lyx_mirror/lib/examples/aa_paper.lyx

940 lines
20 KiB
Plaintext
Raw Permalink Normal View History

#This file was created by <pit> Mon Nov 24 22:57:48 1997
#LyX 0.11 (C) 1995-1997 Matthias Ettrich and the LyX Team
\lyxformat 2.15
\textclass aapaper
\language default
\inputencoding latin1
\fontscheme default
\graphics default
\paperfontsize default
\spacing single
\papersize Default
\paperpackage a4
\use_geometry 0
\use_amsmath 0
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\quotes_times 2
\papercolumns 1
\papersides 1
\paperpagestyle default
\layout Thesaurus
06(03.11.1;16.06.1;19.06.1;19.37.1;19.53.1;19.63.1)
\layout Title
Hydrodynamics of giant planet formation
\layout Subtitle
I.
Overviewing the
\begin_inset Formula \( \kappa \)
\end_inset
-mechanism
\layout Author
G.
Wuchterl
\layout Address
Institute for Astronomy (IfA), University of Vienna, T<>rkenschanzstrasse
17, A-1180 Vienna
\layout Offprint
G.
Wuchterl
\layout Email
wuchterl@amok.ast.univie.ac.at
\layout Date
Received September 15, 1996 / Accepted March 16, 1997
\layout Abstract
To investigate the physical nature of the `nuc\SpecialChar \-
leated instability' of proto
giant planets (Mizuno
\begin_inset LatexCommand \cite{mizuno}
\end_inset
), the stability of layers in static, radiative gas spheres is analysed
on the basis of Baker's
\begin_inset LatexCommand \cite{baker}
\end_inset
standard one-zone model.
It is shown that stability depends only upon the equations of state, the
opacities and the local thermodynamic state in the layer.
Stability and instability can therefore be expressed in the form of stability
equations of state which are universal for a given composition.
\layout Abstract
The stability equations of state are calculated for solar composition and
are displayed in the domain
\begin_inset Formula \( -14\leq \lg \rho /[\mathrm{g}\, \mathrm{cm}^{-3}]\leq 0 \)
\end_inset
,
\begin_inset Formula \( 8.8\leq \lg e/[\mathrm{erg}\, \mathrm{g}^{-1}]\leq 17.7 \)
\end_inset
.
These displays may be used to determine the one-zone stability of layers
in stellar or planetary structure models by directly reading off the value
of the stability equations for the thermodynamic state of these layers,
specified by state quantities as density
\begin_inset Formula \( \rho \)
\end_inset
, temperature
\begin_inset Formula \( T \)
\end_inset
or specific internal energy
\begin_inset Formula \( e \)
\end_inset
.
Regions of instability in the
\begin_inset Formula \( (\rho \, e) \)
\end_inset
-plane are described and related to the underlying microphysical processes.
Vibrational instability is found to be a common phenomenon at temperatures
lower than the second He ionisation zone.
The
\begin_inset Formula \( \kappa \)
\end_inset
-mechanism is widespread under `cool' conditions.
\layout Abstract
\latex latex
\backslash
keywords{
\latex default
giant planet formation --
\begin_inset Formula \( \kappa \)
\end_inset
-mechanism -- stability of gas spheres
\latex latex
}
\layout Section
Introduction
\layout Standard
In the
\emph on
nucleated instability
\emph default
(also called core instability) hypothesis of giant planet formation, a
critical mass for static core envelope protoplanets has been found.
Mizuno (
\begin_inset LatexCommand \cite{mizuno}
\end_inset
) determined the critical mass of the core to be about
\begin_inset Formula \( 12\, M_{\oplus } \)
\end_inset
(
\begin_inset Formula \( M_{\oplus }=5.975\, 10^{27}\, \mathrm{g} \)
\end_inset
is the Earth mass), which is independent of the outer boundary conditions
and therefore independent of the location in the solar nebula.
This critical value for the core mass corresponds closely to the cores
of today's giant planets.
