lyx_mirror/src/mathed/math_cursor.C

1571 lines
27 KiB
C++
Raw Normal View History

/*
* File: math_cursor.C
* Purpose: Interaction for mathed
* Author: Alejandro Aguilar Sierra <asierra@servidor.unam.mx>
* Created: January 1996
* Description: Math interaction for a WYSIWYG math editor.
*
* Dependencies: Xlib, XForms
*
* Copyright: 1996, Alejandro Aguilar Sierra
*
* Version: 0.8beta, Math & Lyx project.
*
* You are free to use and modify this code under the terms of
* the GNU General Public Licence version 2 or later.
*/
#ifdef __GNUG__
#pragma implementation
#endif
#include <config.h>
#include <algorithm>
#include <cctype>
#include "support/lstrings.h"
#include "debug.h"
#include "LColor.h"
#include "Painter.h"
#include "support.h"
#include "formulabase.h"
#include "math_cursor.h"
#include "math_factory.h"
#include "math_arrayinset.h"
#include "math_charinset.h"
#include "math_deliminset.h"
#include "math_matrixinset.h"
#include "math_scriptinset.h"
#include "math_spaceinset.h"
#include "math_specialcharinset.h"
#include "math_parser.h"
#define FILEDEBUG 0
using std::endl;
using std::min;
using std::max;
using std::swap;
using std::isalnum;
namespace {
struct Selection
{
void grab(MathCursor const & cursor)
{
data_.clear();
MathCursorPos i1;
MathCursorPos i2;
cursor.getSelection(i1, i2);
if (i1.idx_ == i2.idx_) {
MathArray ar;
if (i1.inner_) {
ar.push_back(*i1.at());
ar.back().removeNucleus();
++i1.pos_;
}
ar.push_back(MathArray(i1.cell(), i1.pos_, i2.pos_));
if (i2.inner_) {
ar.push_back(*i2.at());
ar.back().removeUp();
ar.back().removeDown();
}
data_.push_back(ar);
}
else {
std::vector<MathInset::idx_type> indices =
i1.par_->idxBetween(i1.idx_, i2.idx_);
for (MathInset::idx_type i = 0; i < indices.size(); ++i)
data_.push_back(i1.cell(indices[i]));
}
}
void erase(MathCursor & cursor)
{
MathCursorPos i1;
MathCursorPos i2;
cursor.getSelection(i1, i2);
if (i1.idx_ == i2.idx_) {
if (i1.inner_) {
i1.inner_ = false;
i1.at()->removeUp();
i1.at()->removeDown();
++i1.pos_;
}
if (i2.inner_) {
i2.inner_ = false;
i2.at()->removeNucleus();
}
i1.cell().erase(i1.pos_, i2.pos_);
} else {
std::vector<MathInset::idx_type> indices =
i1.par_->idxBetween(i1.idx_, i2.idx_);
for (unsigned i = 0; i < indices.size(); ++i)
i1.cell(indices[i]).erase();
}
cursor.cursor() = i1;
}
void paste(MathCursor & cursor) const
{
cursor.insert(glue());
}
// glues selection to one cell
MathArray glue() const
{
MathArray ar;
for (unsigned i = 0; i < data_.size(); ++i)
ar.push_back(data_[i]);
return ar;
}
void clear()
{
data_.clear();
}
std::vector<MathArray> data_;
};
Selection theSelection;
#if FILEDEBUG
std::ostream & operator<<(std::ostream & os, MathCursorPos const & p)
{
os << "(par: " << p.par_ << " idx: " << p.idx_
<< " pos: " << p.pos_ << " inner: " << p.inner_ << ")";
return os;
}
#endif
}
MathCursor::MathCursor(InsetFormulaBase * formula)
: formula_(formula), lastcode_(LM_TC_VAR), selection_(false)
{
first();
}
void MathCursor::pushLeft(MathInset * par)
{
MathCursorPos p;
p.par_ = par;
