timedomainresonace/timedomain.ipynb
J.A. de Jong @ vulgaris ad6c6800fa Still not working
2015-02-22 09:54:36 +01:00

209 lines
24 KiB
Plaintext

{
"metadata": {
"name": "",
"signature": "sha256:2aa6562ce56a22699d07327912ff516ed48493f67bbddc1babb0722b0ee1a0ff"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"from timedomaineuler import *\n",
"#import timedomaineuler"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Globalconf accessable with cvar.gc\n",
"f=85.785\n",
"T=1/f\n",
"loglevel=20\n",
"L=1e-2\n",
"gp=10\n",
"gc=cvar.gc #Reference!\n",
"dx=L/(gp-1); # One left and right gp, so\n",
"CFL=0.1;\n",
"gc.setfreq(f)\n",
"tube=TubeLF(L,gp)\n",
"dt=min(CFL*dx/gc.c0(),T/50)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"nr_p_period=1\n",
"intsteps=int(floor(1./(gc.getfreq()*dt)/nr_p_period))"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"intsteps=1000"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print(\"DoIntegration relative time step of one period: %0.2e\" %(dt*gc.getfreq()))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"DoIntegration relative time step of one period: 2.78e-05\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"tube.gp"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": [
"10"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"tube.DoIntegration(dt,1)\n",
"sol=tube.getSol()\n",
"u=sol.u()\n",
"p=sol.p()\n",
"#rho=sol.rho()\n",
"figure(figsize=(9,6))\n",
"subplot(221)\n",
"plot(p)\n",
"subplot(222)\n",
"plot(u)\n",
"subplot(223)\n",
"#plot(rho)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 9,
"text": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f8a6779fac8>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAF2CAYAAABkjTxiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXVWZ7/Hvj4QwKBACGsjAcCEiUYYikEEbLRSwiN2E\nBhWiCAq3zdMhircflcTbTULbymB7GR4gRiahVYICbccmBqJQLW1DwpxgEkiE0EkFAjKpSGuG9/6x\nV8Wdw6mqU3XGOvX7PM95cvbea6/11klq5z1rrb22IgIzMzMzy+xQ7wDMzMzMGomTIzMzM7McJ0dm\nZmZmOU6OzMzMzHKcHJmZmZnlODkyMzMzy3FyZGZWZZJulLRR0vIK1HWcpMdyrzclnVyJOM0sI69z\nZGZWXZKOBX4P3BIRh1Ww3j2BNcDIiPifStVrNtC558jMrMoi4n7g1fw+SQdJ+qmkhyX9QtIhfaj6\n48BCJ0ZmleXkyMysPr4DfD4ijga+DFzbhzrOAG6taFRmxuB6B2BmNtBIejswCfiRpM7dQ9KxU4GL\nipy2PiJOytWxL/Be4O7qRms28Dg5MjOrvR2A1yKipfBARNwJ3FlCHZ8A7oyILZUOzmygK3tYTVKb\npFWSVku6oIsyV6XjT0hq6elcScMkLZb0tKR7JA3NHZuVyq+SdGJu/zhJy9OxK3P7/07Sr1LbP5O0\nX+7Y2amNpyWdVe5nYWbNpdS7zCQdI2lz6vXpUUT8FnhW0sfS+ZJ0eC/Dm4qH1MyqoqzkSNIg4Gqg\nDRgLTJV0aEGZycDBETEG+Bwwt4RzZwKLI+JdwM/TNpLGAqen8m3Atfpzn/Rc4NzUzhhJbWn/o8C4\niDgCuB24LNU1DLgQGJ9es/NJmJkZcBPZtaZL6Vp2KbAIUBdlbgX+CzhE0jpJnwU+BZwr6XHgSaDk\n2/ElHUB2h9p/lHqOmZWu3GG18cCaiFgLIGk+MAVYmStzMnAzQEQskTRU0j7Agd2cezLwwXT+zUA7\nWYI0Bbg1IjYBayWtASZIeg7YLSKWpnNuAU4BFkVEey6WJcCZ6f1HgHsi4rXU/mKyi+D88j4SM2sW\nEXF/SkS683myL17HdFPP1C4OndTF/p7iWguM7su5ZtazcofVRgLrctvr075Syozo5tzhEbExvd8I\nDE/vR6RyxerK7+8oEgfAucDCHuoyMyuJpJFkX9rmpl1eOM6sCZSbHJV6ISja1VykzFvqi2yVyrIv\nOJLOBI4CvlluXWZmyRXAzHSdEqVd68yswZU7rNbB9l27o9m+N6ZYmVGpzI5F9nek9xsl7RMRL6Tb\nVV/soa6O9L5YXUg6Hvgq8IE0JNdZV2tB7PcW/oCS/E3QrIFERCMlIOOA+Wnq497ASZI2RcSCfCFf\nR8waS4/XkYjo84ssufo1cADZGh2PA4cWlJlMtoIrwETgwZ7OJZs0fUF6PxO4JL0fm8oNIZuz9Gv+\n/AiUJcAEsm9uC4G2tL+FbHn9gwri2hN4Bhiaf1/kZ4xqmz17dtXbqFU7zdJGrdrxz9I76fexrOtW\nb1/pGrW8hHI3Aad2caxaH8k2/rfUeG3Uqp1maaNW7ZRyHSmr5ygiNkuaQbYI2SDghohYKWlaOj4v\nIhZKmpwmT78BfLa7c1PVlwA/lHQusJZsPQ8iYoWkHwIrgM3A9PSDAkwHvgvsQpaMLUr7LwPeBtye\nvt09FxGnRMSrkr4GPJTKXRRpcraZGWy7y+yDwN6S1gGzyXq9iYh59YzNzKqn7EUgI+KnwE8L9s0r\n2J5R6rlp/yvA8V2c8w3gG0X2PwK85YGOEXFCN7HfRPZtz8zsLaLru8yKlf1sNWMxs9rxs9UaQGtr\na9O00yxt1Kod/yxWKf631Hht1KqdZmmjlu30RH8elbJiJIU/I7PGIKnRJmSXxNcRs8ZRynXEPUdm\nZmZmOU6OzMzMzHKcHJmZmZnlODkyMzMzy3FyZGZmZpbj5MjMzMwsx8mRmZmZWY6TIzMzM7McJ0dm\nZmZmOU6OSrBlS70jMDMzs1pxclSCp5+udwRmZmZWK06OSvDYY/WOwMzqQdKNkjZKWt7F8U9JekLS\nMkm/lHR4V3W99FL14jSzynJyVILHH693BGZWJzcBbd0cfwb4QEQcDnwN+E5XBZcsqXBkZlY1To5K\n4J4js4EpIu4HXu3m+AMR8XraXAKM6qrsAw9UODgzqxonRyV47DGIqHcUZtbgzgUWdnXwwQdrGImZ\nlaXs5EhSm6RVklZLuqCLMlel409IaunpXEnDJC2W9LSkeyQNzR2blcqvknRibv84ScvTsStz+z8g\n6VFJmySdVhDXFkmPpdePu/oZBw2C9et7/9mY2cAg6TjgHKDoNRDgoYd856tZfzG4nJMlDQKuBo4H\nOoCHJC2IiJW5MpOBgyNijKQJwFxgYg/nzgQWR8RlKWmaCcyUNBY4HRgLjAR+JmlMRESq99yIWCpp\noaS2iFgEPAecDXypyI/wh4hoKbJ/Oy0tWe/R6NF9+pjMrImlSdjXAW0R0eUQ3JAhczjvPNhnH2ht\nbaW1tbVmMZoNZO3t7bS3t/fqnLKSI2A8sCYi1gJImg9MAVbmypwM3AwQEUskDZW0D3BgN+eeDHww\nnX8z0E6WIE0Bbo2ITcBaSWuACZKeA3aLiKXpnFuAU4BFEfFcqn9rX3/IzuTo5JP7WoOZNSNJ+wF3\nAmdGxJruyv7lX86hpQWmTatNbGaWKfwyctFFF/V4TrnDaiOBdbnt9WlfKWVGdHPu8IjYmN5vBIan\n9yNSuWJ15fd3FImjmJ0lPSLpAUlTuirUmRyZ2cAi6Vbgv4BDJK2TdI6kaZI6U5wLgT2BuWl4fmlX\ndU2a5EnZZv1FuT1HpU5TVoll3lJfRISkak2H3i8inpd0IHCvpOUR8Uxhofvvn8N998GcOe4ON6ul\nvnSHV1JETO3h+P8G/ncpdU2aBJdfXpGwzKzKyk2OOoD8TJzRbN+DU6zMqFRmxyL7O9L7jZL2iYgX\nJO0LvNhDXR1sfwttvq687ZKsiHg+/fmspHaghWzdku1ceeUcbr4ZPv952GuvIrWaWVX0pTu8Ub3n\nPbBhA7zyCgwbVu9ozKw75Q6rPQyMkXSApCFkk6UXFJRZAJwFIGki8FoaMuvu3AVkk6hJf/44t/8M\nSUNSb88YYGlEvAD8VtIESQI+nTunk8j1YKW5Tzul93sD7wd+VeyH3GEHOOIILwZpZn03aBAcc4wX\ngzTrD8pKjiJiMzADuBtYAdwWESvzY/IRsRB4Jk2engdM7+7cVPUlwAmSngY+lLaJiBXAD1P5nwLT\n051qpHqvB1aTTfReBCDpGEnrgI8B83KPARhLdofc48C9wMURsaqrn7WlxcmRmZVn4kTPOzLrDxRe\n3bBbkiIiuOkm+PnP4Xvfq3dEZgOXJCKilDmMDaXzOvLv/w5XXgmLF9c7IrOBq5TriFfILpHvWDOz\nck2YAEuXejFIs0bn5KhEY8fCs8/CH/5Q70jMrL96xzvgne+ElSt7Lmtm9ePkqERDhsAhh8Dy5T2X\nNTPryqRJfs6aWaNzctQLHlozs3J5UrZZ43Ny1AtOjsysXF4p26zxOTnqBSdHZlauww6Ddevgtdfq\nHYmZdcXJUS8ccQT86leweXO9IzGz/mrwYBg3zotBmjUyJ0e9sNtuMHIkPPVUvSMxs/5s4kRPyjZr\nZE6OeslDa2ZWLs87MmtsTo56ycmR2cAh6UZJG3OPHSpW5ipJqyU9IamllHonTsyG1bZurVysZlY5\nTo566cgjnRyZDSA3AW1dHZQ0GTg4IsYAnwPmllLp8OGw554eojdrVE6OeqnzAbR+JJ1Z84uI+4FX\nuylyMnBzKrsEGCppeCl1e2jNrHE5Oeql4