\layout Standard
Although no hydrodynamical study has been available many workers conjectured
that a collapse or rapid contraction will ensue after accumulating the
critical mass.
The main motivation for this article is to investigate the stability of
the static envelope at the critical mass.
With this aim the local, linear stability of static radiative gas spheres
is investigated on the basis of Baker's (
\begin_inset LatexCommand \cite{baker}
\end_inset
) standard one-zone model.
The nonlinear, hydrodynamic evolution of the protogiant planet beyond the
critical mass, as calculated by Wuchterl (
\begin_inset LatexCommand \cite{wuchterl}
\end_inset
), will be described in a forthcoming article.
\layout Standard
The fact that Wuchterl (
\begin_inset LatexCommand \cite{wuchterl}
\end_inset
) found the excitation of hydrodynamical waves in his models raises considerable
interest on the transition from static to dynamic evolutionary phases of
the protogiant planet at the critical mass.
The waves play a crucial role in the development of the so-called nucleated
instability in the nucleated instability hypothesis.
They lead to the formation of shock waves and massive outflow phenomena.
The protoplanet evolves into a new quasi-equilibrium structure with a
\emph on
pulsating
\emph default
envelope, after the mass loss phase has declined.
\layout Standard
Phenomena similar to the ones described above for giant planet formation
have been found in hydrodynamical models concerning star formation where
protostellar cores explode (Tscharnuter
\begin_inset LatexCommand \cite{tscarnuter}
\end_inset
, Balluch
\begin_inset LatexCommand \cite{balluch}
\end_inset
), whereas earlier studies found quasi-steady collapse flows.
The similarities in the (micro)physics, i.e., constitutive relations of protostel
lar cores and protogiant planets serve as a further motivation for this
study.
\layout Section
Baker's standard one-zone model
\layout Standard
\begin_float wide-fig
\layout Standard
\latex latex
\backslash
rule{0.4pt}{4cm}
\hfill
\backslash
parbox[b]{55mm}{
\layout Caption
Adiabatic exponent
\begin_inset Formula \( \Gamma \)
\end_inset
.
\begin_inset Formula \( \Gamma _{1} \)
\end_inset
is plotted as a function of
\begin_inset Formula \( \lg \)
\end_inset
internal energy
\begin_inset Formula \( [\mathrm{erg}\, \mathrm{g}^{-1}] \)
\end_inset
and
\begin_inset Formula \( \lg \)
\end_inset
density
\begin_inset Formula \( [\mathrm{g}\, \mathrm{cm}^{-3}] \)
\end_inset
\begin_inset LatexCommand \label{FigGam}
\end_inset
\latex latex
}
\end_float
In this section the one-zone model of Baker (
\begin_inset LatexCommand \cite{baker}
\end_inset
), originally used to study the Cephe<68>d pulsation mechanism, will be briefly
reviewed.
The resulting stability criteria will be rewritten in terms of local state
variables, local timescales and constitutive relations.
\layout Standard
Baker (
\begin_inset LatexCommand \cite{baker}
\end_inset
) investigates the stability of thin layers in self-gravitating, spherical
gas clouds with the following properties:
\layout Itemize
hydrostatic equilibrium,
\layout Itemize
thermal equilibrium,
\layout Itemize
energy transport by grey radiation diffusion.
\layout Standard
For the one-zone-model Baker obtains necessary conditions for dynamical,
secular and vibrational (or pulsational) stability [Eqs.
\protected_separator
(34a,
\latex latex
\backslash
,
\latex default
b,
\latex latex
\backslash
,
\latex default
c) in Baker
\begin_inset LatexCommand \cite{baker}
\end_inset
].
