doc
This commit is contained in:
parent
0b4a729233
commit
50b1068a9b
98
Readme.md
98
Readme.md
@ -1,5 +1,99 @@
|
||||
A wrapper around the sundials ODE solver.
|
||||
A wrapper around the cvode(S) ODE solver from sundials.
|
||||
|
||||
[ [documentation](https://docs.rs/cvode-wrap) ] [ [lib.rs](https://lib.rs/crates/cvode-wrap) ] [ [git repository](https://gitlab.inria.fr/InBio/Public/cvode-rust-wrap) ]
|
||||
|
||||
# Examples
|
||||
|
||||
Examples computing the behavior of an oscillatory system defined by `x'' = -k * x` are included in the examples/ directory. In the example computing the sensitivities, sensitivities are computed with respect to `x(0)`, `x'(0)` and `k`.
|
||||
## Oscillator
|
||||
|
||||
An oscillatory system defined by `x'' = -k * x`.
|
||||
|
||||
### Without sensitivities
|
||||
|
||||
```rust
|
||||
let y0 = [0., 1.];
|
||||
//define the right-hand-side
|
||||
fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
|
||||
*ydot = [y[1], -y[0] * k];
|
||||
RhsResult::Ok
|
||||
}
|
||||
//initialize the solver
|
||||
let mut solver = SolverNoSensi::new(
|
||||
LinearMultistepMethod::Adams,
|
||||
f,
|
||||
0.,
|
||||
&y0,
|
||||
1e-4,
|
||||
AbsTolerance::scalar(1e-4),
|
||||
1e-2,
|
||||
)
|
||||
.unwrap();
|
||||
//and solve
|
||||
let ts: Vec<_> = (1..100).collect();
|
||||
println!("0,{},{}", y0[0], y0[1]);
|
||||
for &t in &ts {
|
||||
let (_tret, &[x, xdot]) = solver.step(t as _, StepKind::Normal).unwrap();
|
||||
println!("{},{},{}", t, x, xdot);
|
||||
}
|
||||
```
|
||||
|
||||
### With sensitivities
|
||||
|
||||
The sensitivities are computed with respect to `x(0)`, `x'(0)` and `k`.
|
||||
|
||||
```rust
|
||||
let y0 = [0., 1.];
|
||||
//define the right-hand-side
|
||||
fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
|
||||
*ydot = [y[1], -y[0] * k];
|
||||
RhsResult::Ok
|
||||
}
|
||||
//define the sensitivity function for the right hand side
|
||||
fn fs(
|
||||
_t: Realtype,
|
||||
y: &[Realtype; 2],
|
||||
_ydot: &[Realtype; 2],
|
||||
ys: [&[Realtype; 2]; N_SENSI],
|
||||
ysdot: [&mut [Realtype; 2]; N_SENSI],
|
||||
k: &Realtype,
|
||||
) -> RhsResult {
|
||||
// Mind that when indexing sensitivities, the first index
|
||||
// is the parameter index, and the second the state variable
|
||||
// index
|
||||
*ysdot[0] = [ys[0][1], -ys[0][0] * k];
|
||||
*ysdot[1] = [ys[1][1], -ys[1][0] * k];
|
||||
*ysdot[2] = [ys[2][1], -ys[2][0] * k - y[0]];
|
||||
RhsResult::Ok
|
||||
}
|
||||
|
||||
const N_SENSI: usize = 3;
|
||||
|
||||
// the sensitivities in order are d/dy0[0], d/dy0[1] and d/dk
|
||||
let ys0 = [[1., 0.], [0., 1.], [0., 0.]];
|
||||
|
||||
//initialize the solver
|
||||
let mut solver = SolverSensi::new(
|
||||
LinearMultistepMethod::Adams,
|
||||
f,
|
||||
fs,
|
||||
0.,
|
||||
&y0,
|
||||
&ys0,
|
||||
1e-4,
|
||||
AbsTolerance::scalar(1e-4),
|
||||
SensiAbsTolerance::scalar([1e-4; N_SENSI]),
|
||||
1e-2,
|
||||
)
|
||||
.unwrap();
|
||||
//and solve
|
||||
let ts: Vec<_> = (1..100).collect();
|
||||
println!("0,{},{}", y0[0], y0[1]);
|
||||
for &t in &ts {
|
||||
let (_tret, &[x, xdot], [&[dy0_dy00, dy1_dy00], &[dy0_dy01, dy1_dy01], &[dy0_dk, dy1_dk]]) =
|
||||
solver.step(t as _, StepKind::Normal).unwrap();
|
||||
println!(
|
||||
"{},{},{},{},{},{},{},{},{}",
|
||||
t, x, xdot, dy0_dy00, dy1_dy00, dy0_dy01, dy1_dy01, dy0_dk, dy1_dk
|
||||
);
|
||||
}
|
||||
```
|
98
src/lib.rs
98
src/lib.rs
@ -1,7 +1,103 @@
|
||||
//! A wrapper around cvode and cvodes from the sundials tool suite.