p.inner_ = false;
par->idxFirst(p.idx_, p.pos_);
Cursor_.push_back(p);
}
void MathCursor::pushRight(MathInset * par)
{
posLeft();
MathCursorPos p;
p.par_ = par;
p.inner_ = false;
par->idxLast(p.idx_, p.pos_);
Cursor_.push_back(p);
}
bool MathCursor::popLeft()
{
if (Cursor_.size() <= 1)
return false;
if (nextAtom())
nextAtom()->removeEmptyScripts();
Cursor_.pop_back();
if (nextAtom())
nextAtom()->removeEmptyScripts();
return true;
}
bool MathCursor::popRight()
{
if (Cursor_.size() <= 1)
return false;
if (nextAtom())
nextAtom()->removeEmptyScripts();
Cursor_.pop_back();
if (nextAtom())
nextAtom()->removeEmptyScripts();
posRight();
return true;
}
#if FILEDEBUG
void MathCursor::dump(char const *) const
{
lyxerr << "MC: " << what << "\n";
for (unsigned i = 0; i < Cursor_.size(); ++i)
lyxerr << " i: " << i
<< " pos: " << Cursor_[i].pos_
<< " idx: " << Cursor_[i].idx_
<< " par: " << Cursor_[i].par_ << "\n";
//lyxerr << " sel: " << selection_ << " data: " << array() << "\n";
}
void MathCursor::seldump(char const * str) const
{
//lyxerr << "SEL: " << str << ": '" << theSelection << "'\n";
//dump(" Pos");
lyxerr << "\n\n\n=================vvvvvvvvvvvvv======================= "
<< str << "\ntheSelection: " << selection_
<< " '" << theSelection.glue() << "'\n";
for (unsigned int i = 0; i < Cursor_.size(); ++i)
lyxerr << Cursor_[i].par_ << "\n'" << Cursor_[i].cell() << "'\n";
lyxerr << "\n";
for (unsigned int i = 0; i < Anchor_.size(); ++i)
lyxerr << Anchor_[i].par_ << "\n'" << Anchor_[i].cell() << "'\n";
//lyxerr << "\ncursor.pos_: " << pos();
//lyxerr << "\nanchor.pos_: " << anchor().pos_;
lyxerr << "\n===================^^^^^^^^^^^^=====================\n\n\n";
}
#else
void MathCursor::seldump(char const *) const {}
void MathCursor::dump(char const *) const {}
#endif
bool MathCursor::isInside(MathInset const * p) const
{
for (unsigned i = 0; i < Cursor_.size(); ++i)
if (Cursor_[i].par_ == p)
return true;
return false;
}
bool MathCursor::openable(MathInset * p, bool sel) const
{
if (!p)
return false;
if (!p->isActive())
return false;
if (sel) {
// we can't move into anything new during selection
if (Cursor_.size() == Anchor_.size())
return false;
if (p != Anchor_[Cursor_.size()].par_)
return false;
}
return true;
}
MathInset * MathCursor::positionable(MathAtom * t, int x, int y) const
{
if (!t)
return 0;
if (selection_) {
// we can't move into anything new during selection
if (Cursor_.size() == Anchor_.size())
return 0;
//if (t != Anchor_[Cursor_.size()].par_)
// return 0;
}
MathInset * p;
p = t->nucleus();
if (p && p->nargs() && p->covers(x, y))
return p;
p = t->up();
if (p && p->nargs() && p->covers(x, y))
return p;
p = t->down();
if (p && p->nargs() && p->covers(x, y))
return p;
return 0;
}
bool MathCursor::posLeft()
{
if (inner()) {
inner() = false;
return true;
}
if (pos() == 0)
return false;
--pos();
if (nextAtom()->hasInner())
inner() = true;
return true;
}
bool MathCursor::posRight()
{
if (inner()) {
++pos();
inner() = false;
return true;
}
if (pos() == size())