Using Baker's notation:
\begin_inset Formula
\begin{eqnarray*}
M_{\mathrm{r}} & & \mathrm{mass}\, \mathrm{internal}\, \mathrm{to}\, \mathrm{the}\, \mathrm{radius}\, r\\
m & & \mathrm{mass}\, \mathrm{of}\, \mathrm{the}\, \mathrm{zone}\\
r_{0} & & \mathrm{unperturbed}\, \mathrm{zone}\, \mathrm{radius}\\
\rho _{0} & & \mathrm{unperturbed}\, \mathrm{density}\, \mathrm{in}\, \mathrm{the}\, \mathrm{zone}\\
T_{0} & & \mathrm{unperturbed}\, \mathrm{temperature}\, \mathrm{in}\, \mathrm{the}\, \mathrm{zone}\\
L_{r0} & & \mathrm{unperturbed}\, \mathrm{luminosity}\\
E_{\mathrm{th}} & & \mathrm{thermal}\, \mathrm{energy}\, \mathrm{of}\, \mathrm{the}\, \mathrm{zone}
\end{eqnarray*}
\end_inset
and with the definitions of the
\emph on
local cooling time
\emph default
(see Fig.
\protected_separator
\begin_inset LatexCommand \ref{FigGam}
\end_inset
)
\layout Standard
\begin_inset Formula
\begin{equation}
\label{}
\tau _{\mathrm{co}}=\frac{E_{\mathrm{th}}}{L_{r0}}\, ,
\end{equation}
\end_inset
and the
\emph on
local free-fall time
\layout Standard
\begin_inset Formula
\begin{equation}
\label{}
\tau _{\mathrm{ff}}=\sqrt{\frac{3\pi }{32G}\frac{4\pi r_{0}^{3}}{3M_{\mathrm{r}}}\, ,}
\end{equation}
\end_inset
Baker's
\begin_inset Formula \( K \)
\end_inset
and
\begin_inset Formula \( \sigma _{0} \)
\end_inset
have the following form:
\begin_inset Formula
\begin{eqnarray}
\sigma _{0} & = & \frac{\pi }{\sqrt{8}}\frac{1}{\tau _{\mathrm{ff}}}\\
K & = & \frac{\sqrt{32}}{\pi }\frac{1}{\delta }\frac{\tau _{\mathrm{ff}}}{\tau _{\mathrm{co}}}\, ;
\end{eqnarray}
\end_inset
where
\begin_inset Formula \( E_{\mathrm{th}}\approx m(P_{0}/\rho _{0}) \)
\end_inset
has been used and
\layout Standard
\begin_inset Formula
\begin{equation}
\label{}
\begin{array}{l}
\delta =-\left( \frac{\partial \ln \rho }{\partial \ln T}\right) _{P}\\
e=mc^{2}
\end{array}
\end{equation}
\end_inset
is a thermodynamical quantity which is of order
\begin_inset Formula \( 1 \)
\end_inset
and equal to
\begin_inset Formula \( 1 \)
\end_inset
for nonreacting mixtures of classical perfect gases.
The physical meaning of
\begin_inset Formula \( \sigma _{0} \)
\end_inset
and
\begin_inset Formula \( K \)
\end_inset
is clearly visible in the equations above.
\begin_inset Formula \( \sigma _{0} \)
\end_inset
represents a frequency of the order one per free-fall time.
\begin_inset Formula \( K \)
\end_inset
is proportional to the ratio of the free-fall time and the cooling time.