cNh553huefqHYmZNYCRwLrc9npgVCknelK2WeMaXO8A\n+qPOeUcHHFDvSMysARQ+3btov/KcOXO2vW9tbWXSpFa+850qRmVmALS3t9Pe3t6rcxQeH+qWpCj8\njP7+72GHHeAf/7FOQZkNUJKIiMJkpNptHgD8JCIOK3Ls20B7RMxP26uAD0bExoJyb7mO/OlPMGwY\nbNgAu+9erejNrFAp1xEPq/WB71gzs2QBcBaApInAa4WJUVeGDMmuJUuXVjM8M+uLspMjSW2SVqVb\nWS/ookzRW127OlfSMEmLJT0t6R5JQ3PHZqXyqySdmNs/TtLydOzK3P4PSHpU0iZJpxXEdXZq42lJ\nZ5X6M3dOyjaz5ibpVuC/gEMkrZN0jqRpkqYBRMRC4BlJa4B5wPTe1D9pkucdmTWisobVJA0CngKO\nBzqAh4CpEbEyV2YyMCMiJkuaAFwZERO7O1fSZcBvIuKylDTtGREzJY0FfgAcQzYR8mfAmIgISUtT\nO0slLQSuiohFkvYHdge+BCyIiDtSXMNSm+NSqI8A4yJiuyceFesOj8huw12zBvbeu88fn5n1Uj2G\n1Sqh2HUE4M474YYb4K676hCU2QBVi2G18cCaiFgbEZuA+cCUgjLFbnXdp4dzt52T/jwlvZ8C3BoR\nmyJiLbAGmCBpX2C3iOjsoL6l85yIeC4ilgOFy619BLgnIl5LCdFiulnPJE/yekdmVr7OO9Y89dOs\nsZSbHBW7jXVkiWVGdHPu8Ny4/Uagc92QEalcsbry+zuKxFGoq7pK4nlHZlauESPg7W+H1avrHYmZ\n5ZWbHJX6faeUbnAVqy/1RTfc9yr3HJlZJXgxSLPGU+46Rx3A6Nz2aLbvjSlWZlQqs2OR/R3p/UZJ\n+0TEC2nI7MUe6upg+4XX8nXl5ZOsDqC1IPZ7i5zzlvVJWltbaWmBiy8uVtrMKqUv65P0N52Tss8+\nu96RmFmncidkDyabVP1hYAOwlO4nZE8ErkgTsrs8N03IfjkiLpU0ExhaMCF7PH+ekH1wmpC9BPhC\nqucu0oTsXBzfJVurpHNC9p5kk7CPIuu1egQ4qpQJ2QCbNsEee8CLL2bd4mZWfc02IRuyB9BOm+Y7\nYM1qpeoTsiNiMzADuBtYAdyWkpseb3Xt6txU9SXACZKeBj6UtomIFcAPU/mfAtNzV5zpwPXAarKJ\n3ovSh3CMpHXAx4B5nU/XjohXga+R3bG2FLioMDHqzo47wtixsGxZrz4yM7PttLRkc45+//t6R2Jm\nnbxCdg+6+8b3N3+TzT0677waB2U2QDVjzxHA+94HX/86HHdcDYMyG6C8QnaVeTFIM6sET8o2ayxO\njsrg2/nNrBI61zsys8bgYbUedNcd/sYb8I53wOuvZ3OQzKy6mnVYbf367MvWiy9mi8yaWfV4WK3K\n3vY22H9/WLmy57JmZl0ZNQp23hmeeabekZgZODkqm4fWzKwSJk70vCOzRuHkqExeKduseUlqk7RK\n0ur0EOzC43tI+omkxyU9KekzfW2rczFIM6s/J0dlcs+RWXOSNAi4muyB1GOBqZIOLSh2HvBkRBxJ\ntuL+t9ICt73mniOzxuHkqEydt/Nv3VrvSMyswsaTLSi7NiI2AfOBKQVltgK7p/e7k63sv7kvjR11\nFKxald3oYWb15eSoTHvvDbvvDs8+W+9IzKzCRgLrctvr0768q4GxkjYATwDn97WxnXeG974XHnmk\nrzWYWaU4OaoALwZp1pRKWeekDXg0IkYARwLXSNqtrw16MUizxtCnsXHbXue8o9NOq3ckZlZBHcDo\n3PZost6jvM8AFwNExK8lPQscAjxcWNmcOXO2vW9tbaW1tfUtDU6aBPPnlxe0mW2vvb2d9vb2Xp3j\nRSB70NPibQA//jFcdx3cdVeNgjIboGq5CGSaWP0U8GFgA9kDqqfmHpCNpGuBjRFxkaThwCPA4RHx\nSkFdPV5HAJ57DiZMgOef92KQZtXiRSBrxHesmTWfNLF6BnA3sAK4LSJWSpomaVoq9jXgfZKWAT8D\nvlKYGPXGfvvBDjtkSZKZ1Y97jnpQyje+CNhrr2yl7OHDaxSY2QDUrI8PyTv1VPj4x2Hq1CoHZTZA\nueeoRiQvBmlmleFJ2Wb15+SoQjy0ZmaVMHGiV8o2q7eyk6OeltdPZa5Kx5+Q1NLTuZKGSVos6WlJ\n90gamjs2K5VfJenE3P5xkpanY1fm9u8k6ba0/0FJ++eObZH0WHr9uJzPwcmRmVXC0UfDr34Fb75Z\n70jMBq6ykqNSlteXNBk4OCLGAJ8D5pZw7kxgcUS8C/h52kbSWOD0VL4NuFbadk/HXODc1M4YSW1p\n/7lkq9aOAS4HLs2F94eIaEmvU8r5LJwcmVkl7LILjB0Ljz5a70jMBq5ye45KWV7/ZOBmgIhYAgyV\ntE8P5247J/3ZmbhMAW6NiE0RsRZYA0yQtC+wW0QsTeVuyZ2Tr+sOsttyK+6QQ2DDBvjd76pRu5kN\nJH7Omll9lZsclbK8fldlRnRz7vCI2JjebwQ67wEbwfaLsOXryu/vyNW1rf10a+7rkoalYztLekTS\nA5IKk7peGTw4W/r/iSfKqcXMLJuU7XlHZvVTbnJU6joApdx6q2L1pftfq7XewH4RMQ74JHCFpP9V\nTmUeWjOzSujsOfJKK2b1Ue7jQ0pZXr+wzKhUZsci+zvS+42S9omIF9KQ2Ys91NWR3hfu7zxnP2BD\nWvF2j85F2iLi+fTns5LagRbgmcIfspRl/yFLjpYsKXrIzPqgL8v+N4MDD4TNm2HdumxhSDOrrbIW\ngSxxef3JwIyImCxpInBFREzs7lxJl5FNor5U0kxgaETMTBOyf0A2X2kk2Yq0B0dESFoCfCHVcxdw\nVUQskjQdOCwi/lbSGcApEXFGugPuzYj4o6S9gf8CTo6IVQU/Y8mLty1dCtOmuffIrFoGwiKQnU45\nBT75SfjEJ6oUlNkAVcp1pKyeo4jYLKlzef1BwA2dy+un4/MiYqGkyZLWAG8An+3u3FT1JcAPJZ0L\nrAU+kc5ZIemHZEv5bwam564404HvArsACyNiUdp/A/AvklYDLwNnpP2HAvMkbSUbXry4MDHqrcMO\ng6eegj/9CYYMKacmMxvoOofWnByZ1Z4fH9KD3n7je8974Hvfy4bYzKyyBlLP0X/8B8yc6bvWzCrN\njw+pA0/KNrNKOPpoWLYM/vjHekdiNvA4OaowJ0dmVglve1u2fpoXgzSrPSdHFdbSAo8/Xu8ozKwS\nSnw8Umt6BNGT6a7XivFz1szqw8lRhR15ZLYQ5Nat9Y7EzMpR4uORhgLXAH8VEe8FPlbJGCZN8pwj\ns3pwclRhw4Zlr1//ut6RmFmZSnk80ieBOyJiPUBE/KaSAXilbLP6cHJUBZ53ZNYUSnk80hhgmKT7\nJD0s6dOVDOCgg+DNN6Gjo+eyZlY5To6qwMmRWVMo5d77HYGjgMnAR4B/kDSmUgFInndkVg/lPj7E\nimhpgWuuqXcUZlamUh6PtA74TUS8Cbwp6RfAEcDqwspKfQxRoc7FIE87rTehm1mnvjyGyItA9qAv\ni7etW5etUfLCC9k3PzOrjFouAlni45HeTTZp+yPATsAS4PSIWFFQV6+vI53uvRf+4R/gl7/s0+lm\nVqDqjw+x4kaNgi1b4PnnYcSIekdjZn1R4uORVklaBCwDtgLXFSZG5TrmmGx5ED+WyKx23HPUg75+\n4zvhBPjiF+GjH61CUGYD1EB6fEjeEUfAddfB+PEVDMpsgPLjQ+rIi0GaWaX4ln6z2nJyVCW+Y83M\nKqVzUraZ1YaToypxcmRmleKeI7PacnJUJWPGwIsvwuuv1zsSM+vvxozJriUvvFDvSMwGBidHVTJo\nEBx2mOcdmVn5dtjBQ2tmteTkqIo8tGZmleKVss1qp+zkSFKbpFWSVku6oIsyV6XjT0hq6elcScMk\nLZb0tKR70pOvO4/NSuVXSToxt3+cpOXp2JW5/TtJui3tf1DS/rljZ6c2npZ0VrmfRSEnR2ZWKZMm\nuefIrFbKSo4kDSJbHbYNGAtMlXRoQZnJwMERMQb4HDC3hHNnAosj4l3Az9M2ksYCp6fybcC10rY1\nqOcC56Z2xkhqS/vPBV5O+y8HLk11DQMuJHvy9nhgdj4Jq4Qjj3RyZGaVMX48PPoobNpU70jMml+5\nPUfjgTURsTYiNgHzgSkFZU4GbgaIiCXAUEn79HDutnPSn6ek91OAWyNiU0SsBdYAEyTtC+wWEUtT\nuVty5+TruoPsUQCQLfd/T0S8FhGvAYvJEq6Kee97YfVq+J//qWStZjYQ7bEHHHAALFtW70jMml+5\njw8ZSfbgxU7rgQkllBkJjOjm3OERsTG93wgMT+9HAA8WnDMS2MT2D4TsSPu3az89DuB1SXulutYX\nqatidt45u8vkySezZ63V06ZN8Mc/1jcGMytP5y3948bVOxKz5lZuclTqevilLPevYvVFREiq6zNO\n+vo0bfjzStn1TI7efDN7/MCGDfWLwawvtmxpZ8uW9nqH0TAmToT77oPzzqt3JGbNrdzkqAMYndse\nzfa9McXKjEpldiyyvyO93yhpn4h4IQ2ZvdhDXR3pfeH+znP2Azakp2zvEREvS+oAWgtiv7fYD5lP\njnqrESZlf+tbcPjh8PTT9Y3DrPdayf+aShfVK5CGMGkSfOMb9Y7CrPmVO+foYbLJzwdIGkI2WXpB\nQZkFwFkAkiYCr6Uhs+7OXQCcnd6fDfw4t/8MSUMkHQiMAZZGxAvAbyVNSBO0Pw38W5G6PkY2wRvg\nHuBESUMl7QmcQPb07Yqqd3LU0QGXXw7f/Gb9YjCzynj3u+Hll7MFZs2sespKjiJiMzCDLKlYAdwW\nESslTZM0LZVZCDwjaQ0wD5je3bmp6kuAEyQ9DXwobRMRK4AfpvI/BabnHnU9HbgeWE020XtR2n8D\nsJek1cAXSXe+RcQrwNeAh4ClwEVpYnZFHXkkLF8OW7ZUuubSzJoF06bBgQfWp32z/qyUpUpSuWMk\nbZZ0ajXj2WEHmDDB6x2ZVZv+nFtYMZKi3M/ooIPgrruyb321tGQJ/PVfw1NPwW671bZts2qQRESU\nMoexEm0NAp4Cjicbnn8ImJr7Epcvtxj4A3BTRNxRpK6yryOd5syBP/3Jw2tmfVXKdcQrZNdAPYbW\nIuCLX4Svf92JkVkflbJUCcDngduBl2oRlB8jYlZ9To5qoB7J0a23Zt8uzz6757JmVlRXy5BsI2kk\nWcI0N+2qelf8hAnw8MOweXO1WzIbuJwc1UCtV8p+4w244AK44opsjoKZ9Ukpic4VwMw0ZiZKW7ak\nLHvuCaNGZeunmVl1lHsrv5Wgs+coAlSD2RL//M/wvvfBscdWvy2zJlbKUiXjgPnpKUZ7AydJ2hQR\nhXftlrVeWqHO56wdeWSfqzAbMNrb22lvb+/VOZ6Q3YNKTKSMgH32gUceyb7xVdO6ddkF89FHYf/9\ney5v1p/UeEL2YLIJ2R8GNpDd1fqWCdm58jcBP4mIO4scq9iEbIDrroP//E+4+eaey5rZ9jwhu0FI\ntZt3NHMmTJ/uxMisXKUsVVIvnpRtVl3uOepBpb7xzZoFu+wCF15YgaC68MAD8PGPw6pV8Pa3V68d\ns3qpZc9RJVW652jLFhg2DJ55Bvbaq2LVmg0I7jlqINXuOdq6Nbt1/xvfcGJk1uwGDYJjjvFikGbV\n4uSoRqqdHH3/+9ncpjPPrF4bZtY4Jk1ycmRWLU6OauSgg+CVV7JXpb3xRjZs51v3zQYOzzsyqx7/\nV1ojO+wARxwBjz9e+bovvRQ+8IHs9n0zGxgmToSHHqrfcxvNmpmToxqqxmKQzz0H11yTJUhmNnDs\ntVe2RMiKFfWOxKz5ODmqoWrMO5o5E2bMgNGjey5rZs3FQ2tm1eHkqIZaWio7rPbLX2YLwX3lK5Wr\n08z6D0/KNqsOJ0c19J73ZOuSvPlm+XVt3Qrnnw+XXAJve1v59ZlZ/+OeI7PqcHJUQ0OGwCGHwPLl\n5df1L/8CgwfD1Knl12Vm/dN73wvr18Orr9Y7ErPm0ufkSNIwSYslPS3pHklDuyjXJmmVpNWSLijl\nfEmzUvlVkk7M7R8naXk6dmVu/06Sbkv7H5S0f+7Y2amNpyWdldv/XUnPSHosvQ7v62fRG5WYd/T7\n38NXvwpXXulb980GssGD4eijYcmSekdi1lzK+a91JrA4It4F/Dxtb0fSIOBqoA0YC0yVdGh350sa\nC5yeyrcB10rbnmU/Fzg3IsYAYyS1pf3nAi+n/ZcDl6a6hgEXAuPTa7akPdI5AXwpIlrSa1kZn0XJ\nKpEcXXwxfOhDMGFCZWIys/5r0iQPrZlVWjnJ0clA5zOhbwZOKVJmPLAmItZGxCZgPjClh/OnALdG\nxKaIWAusASZI2hfYLSKWpnK35M7J13UH2VO0AT4C3BMRr0XEa8Bi4KRcfDV/RlO5ydHatfDtb2cJ\nkpmZJ2WbVV45ydHwiNiY3m8EhhcpMxJYl9ten/Z1d/6IVK7wnML9Hbm6trWTnqT9uqS9uqmr08WS\nnpD0/yQN6eZnrZgjjoAnn4TNm/t2/le+kk3EHjWqsnGZWf80YUI2rLZ1a70jMWse3SZHaU7Q8iKv\nk/Pl0uOmiz1yunCfipXr5vxqmpWG9I4BhgEX9FC+InbbDUaOhKee6v25v/hF9g3xS1+qfFxmVlxX\n8yZzxz+VvmQtk/TLWs1f7PTOd8Lee8OqVbVs1ay5De7uYESc0NUxSRsl7RMRL6QhrxeLFOsA8ssT\njkr7ALo6v9g569P+UUX2d56zH7BB0mBgj4h4WVIH0Jo7ZzRwb/rZXkh//knSTUCXKcecOXO2vW9t\nbaW1tbWroiXpXCn7Pe8p/ZwtW+CLX8xWwt5117KaN+s32tvbaW9vr1v7uXmTx5NdZx6StCAiVuaK\nPQN8ICJeT/MgvwNMrGWcnbf0jx1by1bNmpeyTps+nChdRjYJ+lJJM4GhETGzoMxg4CmyOUAbgKXA\n1IhY2dX5aUL2D8jmK40EfgYcHBEhaQnwhVTPXcBVEbFI0nTgsIj4W0lnAKdExBlpQvbDwFFkvVaP\nAEdFxGuS9o2I59Nk78uBP0TEV4v8nNHXz6grF18ML78M//zPpZ9z441www3Zoo+q+Uwps8YgiYio\n2W+ApEnA7IhoS9szASLiki7K7wksj4hRBfsrfh3Ju+aa7AvX9ddXrQmzplHKdaScOUeXACdIehr4\nUNpG0ghnD5xEAAAZH0lEQVRJd8G2+T8zgLuBFcBtuW9cRc+PiBXAD1P5nwLTc1eV6cD1wGqyid6L\n0v4bgL0krQa+SLrzLSJeAb4GPESWUF2UJmYDfE/SMmAZ2bDaP5XxWfRKbydl//a38Pd/D1dc4cTI\nrMa6mzdZzLnAwqpGVERbGyxYAD/6Ua1bNmtOfe45Giiq8Y1v40Y49NCs96iUZGfmTHjhBfjudysa\nhlm/U4eeo9OAtoj4m7R9JjAhIj5fpOxxwDXA+yPi1YJjMXv27G3blRieL/TEE/DRj8KsWXDeeRWt\n2qxfKxyev+iii3q8jjg56kG1usNHjMjmCOy/f/flnnkGjjkmW1V7xIiKh2HWr9QhOZoIzMkNq80C\ntkbEpQXlDgfuJEuk1hSpp6rDap2efRY+8hE4/XT4x390T7NZMdUeVrMylDq09uUvw9/9nRMjszp5\nmGzB2QPSch+nAwvyBSTtR5YYnVksMaqlAw/MHki9aBF87nN9XzLEbKBzclQnpSRH7e3wyCNZcmRm\ntdfVvElJ0yRNS8UuBPYE5qZHES3torqaeMc74L774L//G047rTIPujYbaDys1oNqdYffcQfcfHM2\nibKYLVtg3LjsGWqf+ETFmzfrl2o9rFYptRpWy/vTn+Ccc+C557LrzJ571rR5s4blYbUG1lPP0Y03\nwu67w8c/XruYzKx5DBkCt9wC48fDscdCR0fP55hZxj1HPajWN76I7JvcmjXZ6rZ5r78OhxwCd92V\n9R6ZWcY9R33zzW9mayEtWgTvfnfdwjBrCO45amBS9py1xx9/67Gvfx0mT3ZiZGaV8eUvZ3evtbb6\nIbVmpXByVEfFhtbWrMmG1L7xjfrEZGbN6ayzsmvLySfDwpovU2nWvzg5qqNiydGXvpS99tmnPjGZ\nWfOaPDmbnH3OOdkNIWZWnJOjOipMjn7+c1i2LHvArJlZNUycmC0TMns2XHZZNv/RzLbnCdk9qOZE\nyk2