return false;
if (nextAtom()->hasInner())
inner() = true;
else
++pos();
return true;
}
bool MathCursor::left(bool sel)
{
dump("Left 1");
if (inMacroMode()) {
macroModeClose();
lastcode_ = LM_TC_VAR;
return true;
}
selHandle(sel);
lastcode_ = LM_TC_VAR;
MathInset * p = prevInset();
if (openable(p, sel)) {
pushRight(p);
return true;
}
return posLeft() || idxLeft() || popLeft();
}
bool MathCursor::right(bool sel)
{
dump("Right 1");
if (inMacroMode()) {
macroModeClose();
lastcode_ = LM_TC_VAR;
return true;
}
selHandle(sel);
lastcode_ = LM_TC_VAR;
MathInset * p = nextInset();
if (openable(p, sel)) {
pushLeft(p);
return true;
}
return posRight() || idxRight() || popRight();
}
void MathCursor::first()
{
Cursor_.clear();
pushLeft(outerPar());
}
void MathCursor::last()
{
first();
end();
}
void MathCursor::setPos(int x, int y)
{
//dump("setPos 1");
//lyxerr << "MathCursor::setPos x: " << x << " y: " << y << "\n";
macroModeClose();
lastcode_ = LM_TC_VAR;
first();
cursor().par_ = outerPar();
while (1) {
idx() = 0;
cursor().pos_ = 0;
//lyxerr << "found idx: " << idx() << " cursor: " << pos() << "\n";
int distmin = 1 << 30; // large enough
for (unsigned int i = 0; i < par()->nargs(); ++i) {
MathXArray const & ar = par()->xcell(i);
int x1 = x - ar.xo();
int y1 = y - ar.yo();
MathXArray::size_type c = ar.x2pos(x1);
int xx = abs(x1 - ar.pos2x(c, false));
int yy = abs(y1);
//lyxerr << "idx: " << i << " xx: " << xx << " yy: " << yy
// << " c: " << c << " xo: " << ar.xo() << "\n";
if (yy + xx <= distmin) {
distmin = yy + xx;
idx() = i;
pos() = c;
}
}
//lyxerr << "found idx: " << idx() << " cursor: "
// << pos() << "\n";
if (MathInset * p = positionable(nextAtom(), x, y))
pushLeft(p);
else if (MathInset * p = positionable(prevAtom(), x, y))
pushRight(p);
else
break;
}
//dump("setPos 2");
}
void MathCursor::home(bool sel)
{
dump("home 1");
selHandle(sel);
macroModeClose();
lastcode_ = LM_TC_VAR;
if (!par()->idxHome(idx(), pos()))
popLeft();
dump("home 2");
}
void MathCursor::end(bool sel)
{
dump("end 1");
selHandle(sel);
macroModeClose();
lastcode_ = LM_TC_VAR;
if (!par()->idxEnd(idx(), pos()))
popRight();
dump("end 2");
}
void MathCursor::plainErase()
{
array().erase(pos());
}
void MathCursor::plainInsert(MathInset * p)
{
if (inner()) {
array().insert(pos(), p);
++pos();
swap(prevAtom()->nucleus(), nextAtom()->nucleus());
return;
}
MathAtom * n = nextAtom();
if (n && !n->nucleus()) {
n->nucleus() = p;
inner() = true;
return;
}
array().insert(pos(), p); // this invalidates the pointer!
++pos();
}
void MathCursor::insert(char c, MathTextCodes t)
{
//lyxerr << "inserting '" << c << "'\n";
plainInsert(new MathCharInset(c, t));
}
void MathCursor::insert(MathInset * p)
{
macroModeClose();
if (p && selection_) {
if (p->nargs())
selCut();
else
selDel();
}
plainInsert(p);
}
void MathCursor::niceInsert(MathInset * p)
{
if (!p) {
lyxerr << "should not happen\n";
return;
}
selCut();
//cerr << "\n2: "; p->write(cerr, true); cerr << "\n";
insert(p); // inserting invalidates the pointer!
