH/tE8etfwzXXhI5GctGuu/o+jNdfh0su8asBiISUrIM71b9p0lVR/hRo65z7IurL\nmGxmBzvnvqp64siRI79/XlxcTHFxcZpCSGzFCt/0dMUV6oSUzNp5Z7+k/cknw+DBMHq0RtlJ7ZSV\nlVGWph24Eq46a2ZdgZHOuZLo9Qigwjn3h0rnPACUOefGR6+XAMcC7VO4djZwtXPunRq+v9r3Q606\nu3y536Pgmmv8mk8iDWHTJr9Pe1ERPPkkNGkSOiKJq0yuOvs20CEapdQEGAiUVjmnFDgvCqQr8KVz\nbl2K10KlWomZtYw6xjGzfYAOwPLaFyv9yst9jWL4cCUKaVjbbedXA/jmGz+J75tvQkck+ShhsnDO\nbQGGATOAD4C/OOcWm9lQMxsanTMVWG5m5fjRTZckuhbAzPqb2UqgK/CimU2LvvJYYKGZzQeeAYY6\n575Ma4nrYNkynyhuuAF+9avQ0Ug+atbMLwnSvLmvZShhSEPT5kdJLF0KJ5wAI0dqv2wJb8sWOPdc\nv2LA5MnaRElqR5sfZciyZT5R3HyzEoVkh0aN/J4YLVtC376+P0OkIShZ1OCjj3yiuPFGvy+FSLZo\n1MivP9aqlRKGNBwli2p88okf9XTddTBkSOhoRP7dtoTRpg306aOEIZmnZFHF6tU+UVx+uZ8MJZKt\nCgvhscdgzz39XIyNG0NHJLlMyaKStWt9ohg61E+6E8l2hYXw6KOw115KGJJZShaR9et9H8V558Fv\nfhM6GpHUFRb62d3t20Pv3rBhQ+iIJBcpWQCff+5X+RwwwM+lEImbwkJ45BHo0EEJQzIj7+dZfPGF\nr1GceKLfQ0DLQUucVVT4vb3Ly2HqVD/7W2Sb+syzyOtk8c9/+h3uuneHO+5QopDcUFHhFx789FN4\n4QU/+1sElCzqZONGX5s4/HC45x4lCsktW7fCOef4P4gmTYKmTUNHJNlAyaKWvv3Wj03fc0/fzlug\nnhvJQZs3w6BB/uczz2i1WlGyqJUtW/x+2Y0awfjxvmNQJFd9950fuNGkif/3rv0w8pvWhkpRRYVf\nuuObb+Cpp5QoJPc1aeJrFRs3+mHhW7eGjkjiKm+ShXNw6aV+S9TnnlOVXPJH06YwcaKfS3Thhdqi\nVeomb5LF9dfDm2/60SEaTij5pnlzv4HS8uVw8cVKGFJ7eZEsbrvNJ4np02HHHUNHIxLGdtvBlCnw\n3ntw2WW+ti2SqpxPFvfe65dCmDkTdtkldDQiYf3kJzBtmq9lDx+uhCGpy+lkMWYM/PGPMGsWtG4d\nOhqR7LDTTr6WPW2aX7VAJBU5O5DuuedgxAh45RVo1y50NCLZpUULX9s++mhf27jsstARSbbLyWQx\nY4bfi2LGDDjwwNDRiGSn3Xf3te5jjvEJY/Dg0BFJNsu5ZDFnjt/QfvJkv5SHiNRs7719DaO4GHbY\nwU9YFalOTiWL99+H/v19X8WRR4aORiQe9t/f91/07Anbb++XOBepKmc6uD/+GHr18qvH9uoVOhqR\neDnsMHj+efjFL+Cvfw0djWSjnEgWn33m/yq6+mo4++zQ0YjEU9eufv2o00+Ht94KHY1km9gni6++\n8tXm00+Hyy8PHY1IvB1/vJ+X1KePn7wnsk2sV5399ls46STYd1944AHtSSGSLuPGwTXX+Cap/fYL\nHY2kS31WnY1tB/e2zV122gnuu0+JQiSdBg3y+3j36AGvvgpt24aOSEKLbbIYNgw+/9zvM6ylxkXS\nb8gQv9PeiSf6hKHlcvJbbJuhjjjCMXu2FgYUybThw6GsDF5+2c/FkPjKy53y1q1z7LZb6EhEcp9z\nfh+MVav86s3aCya+8jJZxDFukbjath1x06baZTLOtK2qiGRUo0Z+hNTatdoLI18pWYhISpo187O8\n33gDbr45dDTS0GI7GkpEGt62vTC6d4ddd/WrO0t+ULIQkVpp1QpeesnvhdGiBZx5ZuiIpCEoWYhI\nrbVv71eq7dHDJ4yePUNHJJmmPgsRqZNDD4WJE/1KCnPnho5GMk3JQkTq7Kij4LHHoF8/WLw4dDSS\nSUoWIlIvJ50Et9/u95FZvTp0NJIp6rMQkXo791z49FO/XcDf/uZHTUlu0QxuEUkL5/yEvffe88Nr\nmzYNHZFUpeU+RCQrbN3qh9IWFPgZ3wVq6M4qWu5DRLJCYSE88YRfFuSaa0JHI+mkZCEiadWsGUye\n7Cfu3XFH6GgkXdTBLSJpt/POftLeUUdB69Zw1lmhI5L6UrIQkYxo29bvZHnCCX6JkBNOCB2R1Iea\noUQkYw45BJ55xu/pvWBB6GikPpImCzMrMbMlZrbMzIbXcM6o6P2FZtYp2bVmdrqZvW9mW83siCqf\nNSI6f4mZacUZkZg75hi47z44+WRYsSJ0NFJXCZuhzKwQuBfoAawG3jKzUufc4krn9Ab2c851MLMu\nwP1A1yTXLgL6Aw9W+b6DgIHAQcAewCwz2985V5Ge4opICAMGwJo1UFICr78Ou+wSOiKprWQ1i85A\nuXNuhXNuMzAe6FflnL7AGADn3FygyMx2T3Stc26Jc+7Dar6vHzDOObfZObcCKI8+R0Ri7tJL4ZRT\noE8f2LQpdDRSW8mSxR7AykqvV0XHUjmnTQrXVtUmOq8214hITNx6K+y7rx8dtXVr6GikNpKNhkp1\nmnSdZgSmqNoYRo4c+f3z4uJiiouLMxiCiKRDQQGMHu0XHbzqKrj77tAR5baysjLKysrS8lnJksVq\noG2l12358V/+1Z2zZ3RO4xSuTfZ9e0bH/k3lZCEi8dGkCTz3nJ+DcdddcMUVoSPKXVX/kL7pppvq\n/FnJmqHeBjqYWTsza4LvfC6tck4pcB6AmXUFvnTOrUvxWvhxraQUONPMmphZe6AD8GZtCyUi2a2o\nyM/BuP12mDQpdDSSioQ1C+fcFjMbBswACoHRzrnFZjY0ev9B59xUM+ttZuXARmBwomsBzKw/MApo\nCbxoZvOdc72ccx+Y2QTgA2ALcIlWDBTJTXvvDaWlfoRUmzbQpUvoiCQRrTorIkFNmQJDhsBrr/nO\nb8kcrTorIrF18snw3//tN076/PPQ0UhNVLMQkaxw7bUwZw7MnOlXrpX00+ZHIhJ7FRU/bJz09NPa\nOCkT1AwlIrFXUABjx8LKlXDDDaGjkaqULEQkazRrBs8/7+dhPPRQ6GikMu1nISJZpWVLPwfj6KP9\nnhi9eoWOSEA1CxHJQvvtBxMnwvnnw/z5oaMRULIQkSzVrRvcf79fpfaTT0JHI2qGEpGsddppfsOk\nk07y+2DsuGPoiPKXhs6KSFZzDi65xCeNF16ARvoTt840dFZEcpYZjBrl52FceWXoaPKXkoWIZL3G\njWHCBHjlFbjnntDR5CdV6EQkFnbayS86eOSRsM8+vh9DGo5qFiISG+3b+yG1gwfDu++Gjia/KFmI\nSKx06+abovr0gTVrQkeTP5QsRCR2Bg6ECy+Evn1h06bQ0eQHDZ0VkVhyDs47zyeLZ57RKrWp0NBZ\nEck7ZvDII7B+vVapbQhKFiISW02bwqRJvmbx6KOho8ltGjorIrHWsqUfUnvssX601HHHhY4oN6lm\nISKxd+CBMG6c32lv6dLQ0eQmJQsRyQnHHw+33gonnwz/93+ho8k9Gg0lIjll+HCYMwdmzvR9GvKD\n+oyGUrIQkZxSUQEDBkBREYwe7UdNiaehsyIikYICGDsW3nkH/vSn0NHkDo2GEpGcs8MOUFoKXbvC\nAQf4fgypHzVDiUjOmjPHLwkyezYcckjoaMJTM5SISDW6dYM77/QJ47PPQkcTb6pZiEjOu/56eO01\nmDULmjQJHU04Gg0lIpJARQWcdhq0aOHXk8rXEVJqhhIRSaCgAJ54AubN881SUnsaDSUieaHqCClt\ny1o7aoYSkbyybYRUWRkcfHDoaBqWmqFERFLUrZufrNenj9aQqg3VLEQkL40YAW+84deQypcRUhoN\nJSJSSxUVcOqpsMsu+TNCSs1QIiK1VFAATz4Jb7+tEVKp0GgoEclb20ZIdevmN1Dq3Tt0RNlLzVAi