bYI894KWXYKed4KijsgvWaadVpTmzfs8TsiunoyN7JtsJJ2QPwd7BX5VtgPCE7Aa3444wdmzW\nW3T99TBsGJx6ar2jMrOBYORI+MUv4OGH4dOfztZFMrOMk6M6a2n5cxf35Zf7WUhmVjt77gl33w1/\n+AP81V/B735X74jMGoOTozpraYGLLsruIGlpqXc0ZjbQ7LIL/OhH2UOwP/QhePHFekdkVn9Ojurs\n6KOzlWz/6Z/qHYmZDVSDB8O8eXDSSfAXfwHPPlvviMzqyxOye1CLiZQvvwx77VXVJsyagidkV9+1\n12YL0d51Fxx5ZL2jMau8qk7IljRM0mJJT0u6R9LQLsq1SVolabWkC0o5X9KsVH6VpBNz+8dJWp6O\nXZnbv5Ok29L+ByXtnzu2SNKrkn5SENeBkpakc+ZL2rGvn0W5nBiZNaaurl8FZa5Kx5+Q1O8Hx6dP\nhyuvhBNPzOZDmg1E5QyrzQQWR8S7gJ+n7e1IGgRcDbQBY4Gpkg7t7nxJY4HTU/k24Fpp2zTlucC5\nETEGGCOpLe0/F3g57b8cuDQXxmXAp4vEfynwrXTOq6mOumiv0RWoFu00Sxu1asc/S+Pq4frVWWYy\ncHC6jnyO7BpVF5X8/D/2MbjtNvjEJ+D226vXTleapY1atdMsbdSynZ6UkxydDHSusXozcEqRMuOB\nNRGxNiI2AfOBKT2cPwW4NSI2RcRaYA0wQdK+wG4RsTSVuyV3Tr6uO4APdwYQEfcCv88HlZKt44DO\nX/uu4q+JZvpH1yxt1Kod/ywNrbvrV6dt156IWAIMlTS8tmFmKv35H3cc3HMPnH8+zM2lfM3yb8m/\ne43XRi3b6Uk5ydHwiNiY3m8Eil0QRgLrctvr077uzh+RyhWeU7i/I1fXtnYiYjPwuqRh3cS+F/Ba\nRGwtUpeZGXR//equzKgqx1UzRx4J//mf2TIjs2d7NW0bOAZ3d1DSYqDYU77+b34jIkJSsV+bwn0q\nsq+7883M6qXUa1LhxM6mupYdeGCWIH30o7B+Pfz+9/Cv/1rdNleubI42atVOs7RRy3Z6FBF9egGr\ngH3S+32BVUXKTAQW5bZnARd0dz7Z3KOZuXMWARPIkrSVuf1Tgbm5MhPT+8HASwVxfBD4SW5bwEvA\nDml7Uj7OgnPDL7/8apxXX69ZfbjGdXn9yu37NnBGwXVxuK8jfvnV2K+efv+77TnqwQLgbLKJzWcD\nPy5S5mGyidMHABvIJlpP7eH8BcAPJP0/si7rMcDS1Lv0W0kTgKVkk6yvKqjrQeBjZBO887b7Zpfq\nug/4OHBbN/H3y9uGzawiurt+dVoAzADmS5pINly/saCMryNm/Uyf1zlKc3p+COwHrAU+ERGvSRoB\nXBcRH03lTgKuAAYBN0TExd2dn459FTgH2AycHxF3p/3jgO8CuwALI+ILaf9OwL8ALcDLZN/k1qZj\n9wOHAG9Px86JiMWSDiSbYDkMeBQ4M026NDMDil+/JE0DiIh5qUznHW1vAJ+NiEfrFa+ZVYYXgTQz\nMzPL8eNDulDK4m8VaONGSRslLa9G/amN0ZLuk/QrSU9K+kKV2tk5Lar5eGpnTjXaSW0NkvRY4cKe\nFax/raRlqY2lPZ/R53aGSrpd0kpJK9KwTCXrPyT9DJ2v16vx9y/p/6S/8+WSfpB6citO0vmpjScl\nnV+NNirN15Fet+PrSO/b8XWkd+2Udh2p1eTG/vQi60JfAxwA7Ag8DhxahXaOJRsKXF7Fn2Uf4Mj0\n/u3AU9X4WVL9u6Y/B5PN/5pQpXb+Dvg+sKBK9T8LDKvW30munZvJhnk7P7M9qtjWDsDzwOgK1zsS\neAbYKW3fBpxdhfjfCywHdk6/n4uBg6r9d1RmzL6O9K0tX0d6146vI6W3U/J1xD1HxZWy+FvZIuJ+\nstW5qyYiXoiIx9P73wMrydaMqkZbf0hvh5D9Z7C1m+J9ImkUMBm4nrfeQl3RpqpYN5L2AI6NiBsB\nImJzRLxexSaPB34dEet6LNl7g4FdJQ0GdiVbN6zS3g0siYj/iYgtwH8Ap1ahnUrydaRvbfk6Umrl\nvo70VsnXESdHxZWy+Fu/k+66aQGWVKn+HSQ9Trao5z0R8VAVmrkc+DJVuGDmBPAzSQ9L+psqtXEg\n8JKkmyQ9Kuk6SbtWqS2AM4AfVLrSiOgAvgX8N9kdXa9FxM8q3Q7wJHCssmcy7gp8lMZfbNHXkb7V\n7+tI6Xwd6Z2SryNOjoprulnqkt5O9riU89M3v4qLiK0RcSTZP7YJkt5Tyfol/SXwYkQ8RnW/kb0/\nIlqAk4DzJB1bhTYGA0cB10bEUWR3Or3l+YSVIGkI8FfAj6pQ955kj9A4gKwn4e2SPlXpdiJiFdmy\nH/cAPwUeo7r/sVWCryN94OtIr/g60gu9uY44OSquAxid2x7N9o8u6Vck7Uj2zLnvRUTR9ZwqKXXr\n3kd2e3MlvQ84WdKzwK3AhyTdUuE2iIjn058vAf9KNjxSaeuB9blvxbeTXeSq4STgkfTzVNrxwLMR\n8XJkj+65k+zvqeIi4saIODoiPgi8RjbvpZH5OlIGX0dK4utIL5V6HXFyVNy2xd9Stnw62WJv/Y4k\nATcAKyLiiiq2s7ekoen9LsAJZPMSKiYivhoRoyPiQLLu3Xsj4qxKtiFpV0m7pfdvA04km8BXURHx\nArBO0rvSruOBX1W6nWQq2X8C1fAcMFHSLunf2vHAimo0JOmd6c/9gL+mCt37FebrSO/b8XWkF3wd\n6b1SryPlrJDdtCJis6QZwN38efG3iv6CAki6lezRJntJWgdcGBE3VbiZ9wNnAsskPZb2zYqIRRVu\nZ1/gZkmDyJLu2yJiYYXbKFSNYYvhwL9mv58MBr4fEfdUoR2AzwPfT/9x/hr4bKUbSBfm44GqzHmI\niKWSbidbSHVz+vM71WgLuF3SXsAmYHpE/LZK7VSEryN94utI7/k60jslXUe8CKSZmZlZjofVzMzM\nzHKcHJmZmZnlODkyMzMzy3FyZGZmZpbj5MjMzMwsx8mRmZmZWY6TIzMzM7McJ0dmZmZmOU6OzMzM\nzHKcHJmZmZnlODkyMzMzy3FyZGZmZpbj5MjMzMwsp2mTI0k3StooaXk3Za6StFrSE5JaahmfmZmZ\nNaamTY6Am4C2rg5KmgwcHBFjgM8Bc2sVmJmZmTWupk2OIuJ+4NVuipwM3JzKLgGGShpei9jMzMys\ncTVtclSCkcC63PZ6YFSdYjEzM7MGMZCTIwAVbEddojAzM7OGMbjeAdRRBzA6tz0q7duOJCdMZg0k\nIgq/1JiZVdRA7jlaAJwFIGki8FpEbCxWMCL63Wv27Nl1j2EgxOy4a/syM6uFpu05knQr8EFgb0nr\ngNnAjgARMS8iFkqaLGkN8Abw2fpFa2ZmZo2iaZOjiJhaQpkZtYjFzMzM+o+BPKzW1FpbW+sdQq/1\nx5jBcZuZNRt5HL97ksKfkVljkER4QraZVZl7jszMzMxynByZmZmZ5Tg5MjMzM8txcmRmZmaW4+TI\nzMzMLMfJkZmZmVmOkyMzMzOzHCdHZmZmZjlOjszMzMxynByZmZmZ5Tg5MjMzM8txcmRmZmaW4+TI\nzMzMLMfJkZmZmVmOkyMzMzOzHCdHZmZmZjlOjszMzMxynByZmZmZ5Tg5MjMzM8tp2uRIUpukVZJW\nS7qgyPE9JP1E0uOSnpT0mTqEaWZmZg1GEVHvGCpO0iDgKeB4oAN4CJgaEStzZb4K7BYRsyTtncoP\nj4jNBXVFM35GZv2RJCJC9Y7DzJpbs/YcjQfWRMTaiNgEzAemFJTZCuye3u8OvFyYGJmZmdnA06zJ\n0UhgXW57fdqXdzUwVtIG4Ang/BrFZmZmZg2sWZOjUsbB2oBHI2IEcCRwjaTdqhuWmZmZNbrB9Q6g\nSjqA0bnt0WS9R3mfAS4GiIhfS3oWOAR4uLCyOXPmbHvf2tpKa2trRYM1s+La29tpb2+vdxhmNsA0\n64TswWQTrD8MbACW8tYJ2dcCGyPiIknDgUeAwyPilYK6PCHbrEF4QraZ1UJT9hxFxGZJM4C7gUHA\nDRGxUtK0dHwe8DXgu5KWAQK+UpgYmZmZ2cDTlD1HleSeI7PG4Z4jM6uFZp2QbWZmZtYnTo7MzMzM\ncpwcmZmZmeU4OTIzMzPLcXJkZmZmluPkyMzMzCzHyZGZmZlZjpMjMzMzsxwnR2ZmZmY5To7MzMzM\ncpwcmZmZmeU4OTIzMzPLcXJkZmZmluPkyMzMzCzHyZGZmZlZjpMjMzMzsxwnR2ZmZmY5To7MzMzM\ncpwcmZmZmeU4OTIzMzPLcXJkZmZmluPkyMzMzCynaZMjSW2SVklaLemCLsq0SnpM0pOS2mscopmZ\nmTUgRUS9Y6g4SYOAp4DjgQ7gIWBqRKzMlRkK/BL4SESsl7R3RPymSF3RjJ+RWX8kiYhQveMws+bW\nrD1H44E1EbE2IjYB84EpBWU+CdwREesBiiVGZmZmNvA0a3I0EliX216f9uWNAYZJuk/Sw5I+XbPo\nzMzMrGENrncAVVLKONiOwFHAh4FdgQckPRgRqwsLzpkzZ9v71tZWWltbKxOlmXWrvb2d9vb2eodh\nZgNMs845mgjMiYi2tD0L2BoRl+bKXADsEhFz0vb1wKKIuL2gLs85MmsQnnNkZrXQrMNqDwNjJB0g\naQhwOrCgoMy/AX8haZCkXYEJwIoax2lmZmYNpimH1SJis6QZwN3AIOCGiFgpaVo6Pi8iVklaBCwD\ntgLXRYSTIzMzswGuKYfVKsnDamaNw8NqZlYLzTqsZmZmZtYnTo7MzMzMcpwcmZmZmeU4OTIzMzPL\ncXJkZmZmluPkyMzMzCzHyZGZmZlZjpMjMzMzsxwnR2ZmZmY5To7MzMzMcpwcmZmZmeU4OTIzMzPL\ncXJkZmZmluPkyMzMzCzHyZGZmZlZjpMjMzMzsxwnR2ZmZmY5To7MzMzMcpwcmZmZmeU4OTIzMzPL\ncXJkZmZmltO0yZGkNkmrJK2WdEE35Y6RtFnSqbWMz8zMzBpTUyZHkgYBVwNtwFhgqqRDuyh3KbAI\nUE2DNDMzs4bUlMkRMB5YExFrI2ITMB+YUqTc54HbgZdqGZyZmZk1rmZNjkYC63Lb69O+bSSNJEuY\n5qZdUZvQzMzMrJE1a3JUSqJzBTAzIoJsSM3DamZmZsbgegdQJR3A6Nz2aLLeo7xxwHxJAHsDJ0na\nFBELCiubM2fOtvetra20trZWOFwzK6a9vZ329vZ6h2FmA4yyjpPmImkw8BTwYWADsBSYGhEruyh/\nE/CTiLizyLFoxs/IrD+SRES4l9fMqqope44iYrOkGcDdwCDghohYKWlaOj6vrgGamZlZw2rKnqNK\ncs+RWeNwz5GZ1UKzTsg2MzMz6xMnR2ZmZmY5To7MzMzMcpwcmZmZmeU4OTIzMzPLcXJkZmZmluPk\nyMzMzCzHyZGZmZlZjpMjMzMzsxwnR2ZmZmY5To7MzMzMcpwcmZmZmeU4OTIzMzPLcXJkZmZmluPk\nyMzMzCzHyZGZmZlZjpMjMzMzsxwnR2ZmZmY5To7MzMzMcpwcmZmZmeU4OTIzMzPLcXJkZmZmltPU\nyZGkNkmrJK2WdEGR45+S9ISkZZJ+KenwesRpZmZmjUMRUe8YqkLSIOAp4HigA3gImBoRK3NlJgEr\nIuJ1SW3AnIiYWFBPNOtnZNbfSCIiVO84zKy5NXPP0XhgTUSsjYhNwHxgSr5ARDwQEa+nzSXAqBrH\naGZmZg2mmZOjkcC63Pb6tK8r5wILqxqRmZmZNbzB9Q6gikoeC5N0HHAO8P5ix+fMmbPtfWtrK62t\nrWWGZmalaG9vp729vd5hmNkA08xzjiaSzSFqS9uzgK0RcWlBucOBO4G2iFhTpB7POTJrEJ5zZGa1\n0MzDag8DYyQdIGkIcDqwIF9A0n5kidGZxRIjMzMzG3iadlgtIjZLmgHcDQwCboiIlZKmpePzgAuB\nPYG5kgA2RcT4esVsZmZm9de0w2qV4mE1s8bhYTUzq4VmHlYzMzMz6zUnR2ZmZmY5To7MzMzMcpwc\nmZmZmeU4OTIzMzPLcXJkZmZmluPkyMzMzCzHyZGZmZlZjpMjMzMzsxwnR2ZmZmY5To7MzMzMcpwc\nmZmZmeU4OTIzMzPLcXJkZmZmluPkyMzMzCzHyZGZmZlZjpMjMzMzsxwnR2ZmZmY5To7MzMzMcpwc\nmZmZmeU4OTIzMzPLadrkSFKbpFWSVku6oIsyV6XjT0hqqXWMZmZm1niaMjmSNAi4GmgDxgJTJR1a\nUGYycHBEjAE+B8yteaBV1N7eXu8Qeq0/xgyO28ys2TRlcgSMB9ZExNqI2ATMB6YUlDkZuBkgIpYA\nQyUNr22Y1dMf/+PrjzGD4zYzazbNmhyNBNblttenfT2VGVXluMzMzKzBNWtyFCWWUx/PMzMzsyal\niObLByRNBOZERFvangVsjYhLc2W+DbRHxPy0vQr4YERsLKir+T4gs34sIgq/1JiZVdTgegdQJQ8D\nYyQdAGwATgemFpRZAMwA5qdk6rXCxAh8ITYzMxtomjI5iojNkmYAdwODgBsiYqWkaen4vIhYKGmy\npDXAG8Bn6xiymZmZNYimHFYzMzMz66tmnZDda/1x0cieYpb0qRTrMkm/lHR4PeIsVMpnncodI2mz\npFNrGV9XSvw30irpMUlPSmqvcYjF4unp38gekn4i6fEU82fqEGZhTDdK2ihpeTdlGup30cyaTEQM\n+BfZ0Nsa4ABgR+Bx4NCCMpOBhen9BODBfhDzJGCP9L6t3jGXGneu3L3AvwOn9Ye4gaHAr4BRaXvv\nfhDzV4GLO+MFXgYG1znuY4EWYHkXxxvqd9Evv/xqvpd7jjL9cdHIHmOOiAci4vW0uYTGWMeplM8a\n4PPA7cBLtQyuG6XE/UngjohYDxARv6lxjIVKiXkrsHt6vzvwckRsrmGMbxER9wOvdlOk0X4XzazJ\nODnK9MdFI0uJOe9cYGFVIypNj3FLGkn2n3jnI10aYWJcKZ/3GGCYpPskPSzp0zWLrrhSYr4aGCtp\nA/AEcH6NYitHo/0umlmTacq71fqgPy4aWXLbko4DzgHeX71wSlZK3FcAMyMiJIm3fu71UErcOwJH\nAR8GdgUekPRgRKyuamRdKyXmNuDRiDhO0kHAYklHRMTvqhxbuRrpd9HMmoyTo0wHMDq3PZrs22h3\nZUalffVSSsykSdjXAW0R0d1QRa2UEvc4svWnIJsHc5KkTRGxoDYhFlVK3OuA30TEm8Cbkn4BHAHU\nKzkqJebPABcDRMSvJT0LHEK2VlijarTfRTNrMh5Wy2xbNFLSELJFIwv/I14AnAXbVuAuumhkDfUY\ns6T9gDuBMyNiTR1iLKbHuCPif0XEgRFxINm8o7+tc2IEpf0b+TfgLyQNkrQr2WThFTWOM6+UmP8b\nOB4gzds5BHimplH2XqP9LppZk3HPEf1z0chSYgYuBPYE5qZemE0RMb5eMae4Som74ZT4b2SVpEXA\nMrKJztdFRN2SoxI/668B35W0jGyo6isR8Uq9YgaQdCvwQWBvSeuA2WRDlg35u2hmzceLQJqZmZnl\neFjNzMzMLMfJkZmZmVmOkyMzMzOzHCdHZmZmZjlOjszMzMxynByZmZmZ5Tg5MjMzM8txcmRmZmaW\n8/8BoPUqgBBhb9gAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7f8a721c74e0>"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"rho"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 10,
"text": [
"<timedomaineuler.vd; proxy of <Swig Object of type 'vd *' at 0x7f8a724e5e10> >"
]
}
],
"prompt_number": 10
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"p"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 9,
"text": [
"array([ -4.29085417e-16, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,\n",
" 0.00000000e+00])"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}