p = prevAtom()->nucleus();
//cerr << "\n3: "; p->write(cerr, true); cerr << "\n";
if (p->nargs()) {
posLeft();
right(); // do not push for e.g. MathSymbolInset
selPaste();
}
p->metrics(p->size());
}
void MathCursor::insert(MathArray const & ar)
{
macroModeClose();
if (selection_)
selCut();
array().insert(pos(), ar);
pos() += ar.size();
}
void MathCursor::glueAdjacentAtoms()
{
MathAtom * p = prevAtom();
if (!p)
return;
MathAtom * n = nextAtom();
if (!n)
return;
if (p->up() && n->up())
return;
if (p->down() && n->down())
return;
// move everything to the previous atom
if (n->up())
swap(p->up(), n->up());
if (n->down())
swap(p->down(), n->down());
plainErase();
--pos();
inner() = nextAtom()->hasInner();
}
void MathCursor::backspace()
{
if (inner()) {
nextAtom()->removeNucleus();
inner() = false;
glueAdjacentAtoms();
return;
}
if (pos() == 0) {
if (size())
pullArg(false);
return;
}
if (prevAtom()->hasInner()) {
--pos();
inner() = true;
return;
}
--pos();
plainErase();
}
void MathCursor::erase()
{
if (inMacroMode())
return;
if (selection_) {
selDel();
return;
}
// delete empty cells if necessary
if (array().empty()) {
bool popit;
bool removeit;
par()->idxDelete(idx(), popit, removeit);
if (popit && popLeft() && removeit)
plainErase();
return;
}
MathAtom * n = nextAtom();
if (!n)
return;
if (inner()) {
if (n->up())
n->removeUp();
else if (n->down())
n->removeDown();
if (!n->up() && !n->down()) {
++pos();
inner() = false;
}
return;
}
if (n->hasInner()) {
n->removeNucleus();
inner() = true;
glueAdjacentAtoms();
return;
}
plainErase();
}
void MathCursor::delLine()
{
macroModeClose();
if (selection_) {
selDel();
return;
}
if (par()->nrows() > 1)
par()->delRow(row());
}
bool MathCursor::up(bool sel)
{
dump("up 1");
macroModeClose();
selHandle(sel);
if (selection_)
return goUp();
// check whether we could move into a superscript on the right or on the left
if (prevAtom() && prevAtom()->up()) {
pushRight(prevAtom()->up());
return true;
}
if (nextAtom() && nextAtom()->up()) {
pushLeft(nextAtom()->up());
return true;
}
return goUp();
}
bool MathCursor::down(bool sel)
{
dump("down 1");
macroModeClose();
selHandle(sel);
if (selection_)
return goDown();
// check whether we could move into an subscript on the right or on the left
if (prevAtom() && prevAtom()->down()) {
pushRight(prevAtom()->down());
return true;
}
if (nextAtom() && nextAtom()->down()) {
pushLeft(nextAtom()->down());
return true;
}
return goDown();
}
bool MathCursor::toggleLimits()
{
MathAtom * t = prevAtom();
if (!t)
return false;
int old = t->limits();
t->limits(old < 0 ? 1 : -1);
return old != t->limits();
}
void MathCursor::setSize(MathStyles size)
{
par()->userSetSize(size);
}
void MathCursor::macroModeClose()
{
string s = macroName();
if (s.size()) {
pos() = pos() - s.size() - 1;
for (unsigned i = 0; i <= s.size(); ++i)
plainErase();
lastcode_ = LM_TC_VAR;
interpret("\\" + s);
}
}
string MathCursor::macroName() const
{
string s;
for (int i = pos() - 1; i >= 0; --i) {
MathInset * p = array().at(i)->nucleus();
if (!p || p->code() != LM_TC_TEX || p->getChar() == '\\')
break;
s = p->getChar() + s;
}
return s;
}
void MathCursor::selCopy()
{
seldump("selCopy");
if (selection_) {
theSelection.grab(*this);
selClear();
}
}
void MathCursor::selCut()
{
seldump("selCut");
if (selection_) {
theSelection.grab(*this);
theSelection.erase(*this);
selClear();
} else {
theSelection.clear();
}
}
void MathCursor::selDel()
{
seldump("selDel");
if (selection_) {
theSelection.erase(*this);
selClear();
}
}