Substituting into Baker's criteria, using thermodynamic identities and
definitions of thermodynamic quantities,
\begin_inset Formula
\[
\Gamma _{1}=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{S}\, ,\: \chi _{\rho }=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{T}\, ,\: \kappa _{P}=\left( \frac{\partial \ln \kappa }{\partial \ln P}\right) _{T}\]
\end_inset
\layout Standard
\begin_inset Formula
\[
\nabla _{\mathrm{ad}}=\left( \frac{\partial \ln T}{\partial \ln P}\right) _{S}\, ,\: \chi _{T}=\left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }\, ,\: \kappa _{T}=\left( \frac{\partial \ln \kappa }{\partial \ln P}\right) _{T}\]
\end_inset
one obtains, after some pages of algebra, the conditions for
\emph on
stability
\emph default
given below:
\layout Standard
\begin_inset Formula
\begin{eqnarray}
\frac{\pi ^{2}}{8}\frac{1}{\tau _{\mathrm{ff}}^{2}}(3\Gamma _{1}-4) & > & 0\label{ZSDynSta} \\
\frac{\pi ^{2}}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}\nabla _{\mathrm{ad}}\left[ \frac{1-3/4\chi _{\rho }}{\chi _{T}}(\kappa _{T}-4)+\kappa _{P}+1\right] & > & 0\label{ZSSecSta} \\
\frac{\pi ^{2}}{4}\frac{3}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}^{2}\nabla _{\mathrm{ad}}\left[ 4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa _{T}+\kappa _{P})-\frac{4}{3\Gamma _{1}}\right] & > & 0\label{ZSVibSta}
\end{eqnarray}
\end_inset
For a physical discussion of the stability criteria see Baker (
\begin_inset LatexCommand \cite{baker}
\end_inset
) or Cox (
\begin_inset LatexCommand \cite{cox}
\end_inset
).
\layout Standard
We observe that these criteria for dynamical, secular and vibrational stability,
respectively, can be factorized into
\layout Enumerate
a factor containing local timescales only,
\layout Enumerate
a factor containing only constitutive relations and their derivatives.
\layout Standard
The first factors, depending on only timescales, are positive by definition.
The signs of the left hand sides of the inequalities
\protected_separator
(
\begin_inset LatexCommand \ref{ZSDynSta}
\end_inset
), (
\begin_inset LatexCommand \ref{ZSSecSta}
\end_inset
) and (
\begin_inset LatexCommand \ref{ZSVibSta}
\end_inset
) therefore depend exclusively on the second factors containing the constitutive
relations.
Since they depend only on state variables, the stability criteria themselves
are
\emph on
functions of the thermodynamic state in the local zone
\emph default
.
The one-zone stability can therefore be determined from a simple equation
of state, given for example, as a function of density and temperature.
Once the microphysics, i.e.
the thermodynamics and opacities (see Table
\protected_separator
\begin_inset LatexCommand \ref{KapSou}
\end_inset
), are specified (in practice by specifying a chemical composition) the
one-zone stability can be inferred if the thermodynamic state is specified.
The zone -- or in other words the layer -- will be stable or unstable in
whatever object it is imbedded as long as it satisfies the one-zone-model
assumptions.
Only the specific growth rates (depending upon the time scales) will be
different for layers in different objects.
\layout Standard
\begin_float tab
\layout Caption
Opacity sources
\begin_inset LatexCommand \label{KapSou}
\end_inset
\layout Standard
\align center \LyXTable
multicol4
4 2 0 0 -1 -1 -1 -1
1 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
2 0 0
2 0 0
0 2 1 0 0 0 0
0 2 1 0 0 0 0
0 8 1 0 0 0 0
0 8 1 0 0 0 0
0 2 1 0 0 0 0
0 8 1 0 0 0 0
0 8 1 0 0 0 0
0 8 1 0 0 0 0
Source
\newline
T/[K]
\newline
Yorke 1979, Yorke 1980a
\newline
\begin_inset Formula \( \leq 1700^{\mathrm{a}} \)
\end_inset
\newline
Kr<EFBFBD>gel 1971
\newline
\begin_inset Formula \( 1700\leq T\leq 5000 \)
\end_inset
\newline
Cox & Stewart 1969
\newline
\begin_inset Formula \( 5000\leq \)
\end_inset
\layout Standard
\begin_inset Formula \( \mathrm{a} \)
\end_inset
This is footnote a
\end_float
\begin_float wide-tab
\layout Caption
Regions of secular instability
\begin_inset LatexCommand \label{TabSecInst}
\end_inset
\layout Standard
\latex latex
\backslash
vspace{4cm}
\end_float
We will now write down the sign (and therefore stability) determining parts
of the left-hand sides of the inequalities (
\begin_inset LatexCommand \ref{ZSDynSta}
\end_inset
), (
\begin_inset LatexCommand \ref{ZSSecSta}
\end_inset
) and (
\begin_inset LatexCommand \ref{ZSVibSta}
\end_inset
) and thereby obtain
\emph on
stability equations of state
\emph default
.
