lyx_mirror/src/support/forkedcall.h

139 lines
3.4 KiB
C
Raw Normal View History

// -*- C++ -*-
/**
* \file syscall.h
* Copyright 2002 the LyX Team
* Read the file COPYING
*
* \author Asger Alstrup
*
* Interface cleaned up by
* \author Angus Leeming <a.leeming@ic.ac.uk>
*
* An instance of Class Forkedcall represents a single child process.
*
* Class Forkedcall uses fork() and execvp() to lauch the child process.
*
* Once launched, control is returned immediately to the parent process
* but a Signal can be emitted upon completion of the child.
*
* The child process is not killed when the Forkedcall instance goes out of
* scope, but it can be killed by an explicit invocation of the kill() member
* function.
*/
#ifndef FORKEDCALL_H
#define FORKEDCALL_H
#ifdef __GNUG__
#pragma interface
#endif
#include "LString.h"
#include <sys/types.h>
#include <boost/smart_ptr.hpp>
#include <sigc++/signal_system.h>
class Forkedcall {
public:
///
enum Starttype {
///
Wait,
///
DontWait
};
///
Forkedcall();
/** Start the child process.
*
* The command "what" is passed to fork() for execution.
*
* There are two startscript commands available. They differ in that
* the second receives a signal that is executed on completion of
* the command. This makes sense only for a command executed
* in the background, ie DontWait.
*
* The other startscript command can be executed either blocking
* or non-blocking, but no signal will be emitted on finishing.
*/
int startscript(Starttype, string const & what);
/** A SignalType signal is can be emitted once the forked process
* has finished. It passes:
* the commandline string;
* the PID of the child and;
* the return value from the child.
*
* We use a signal rather than simply a callback function so that
* we can return easily to C++ methods, rather than just globally
* accessible functions.
*/
typedef SigC::Signal3<void, string, pid_t, int> SignalType;
/** The signal is connected in the calling routine to the desired
* slot. We pass a shared_ptr rather than a reference to the signal
* because it is eminently possible for the instance of the calling
* class (and hence the signal) to be destructed before the forked
* call is complete.
*
* It doesn't matter if the slot disappears, SigC takes care of that.
*/
typedef boost::shared_ptr<SignalType> SignalTypePtr;
///
int startscript(string const & what, SignalTypePtr);
/** Invoking the following methods makes sense only if the command
* is running asynchronously!
*/
/** gets the PID of the child process.
* Used by the timer.
*/
pid_t pid() const { return pid_; }
/** Emit the signal.
* Used by the timer.
*/
void emitSignal();
/** Set the return value of the child process.
* Used by the timer.
*/
void setRetValue(int r) { retval_ = r; }
/** Kill child prematurely.
* First, a SIGHUP is sent to the child.
* If that does not end the child process within "tolerance"
* seconds, the SIGKILL signal is sent to the child.
* When the child is dead, the callback is called.
*/
void kill(int tolerance = 5);
///
string const & command() const { return command_; }
private:
/// Callback function
SignalTypePtr signal_;
/// Commmand line
string command_;
/// Process ID of child
pid_t pid_;
/// Return value from child
int retval_;
///
pid_t generateChild();
/// Wait for child process to finish. Updates returncode from child.
int waitForChild();
};
#endif // FORKEDCALL_H