void MathCursor::selPaste()
{
seldump("selPaste");
theSelection.paste(*this);
selClear();
}
void MathCursor::selHandle(bool sel)
{
if (sel == selection_)
return;
theSelection.clear();
Anchor_ = Cursor_;
selection_ = sel;
}
void MathCursor::selStart()
{
seldump("selStart");
if (selection_)
return;
theSelection.clear();
Anchor_ = Cursor_;
selection_ = true;
}
void MathCursor::selClear()
{
seldump("selClear");
selection_ = false;
}
void MathCursor::drawSelection(Painter & pain) const
{
if (!selection_)
return;
MathCursorPos i1;
MathCursorPos i2;
getSelection(i1, i2);
//lyxerr << "selection from: " << i1 << " to " << i2 << "\n";
if (i1.idx_ == i2.idx_) {
MathXArray & c = i1.xcell();
int x1 = c.xo() + c.pos2x(i1.pos_, i1.inner_);
int y1 = c.yo() - c.ascent();
int x2 = c.xo() + c.pos2x(i2.pos_, i2.inner_);
int y2 = c.yo() + c.descent();
pain.fillRectangle(x1, y1, x2 - x1, y2 - y1, LColor::selection);
} else {
std::vector<MathInset::idx_type> indices = i1.par_->idxBetween(i1.idx_, i2.idx_);
for (unsigned i = 0; i < indices.size(); ++i) {
MathXArray & c = i1.xcell(indices[i]);
int x1 = c.xo();
int y1 = c.yo() - c.ascent();
int x2 = c.xo() + c.width();
int y2 = c.yo() + c.descent();
pain.fillRectangle(x1, y1, x2 - x1, y2 - y1, LColor::selection);
}
}
}
MathTextCodes MathCursor::nextCode() const
{
//return (pos() == size()) ? LM_TC_VAR : nextInset()->code();
return LM_TC_VAR;
}
void MathCursor::handleFont(MathTextCodes t)
{
macroModeClose();
if (selection_) {
MathCursorPos i1;
MathCursorPos i2;
getSelection(i1, i2);
if (i1.idx_ == i2.idx_) {
MathArray & ar = i1.cell();
for (MathInset::pos_type pos = i1.pos_;
pos != i2.pos_; ++pos) {
MathInset * p = ar.at(pos)->nucleus();
if (p)
p->handleFont(t);
}
}
} else
lastcode_ = (lastcode_ == t) ? LM_TC_VAR : t;
}
void MathCursor::handleDelim(string const & l, string const & r)
{
handleNest(new MathDelimInset(l, r));
}
void MathCursor::handleNest(MathInset * p)
{
if (selection_) {
selCut();
p->cell(0) = theSelection.glue();
}
insert(p); // this invalidates p!
p = prevAtom()->nucleus();
pushRight(p);
}
void MathCursor::getPos(int & x, int & y)
{
#ifdef WITH_WARNINGS
#warning This should probably take cellXOffset and cellYOffset into account
#endif
x = xarray().xo() + xarray().pos2x(pos(), inner());
y = xarray().yo();
}
MathInset * MathCursor::par() const
{
return cursor().par_;
}
InsetFormulaBase const * MathCursor::formula()
{
return formula_;
}
MathCursor::idx_type MathCursor::idx() const
{
return cursor().idx_;
}
MathCursor::idx_type & MathCursor::idx()
{
return cursor().idx_;
}
MathCursor::pos_type MathCursor::pos() const
{
return cursor().pos_;
}
MathCursor::pos_type & MathCursor::pos()
{
return cursor().pos_;
}
bool MathCursor::inner() const
{
return cursor().inner_;
}
bool & MathCursor::inner()
{
return cursor().inner_;
}
bool MathCursor::inMacroMode() const
{
return lastcode_ == LM_TC_TEX;
}
bool MathCursor::selection() const
{
return selection_;
}
MathArrayInset * MathCursor::enclosingArray(MathCursor::idx_type & idx) const
{
for (int i = Cursor_.size() - 1; i >= 0; --i) {
if (Cursor_[i].par_->isArray()) {
idx = Cursor_[i].idx_;
return static_cast<MathArrayInset *>(Cursor_[i].par_);
}
}
return 0;
}
void MathCursor::pullArg(bool goright)
{
// pullArg
dump("pullarg");
MathArray a = array();
if (popLeft()) {
plainErase();
array().insert(pos(), a);
if (goright)
pos() += a.size();
}
}
MathStyles MathCursor::style() const
{
return xarray().style();
}
void MathCursor::normalize() const
{
#ifdef WITH_WARNINGS
#warning This is evil!