\nkvfeeAP69cv9EVJqhhIRqYcjj4Q77vBDajVCqnqqWYiIRK67Dv7+dz9CqnHj0NGkn0ZDiYikwdat\nvjlqr73gvvtCR5N+aoYSEUmDwkJ46im//8WDD4aOJruoZiEiUsWyZdC9OzzzDBxzTOho0kc1CxGR\nNOrQwa9SO3AgrFgROprsoGQhIlKNnj3h2mt9H8bGjaGjCU/NUCIiNXAOBg/2yWLChPgvCZLRZigz\nKzGzJWa2zMyG13DOqOj9hWbWKdm1ZtbCzGaa2Ydm9pKZFUXH25nZ12Y2P3rk4HgEEYkLM3jgAVi5\nEv7nf0JHE1bCZGFmhcC9QAlwEDDIzDpWOac3sJ9zrgNwEXB/CtdeB8x0zu0PvBy93qbcOdcpelxS\n3wKKiNRHs2YwaRI89JD/ma+S1Sw64395r3DObQbGA/2qnNMXGAPgnJsLFJnZ7kmu/f6a6Ocp9S6J\niEiGtG4NEyfCRRfBokWhowkjWbLYA1hZ6fWq6Fgq57RJcG0r59y66Pk6oFWl89pHTVBlZtY9eRFE\nRDLvZz+Du+7yHd75uCRIslVnU+1FTqXDxKr7POecM7Ntxz8F2jrnvjCzI4DJZnawc+6rqteNHDny\n++fFxcUUFxenGKqISN2cfTYsXAhnnAEzZmT/kiBlZWWUlZWl5bMSjoYys67ASOdcSfR6BFDhnPtD\npXMeAMqcc+Oj10uAY4H2NV0bnVPsnFtrZq2B2c65A6v5/tnA1c65d6oc12goEQli61a/Jeu++8I9\n94SOpnYyORrqbaBDNEqpCTAQKK1yTilwXhRIV+DLqIkp0bWlwPnR8/OBydH1LaOOccxsH6ADsLwu\nBRMRyYTCQnj6ab/Y4MMPh46m4SRshnLObTGzYcAMoBAY7ZxbbGZDo/cfdM5NNbPeZlYObAQGJ7o2\n+ujfAxPM7JfACuCM6PgxwM1mthmoAIY6575MY3lFROqtqMhvmtS9O3Ts6H/mOk3KExGpo+nT4YIL\n/LLme+0VOprktDaUiEgAJSVw1VVwyimwaVPoaDJLNQsRkXpwDs4/H777DsaNy+4lQVSzEBEJxMzP\n7v7oI7jtttDRZE6yeRYiIpLEtiVBOneGQw7xe3nnGjVDiYikydy5cPLJUFYGBx8cOpp/p2YoEZEs\n0KUL3HGH7/D+4ovQ0aSXahYiIml2xRWwdClMmeIn8WUL1SxERLLI7bfDt9/Cb38bOpL0UbIQEUmz\nxo3hL3/xQ2knTAgdTXqoGUpEJEPmz/d7ec+aBYcdFjoaNUOJiGSlTp1g1Cjo3x8+/zx0NPWjmoWI\nSIZde62vZUybBo0Czm5TzUJEJIvddhsUFMB114WOpO6ULEREMqyw0Hd2T54MTz0VOpq6UTOUiEgD\nWbQIjj/eb8l6xBEN//1qhhIRiYFDD4UHHoBTT4X160NHUztKFiIiDei00+Ccc+CMM2Dz5tDRpE7N\nUCIiDWzrVujXD/bZxw+tbShqhhIRiZHCQnjySd938dhjoaNJjWoWIiKBLF4Mxx4LL7zgV6zNNNUs\nRERiqGNHeOQRGDAA1q4NHU1iShYiIgH17QtDhviO7+++Cx1NzdQMJSISWEWFTxatWvmhtZmiZigR\nkRgrKICxY+HVV+HBB0NHUz3VLEREssSyZdC9O0ycCEcdlf7PV81CRCQHdOgAjz/uJ+ytXh06mh9T\nshARySK9esGll/olQb75JnQ0P1AzlIhIlnEOBg6E7beHRx8Fq1PD0b9TM5SISA4x8zO7582DP/85\ndDSeahYiIllq+XI48kgYPx6Ki+v/eapZiIjkoH328WtIDRoEH38cNhYlCxGRLNajB/zmN77D++uv\nw8WhZigRkSznHJx7ru/LGDu27h3eaoYSEclhZvDQQ/Deew27/8WPYojjX+iqWYhIPlqxArp2hXHj\n4Ljjan+9ahYiInmgXTt46ik466yG7/BWshARiZETTgjT4a1mKBGRmHEOzjnnh9VqU+3wVjOUiEge\nMYOHH27YDm/VLEREYqq2Hd6qWYiI5KGG7PBWshARibETToBrrsl8h7eaoUREYm5bh3dhIYwZU3OH\nt5qhRETy2LYO73ffzVyHt2oWIiI54qOPoFu3mju8VbMQERHat/dLmp91FnzySXo/O2myMLMSM1ti\nZsvMbHgN54yK3l9oZp2SXWtmLcxsppl9aGYvmVlRpfdGROcvMbOe9S2giEg+6dHDd3j375/eDu+E\nycLMCoF7gRLgIGCQmXWsck5vYD/nXAfgIuD+FK69DpjpnNsfeDl6jZkdBAyMzi8B7jOzvKv9lJWV\nhQ4ho3K5fLlcNlD54uKqq+CAA2DoUN/5nQ7JfhF3Bsqdcyucc5uB8UC/Kuf0BcYAOOfmAkVmtnuS\na7+/Jvp5SvS8HzDOObfZObcCKI8+J6/kyj/YmuRy+XK5bKDyxYUZPPJIeju8kyWLPYCVlV6vio6l\nck6bBNe2cs6ti56vA1pFz9tE5yX6PhERSWK77WDSJLjtNpg9u/6flyxZpFqBSaV33ar7vGhYU6Lv\n0bAnEZE6qNzhvXp1PT/MOVfjA+gKTK/0egQwvMo5DwBnVnq9BF9TqPHa6Jzdo+etgSXR8+uA6ypd\nMx3oUk1cTg899NBDj9o/Ev3OT/RoRGJvAx3MrB3wKb7zeVCVc0qBYcB4M+sKfOmcW2dmnye4thQ4\nH/hD9HNypeNPm9mf8M1PHYA3qwZV13HCIiJSNwmThXNui5kNA2YAhcBo59xiMxsavf+gc26qmfU2\ns3JgIzA40bXRR/8emGBmvwRWAGdE13xgZhOAD4AtwCWafSciEl4sZ3CLiEjDitUchlQmCMaNma0w\ns3fNbL6ZvRkdq3HSYrYzs0fNbJ2ZLap0LGcmYdZQvpFmtiq6h/PNrFel92JTPjNra2azzex9M3vP\nzC6LjufE/UtQvly5f83MbK6ZLYjKNzI6np77V9fOjoZ+4JuyyoF2QGNgAdAxdFxpKNdHQIsqx/4I\nXBs9Hw78PnSctSjP0UAnYFGy8uAnXy6I7me76P4WhC5DHcp3I3BVNefGqnzA7sDh0fMdgKVAx1y5\nfwnKlxP3L4p5u+hnI+DvQJd03b841SxSmSAYV1U77GuatJj1nHOvAl9UOZwzkzBrKB9UP3w8VuVz\nzq11zi2Inm8AFuMHmuTE/UtQPsiB+wfgnNsUPW2CTwKONN2/OCWLVCYIxpEDZpnZ22Y2JDpW06TF\nuMqHSZiXRmujja5UzY9t+aJRjJ2AueTg/atUvr9Hh3Li/plZgZktwN+nl5xzb5Km+xenZJGrPfFH\nOec6Ab0kUvwmAAABwElEQVSAX5vZ0ZXfdL6+mDNlT6E8cSzr/UB74HBgDXBHgnOzvnxmtgPwHHC5\nc+6ryu/lwv2LyvcsvnwbyKH755yrcM4dDuwJdDGzQ6q8X+f7F6dksRpoW+l1W36cFWPJObcm+vkZ\nMAlfDVwXra+FmbUG1oeLMC1qKk/Ve7pndCxWnHPrXQR4hB+q8rErn5k1xieKJ5xz2+Y/5cz9q1S+\nJ7eVL5fu3zbOuX8Cs4ETSdP9i1Oy+H6CoJk1wU/yKw0cU72Y2XZm9pPo+fZAT2ARP0xahB9PWoyr\nmspTCpxpZk3MrD01TMLMdtH/gNv0x99DiFn5zMyA0cAHzrm7Kr2VE/evpvLl0P1rua0JzcyaAz/H\n98uk5/6F7r2vZU9/L/wIhnJgROh40lCe9vjRCAuA97aVCWgBzAI+BF4CikLHWosyjcPP2P8O38c0\nOFF5gOuj+7kEODF0/HUo3wXAWOBdYGH0P2KrOJYP6A5URP8e50ePkly5fzWUr1cO3b9DgXeiciwC\nfhsdT8v906Q8ERFJKk7NUCIiEoiShYiIJKVkISIiSSlZiIhIUkoWIiKSlJKFiIgkpWQhIiJJKVmI\niEhS/x/tUvneg5B9DwAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x7f3d1b8e7d30>"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}