\layout Standard
The sign determining part of inequality
\protected_separator
(
\begin_inset LatexCommand \ref{ZSDynSta}
\end_inset
) is
\begin_inset Formula \( 3\Gamma _{1}-4 \)
\end_inset
and it reduces to the criterion for dynamical stability
\layout Standard
\begin_inset Formula
\begin{equation}
\label{}
\Gamma _{1}>\frac{4}{3}
\end{equation}
\end_inset
Stability of the thermodynamical equilibrium demands
\begin_inset Formula
\begin{equation}
\label{}
\chi _{\rho }>0,\: \: c_{v}>0\, ,
\end{equation}
\end_inset
and
\layout Standard
\begin_inset Formula
\begin{equation}
\label{}
\chi _{T}>0
\end{equation}
\end_inset
holds for a wide range of physical situations.
With
\layout Standard
\begin_inset Formula
\begin{eqnarray}
\Gamma _{3}-1=\frac{P}{\rho T}\frac{\chi _{T}}{c_{v}} & > & 0\\
\Gamma _{1}=\chi _{\rho }+\chi _{T}(\Gamma _{3}-1) & > & 0\\
\nabla _{\mathrm{ad}}=\frac{\Gamma _{3}-1}{\Gamma _{1}} & > & 0
\end{eqnarray}
\end_inset
we find the sign determining terms in inequalities
\protected_separator
(
\begin_inset LatexCommand \ref{ZSSecSta}
\end_inset
) and (
\begin_inset LatexCommand \ref{ZSVibSta}
\end_inset
) respectively and obtain the following form of the criteria for dynamical,
secular and vibrational
\emph on
stability
\emph default
, respectively:
\layout Standard
\begin_inset Formula
\begin{eqnarray}
3\Gamma _{1}-4=:\, S_{\mathrm{dyn}}> & 0 & \label{DynSta} \\
\frac{1-3/4\chi _{\rho }}{\chi _{T}}(\kappa _{T}-4)+\kappa _{P}+1=:\, S_{\mathrm{sec}}> & 0 & \label{SecSta} \\
4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa _{T}+\kappa _{P}-\frac{4}{3\Gamma _{1}}=:\, S_{\mathrm{vib}}> & 0 & \label{VibSta}
\end{eqnarray}
\end_inset
The constitutive relations are to be evaluated for the unperturbed thermodynamic
state (say
\begin_inset Formula \( (\rho _{0},T_{0}) \)
\end_inset
) of the zone.
We see that the one-zone stability of the layer depends only on the constitutiv
e relations
\begin_inset Formula \( \Gamma _{1} \)
\end_inset
,
\begin_inset Formula \( \nabla _{\mathrm{ad}} \)
\end_inset
,
\begin_inset Formula \( \chi _{T},\, \chi _{\rho } \)
\end_inset
,
\begin_inset Formula \( \kappa _{P},\, \kappa _{T} \)
\end_inset
.
These depend only on the unperturbed thermodynamical state of the layer.
Therefore the above relations define the one-zone-stability equations of
state
\begin_inset Formula \( S_{\mathrm{dyn}},\, S_{\mathrm{sec}} \)
\end_inset
and
\begin_inset Formula \( S_{\mathrm{vib}} \)
\end_inset
.
See Fig.
\protected_separator
\begin_inset LatexCommand \ref{FigVibStab}
\end_inset
for a picture of
\begin_inset Formula \( S_{\mathrm{vib}} \)
\end_inset
.