#endif
MathCursor * it = const_cast<MathCursor *>(this);
if (idx() >= par()->nargs()) {
lyxerr << "this should not really happen - 1: "
<< idx() << " " << par()->nargs() << "\n";
dump("error 2");
}
it->idx() = min(idx(), par()->nargs() - 1);
if (pos() > size()) {
lyxerr << "this should not really happen - 2: "
<< pos() << " " << size() << "\n";
dump("error 4");
}
it->pos() = min(pos(), size());
}
MathCursor::size_type MathCursor::size() const
{
return array().size();
}
MathCursor::col_type MathCursor::col() const
{
return par()->col(idx());
}
MathCursor::row_type MathCursor::row() const
{
return par()->row(idx());
}
/*
char MathCursorPos::getChar() const
{
return array().getChar(pos());
}
string MathCursorPos::readString()
{
string s;
int code = nextCode();
for ( ; OK() && nextCode() == code; Next())
s += getChar();
return s;
}
*/
MathInset * MathCursor::prevInset() const
{
return prevAtom() ? prevAtom()->nucleus() : 0;
}
MathInset * MathCursor::nextInset() const
{
return nextAtom() ? nextAtom()->nucleus() : 0;
}
MathSpaceInset * MathCursor::prevSpaceInset() const
{
MathInset * p = prevInset();
return (p && p->isSpaceInset()) ? static_cast<MathSpaceInset *>(p) : 0;
}
MathAtom const * MathCursor::prevAtom() const
{
return array().at(pos() - 1);
}
MathAtom * MathCursor::prevAtom()
{
return array().at(pos() - 1);
}
MathAtom const * MathCursor::nextAtom() const
{
return array().at(pos());
}
MathAtom * MathCursor::nextAtom()
{
return array().at(pos());
}
MathArray & MathCursor::array() const
{
static MathArray dummy;
if (!par()) {
lyxerr << "############ par_ not valid\n";
return dummy;
}
if (idx() >= par()->nargs()) {
lyxerr << "############ idx_ " << idx() << " not valid\n";
return dummy;
}
return cursor().cell();
}
MathXArray & MathCursor::xarray() const
{
return cursor().xcell();
}
void MathCursor::idxNext()
{
par()->idxNext(idx(), pos());
}
void MathCursor::idxPrev()
{
par()->idxPrev(idx(), pos());
}
void MathCursor::splitCell()
{
if (idx() == par()->nargs() - 1)
return;
MathArray ar = array();
ar.erase(0, pos());
array().erase(pos(), size());
++idx();
pos() = 0;
array().insert(0, ar);
}
void MathCursor::breakLine()
{
// leave inner cells
while (popRight())
;
MathMatrixInset * p = outerPar();
if (p->getType() == LM_OT_SIMPLE || p->getType() == LM_OT_EQUATION) {
p->mutate(LM_OT_EQNARRAY);
idx() = 0;
pos() = size();
} else {
p->addRow(row());
// split line
const row_type r = row();
for (col_type c = col() + 1; c < p->ncols(); ++c) {
const MathMatrixInset::idx_type i1 = p->index(r, c);
const MathMatrixInset::idx_type i2 = p->index(r + 1, c);
lyxerr << "swapping cells " << i1 << " and " << i2 << "\n";
p->cell(i1).swap(p->cell(i2));
}
// split cell
splitCell();
p->cell(idx()).swap(p->cell(idx() + p->ncols() - 1));
}
}
char MathCursor::valign() const
{
idx_type idx;
MathArrayInset * p = enclosingArray(idx);
return p ? p->valign() : '\0';
}
char MathCursor::halign() const
{
idx_type idx;
MathArrayInset * p = enclosingArray(idx);
return p ? p->halign(idx % p->ncols()) : '\0';
}
void MathCursor::getSelection(MathCursorPos & i1, MathCursorPos & i2) const
{
MathCursorPos anc = normalAnchor();
if (anc < cursor()) {
i1 = anc;
i2 = cursor();
} else {
i1 = cursor();
i2 = anc;
}
}
MathCursorPos & MathCursor::cursor()
{
return Cursor_.back();
}
MathCursorPos const & MathCursor::cursor() const
{
return Cursor_.back();
}
int MathCursor::cellXOffset() const
{
return par()->cellXOffset(idx());
}
int MathCursor::cellYOffset() const
{
return par()->cellYOffset(idx());
}
int MathCursor::xpos() const
{
return cellXOffset() + xarray().pos2x(pos(), inner());
}
int MathCursor::ypos() const
{
return cellYOffset();
}
void MathCursor::gotoX(int x)
{
pos() = xarray().x2pos(x - cellXOffset());
}
bool MathCursor::goUp()
{
// first ask the inset if it knows better then we
if (par()->idxUp(idx(), pos()))
return true;
// leave subscript to the nearest side
if (par()->asScriptInset() && par()->asScriptInset()->down()) {
if (pos() <= size() / 2)
popLeft();
else
popRight();
return true;
}
// if not, apply brute force.