|
||||
//!
|
||||
//! Users should be mostly interested in [`SolverSensi`] and [`SolverNoSensi`].
|
||||
|
||||
//! # Examples
|
||||
//!
|
||||
//! ## Oscillator
|
||||
//!
|
||||
//! An oscillatory system defined by `x'' = -k * x`.
|
||||
//!
|
||||
//! ### Without sensitivities
|
||||
//!
|
||||
//! ```rust
|
||||
//! use cvode_wrap::*;
|
||||
//! let y0 = [0., 1.];
|
||||
//! //define the right-hand-side
|
||||
//! fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
|
||||
//! *ydot = [y[1], -y[0] * k];
|
||||
//! RhsResult::Ok
|
||||
//! }
|
||||
//! //initialize the solver
|
||||
//! let mut solver = SolverNoSensi::new(
|
||||
//! LinearMultistepMethod::Adams,
|
||||
//! f,
|
||||
//! 0.,
|
||||
//! &y0,
|
||||
//! 1e-4,
|
||||
//! AbsTolerance::scalar(1e-4),
|
||||
//! 1e-2,
|
||||
//! )
|
||||
//! .unwrap();
|
||||
//! //and solve
|
||||
//! let ts: Vec<_> = (1..100).collect();
|
||||
//! println!("0,{},{}", y0[0], y0[1]);
|
||||
//! for &t in &ts {
|
||||
//! let (_tret, &[x, xdot]) = solver.step(t as _, StepKind::Normal).unwrap();
|
||||
//! println!("{},{},{}", t, x, xdot);
|
||||
//! }
|
||||
//! ```
|
||||
//!
|
||||
//! ### With sensitivities
|
||||
//!
|
||||
//! The sensitivities are computed with respect to `x(0)`, `x'(0)` and `k`.
|
||||
//!
|
||||
//! ```rust
|
||||
//! use cvode_wrap::*;
|
||||
//! let y0 = [0., 1.];
|
||||
//! //define the right-hand-side
|
||||
//! fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
|
||||
//! *ydot = [y[1], -y[0] * k];
|
||||
//! RhsResult::Ok
|
||||
//! }
|
||||
//! //define the sensitivity function for the right hand side
|
||||
//! fn fs(
|
||||
//! _t: Realtype,
|
||||
//! y: &[Realtype; 2],
|
||||
//! _ydot: &[Realtype; 2],
|
||||
//! ys: [&[Realtype; 2]; N_SENSI],
|
||||
//! ysdot: [&mut [Realtype; 2]; N_SENSI],
|
||||
//! k: &Realtype,
|
||||
//! ) -> RhsResult {
|
||||
//! // Mind that when indexing sensitivities, the first index
|
||||
//! // is the parameter index, and the second the state variable
|
||||
//! // index
|
||||
//! *ysdot[0] = [ys[0][1], -ys[0][0] * k];
|
||||
//! *ysdot[1] = [ys[1][1], -ys[1][0] * k];
|
||||
//! *ysdot[2] = [ys[2][1], -ys[2][0] * k - y[0]];
|
||||
//! RhsResult::Ok
|
||||
//! }
|
||||
//!
|
||||
//! const N_SENSI: usize = 3;
|
||||
//!
|
||||
//! // the sensitivities in order are d/dy0[0], d/dy0[1] and d/dk
|
||||
//! let ys0 = [[1., 0.], [0., 1.], [0., 0.]];
|
||||
//!
|
||||
//! //initialize the solver
|
||||
//! let mut solver = SolverSensi::new(
|
||||
//! LinearMultistepMethod::Adams,
|
||||
//! f,
|
||||
//! fs,
|
||||
//! 0.,
|
||||
//! &y0,
|
||||
//! &ys0,
|
||||
//! 1e-4,
|
||||
//! AbsTolerance::scalar(1e-4),
|
||||
//! SensiAbsTolerance::scalar([1e-4; N_SENSI]),
|
||||
//! 1e-2,
|
||||
//! )
|
||||
//! .unwrap();
|
||||
//! //and solve
|
||||
//! let ts: Vec<_> = (1..100).collect();
|
||||
//! println!("0,{},{}", y0[0], y0[1]);
|
||||
//! for &t in &ts {
|
||||
//! let (_tret, &[x, xdot], [&[dy0_dy00, dy1_dy00], &[dy0_dy01, dy1_dy01], &[dy0_dk, dy1_dk]]) =
|
||||
//! solver.step(t as _, StepKind::Normal).unwrap();
|
||||
//! println!(
|
||||
//! "{},{},{},{},{},{},{},{},{}",
|
||||
//! t, x, xdot, dy0_dy00, dy1_dy00, dy0_dy01, dy1_dy01, dy0_dk, dy1_dk
|
||||
//! );
|
||||
//! }
|
||||
//! ```
|
||||
use std::{ffi::c_void, os::raw::c_int, ptr::NonNull};
|
||||
|
||||
use sundials_sys::realtype;
|
||||
|
Loading…
Reference in New Issue
Block a user