Regions of secular instability are listed in Table
\protected_separator
\begin_inset LatexCommand \ref{TabSecInst}
\end_inset
.
\layout Standard
\begin_float fig
\layout Standard
\latex latex
\backslash
vspace{5cm}
\layout Caption
Vibrational stability equation of state
\begin_inset Formula \( S_{\mathrm{vib}}(\lg e,\lg \rho ) \)
\end_inset
.
\begin_inset Formula \( >0 \)
\end_inset
means vibrational stability.
\begin_inset LatexCommand \label{FigVibStab}
\end_inset
\end_float
\layout Section
Conclusions
\layout Enumerate
The conditions for the stability of static, radiative layers in gas spheres,
as described by Baker's (
\begin_inset LatexCommand \cite{baker}
\end_inset
) standard one-zone model, can be expressed as stability equations of state.
These stability equations of state depend only on the local thermodynamic
state of the layer.
\layout Enumerate
If the constitutive relations -- equations of state and Rosseland mean opacities
-- are specified, the stability equations of state can be evaluated without
specifying properties of the layer.
\layout Enumerate
For solar composition gas the
\begin_inset Formula \( \kappa \)
\end_inset
-mechanism is working in the regions of the ice and dust features in the
opacities, the
\begin_inset Formula \( \mathrm{H}_{2} \)
\end_inset
dissociation and the combined H, first He ionization zone, as indicated
by vibrational instability.
These regions of instability are much larger in extent and degree of instabilit
y than the second He ionization zone that drives the Cephe<68>d pulsations.
\layout Acknowledgement
Part of this work was supported by the German
\emph on
Deut\SpecialChar \-
sche For\SpecialChar \-
schungs\SpecialChar \-
ge\SpecialChar \-
mein\SpecialChar \-
schaft, DFG
\emph default
project number Ts
\protected_separator
17/2--1.
\layout Bibliography
\bibitem [1966]{baker}
Baker N., 1966, in: Stellar Evolution, eds.
\protected_separator
R.
F.
Stein, A.
G.
W.
Cameron, Plenum, New York, p.
\protected_separator
333
\layout Bibliography
\bibitem [1988]{balluch}
Balluch M., 1988, A&A 200, 58
\layout Bibliography
\bibitem [1980]{cox}
Cox J.
P., 1980, Theory of Stellar Pulsation, Princeton University Press, Princeton,
p.
\protected_separator
165
\layout Bibliography
\bibitem [1969]{cox69}
Cox A.
N., Stewart J.
N., 1969, Academia Nauk, Scientific Information 15, 1
\layout Bibliography
\bibitem [1971]{kruegel}
Kr<EFBFBD>gel E., 1971, Der Rosselandsche Mittelwert bei tiefen Temperaturen, Diplom--Th
esis, Univ.
\protected_separator
G<>ttingen
\layout Bibliography
\bibitem [1980]{mizuno}
Mizuno H., 1980, Prog.
Theor.
Phys.
64, 544
\layout Bibliography
\bibitem [1987]{tscarnuter}
Tscharnuter W.
M., 1987, A&A 188, 55
\layout Bibliography
\bibitem [1989]{wuchterl}
Wuchterl G., 1989, Zur Entstehung der Gasplaneten.
Ku\SpecialChar \-
gel\SpecialChar \-
sym\SpecialChar \-
me\SpecialChar \-
tri\SpecialChar \-
sche Gas\SpecialChar \-
str<EFBFBD>\SpecialChar \-
mun\SpecialChar \-
gen auf Pro\SpecialChar \-
to\SpecialChar \-
pla\SpecialChar \-
ne\SpecialChar \-
ten, Dissertation, Univ.
Wien
\layout Bibliography
\bibitem [1979]{yorke79}
Yorke H.
W., 1979, A&A 80, 215
\layout Bibliography
\bibitem [1980a]{yorke80a}
Yorke H.
W., 1980a, A&A 86, 286
\the_end