This commit is contained in:
Arthur Carcano 2021-06-11 11:30:04 +02:00
parent 0b4a729233
commit 50b1068a9b
2 changed files with 193 additions and 3 deletions

View File

@ -1,5 +1,99 @@
A wrapper around the sundials ODE solver.
A wrapper around the cvode(S) ODE solver from sundials.
[ [documentation](https://docs.rs/cvode-wrap) ] [ [lib.rs](https://lib.rs/crates/cvode-wrap) ] [ [git repository](https://gitlab.inria.fr/InBio/Public/cvode-rust-wrap) ]
# Examples
Examples computing the behavior of an oscillatory system defined by `x'' = -k * x` are included in the examples/ directory. In the example computing the sensitivities, sensitivities are computed with respect to `x(0)`, `x'(0)` and `k`.
## Oscillator
An oscillatory system defined by `x'' = -k * x`.
### Without sensitivities
```rust
let y0 = [0., 1.];
//define the right-hand-side
fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
*ydot = [y[1], -y[0] * k];
RhsResult::Ok
}
//initialize the solver
let mut solver = SolverNoSensi::new(
LinearMultistepMethod::Adams,
f,
0.,
&y0,
1e-4,
AbsTolerance::scalar(1e-4),
1e-2,
)
.unwrap();
//and solve
let ts: Vec<_> = (1..100).collect();
println!("0,{},{}", y0[0], y0[1]);
for &t in &ts {
let (_tret, &[x, xdot]) = solver.step(t as _, StepKind::Normal).unwrap();
println!("{},{},{}", t, x, xdot);
}
```
### With sensitivities
The sensitivities are computed with respect to `x(0)`, `x'(0)` and `k`.
```rust
let y0 = [0., 1.];
//define the right-hand-side
fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
*ydot = [y[1], -y[0] * k];
RhsResult::Ok
}
//define the sensitivity function for the right hand side
fn fs(
_t: Realtype,
y: &[Realtype; 2],
_ydot: &[Realtype; 2],
ys: [&[Realtype; 2]; N_SENSI],
ysdot: [&mut [Realtype; 2]; N_SENSI],
k: &Realtype,
) -> RhsResult {
// Mind that when indexing sensitivities, the first index
// is the parameter index, and the second the state variable
// index
*ysdot[0] = [ys[0][1], -ys[0][0] * k];
*ysdot[1] = [ys[1][1], -ys[1][0] * k];
*ysdot[2] = [ys[2][1], -ys[2][0] * k - y[0]];
RhsResult::Ok
}
const N_SENSI: usize = 3;
// the sensitivities in order are d/dy0[0], d/dy0[1] and d/dk
let ys0 = [[1., 0.], [0., 1.], [0., 0.]];
//initialize the solver
let mut solver = SolverSensi::new(
LinearMultistepMethod::Adams,
f,
fs,
0.,
&y0,
&ys0,
1e-4,
AbsTolerance::scalar(1e-4),
SensiAbsTolerance::scalar([1e-4; N_SENSI]),
1e-2,
)
.unwrap();
//and solve
let ts: Vec<_> = (1..100).collect();
println!("0,{},{}", y0[0], y0[1]);
for &t in &ts {
let (_tret, &[x, xdot], [&[dy0_dy00, dy1_dy00], &[dy0_dy01, dy1_dy01], &[dy0_dk, dy1_dk]]) =
solver.step(t as _, StepKind::Normal).unwrap();
println!(
"{},{},{},{},{},{},{},{},{}",
t, x, xdot, dy0_dy00, dy1_dy00, dy0_dy01, dy1_dy01, dy0_dk, dy1_dk
);
}
```

View File

@ -1,7 +1,103 @@
//! A wrapper around cvode and cvodes from the sundials tool suite.
//!
//! Users should be mostly interested in [`SolverSensi`] and [`SolverNoSensi`].
//! # Examples
//!
//! ## Oscillator
//!
//! An oscillatory system defined by `x'' = -k * x`.
//!
//! ### Without sensitivities
//!
//! ```rust
//! use cvode_wrap::*;
//! let y0 = [0., 1.];
//! //define the right-hand-side
//! fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
//! *ydot = [y[1], -y[0] * k];
//! RhsResult::Ok
//! }
//! //initialize the solver
//! let mut solver = SolverNoSensi::new(
//! LinearMultistepMethod::Adams,
//! f,
//! 0.,
//! &y0,
//! 1e-4,
//! AbsTolerance::scalar(1e-4),
//! 1e-2,
//! )
//! .unwrap();
//! //and solve
//! let ts: Vec<_> = (1..100).collect();
//! println!("0,{},{}", y0[0], y0[1]);
//! for &t in &ts {
//! let (_tret, &[x, xdot]) = solver.step(t as _, StepKind::Normal).unwrap();
//! println!("{},{},{}", t, x, xdot);
//! }
//! ```
//!
//! ### With sensitivities
//!
//! The sensitivities are computed with respect to `x(0)`, `x'(0)` and `k`.
//!
//! ```rust
//! use cvode_wrap::*;
//! let y0 = [0., 1.];
//! //define the right-hand-side
//! fn f(_t: Realtype, y: &[Realtype; 2], ydot: &mut [Realtype; 2], k: &Realtype) -> RhsResult {
//! *ydot = [y[1], -y[0] * k];
//! RhsResult::Ok
//! }
//! //define the sensitivity function for the right hand side
//! fn fs(
//! _t: Realtype,
//! y: &[Realtype; 2],
//! _ydot: &[Realtype; 2],
//! ys: [&[Realtype; 2]; N_SENSI],
//! ysdot: [&mut [Realtype; 2]; N_SENSI],
//! k: &Realtype,
//! ) -> RhsResult {
//! // Mind that when indexing sensitivities, the first index
//! // is the parameter index, and the second the state variable
//! // index
//! *ysdot[0] = [ys[0][1], -ys[0][0] * k];
//! *ysdot[1] = [ys[1][1], -ys[1][0] * k];
//! *ysdot[2] = [ys[2][1], -ys[2][0] * k - y[0]];
//! RhsResult::Ok
//! }
//!
//! const N_SENSI: usize = 3;
//!
//! // the sensitivities in order are d/dy0[0], d/dy0[1] and d/dk
//! let ys0 = [[1., 0.], [0., 1.], [0., 0.]];
//!
//! //initialize the solver
//! let mut solver = SolverSensi::new(
//! LinearMultistepMethod::Adams,
//! f,
//! fs,
//! 0.,
//! &y0,
//! &ys0,
//! 1e-4,
//! AbsTolerance::scalar(1e-4),
//! SensiAbsTolerance::scalar([1e-4; N_SENSI]),
//! 1e-2,
//! )
//! .unwrap();
//! //and solve
//! let ts: Vec<_> = (1..100).collect();
//! println!("0,{},{}", y0[0], y0[1]);
//! for &t in &ts {
//! let (_tret, &[x, xdot], [&[dy0_dy00, dy1_dy00], &[dy0_dy01, dy1_dy01], &[dy0_dk, dy1_dk]]) =
//! solver.step(t as _, StepKind::Normal).unwrap();
//! println!(
//! "{},{},{},{},{},{},{},{},{}",
//! t, x, xdot, dy0_dy00, dy1_dy00, dy0_dy01, dy1_dy01, dy0_dk, dy1_dk
//! );
//! }
//! ```
use std::{ffi::c_void, os::raw::c_int, ptr::NonNull};
use sundials_sys::realtype;