int x0;
int y0;
getPos(x0, y0);
std::vector<MathCursorPos> save = Cursor_;
y0 -= xarray().ascent();
for (int y = y0 - 4; y > outerPar()->yo() - outerPar()->ascent(); y -= 4) {
setPos(x0, y);
if (save != Cursor_ && xarray().yo() < y0)
return true;
}
Cursor_ = save;
return false;
}
bool MathCursor::goDown()
{
// first ask the inset if it knows better then we
if (par()->idxDown(idx(), pos()))
return true;
// leave superscript to the nearest side
if (par()->asScriptInset() && par()->asScriptInset()->up()) {
if (pos() <= size() / 2)
popLeft();
else
popRight();
return true;
}
// if not, apply brute force.
int x0;
int y0;
getPos(x0, y0);
std::vector<MathCursorPos> save = Cursor_;
y0 += xarray().descent();
for (int y = y0 + 4; y < outerPar()->yo() + outerPar()->descent(); y += 4) {
setPos(x0, y);
if (save != Cursor_ && xarray().yo() > y0)
return true;
}
Cursor_ = save;
return false;
}
bool MathCursor::idxLeft()
{
return par()->idxLeft(idx(), pos());
}
bool MathCursor::idxRight()
{
return par()->idxRight(idx(), pos());
}
MathMatrixInset * MathCursor::outerPar() const
{
return
static_cast<MathMatrixInset *>(const_cast<MathInset *>(formula_->par()));
}
void MathCursor::interpret(string const & s)
{
//lyxerr << "interpret: '" << s << "'\n";
//lyxerr << "in: " << in_word_set(s) << " \n";
if (s.empty())
return;
char c = s[0];
//lyxerr << "char: '" << c << "' int: " << int(c) << endl;
//owner_->getIntl()->getTrans().TranslateAndInsert(c, lt);
//lyxerr << "trans: '" << c << "' int: " << int(c) << endl;
if (s.size() > 7 && s.substr(0, 7) == "matrix ") {
unsigned int m = 1;
unsigned int n = 1;
string v_align;
string h_align;
istringstream is(s.substr(7).c_str());
is >> m >> n >> v_align >> h_align;
m = std::max(1u, m);
n = std::max(1u, n);
v_align += 'c';
MathArrayInset * p = new MathArrayInset(m, n);
p->valign(v_align[0]);
p->halign(h_align);
niceInsert(p);
return;
}
if (s == "\\over" || s == "\\choose" || s == "\\atop") {
MathArray ar = array();
MathInset * p = createMathInset(s.substr(1));
p->cell(0).swap(array());
pos() = 0;
niceInsert(p);
popRight();
left();
return;
}
if (s.size() > 1) {
niceInsert(createMathInset(s.substr(1)));
return;
}
// we got just a single char now
if (c == '^' || c == '_') {
const bool up = (s[0] == '^');
selCut();
if (inner())
++pos();
if (!prevAtom())
insert(0);
MathInset * par = prevAtom()->ensure(up);
pushRight(par);
selPaste();
return;
}
if (selection_)
selDel();
if (lastcode_ == LM_TC_TEXTRM) {
insert(c, LM_TC_TEXTRM);
return;
}
if (c == ' ') {
if (inMacroMode()) {
macroModeClose();
lastcode_ = LM_TC_VAR;
return;
}
MathSpaceInset * p = prevSpaceInset();
if (p) {
p->incSpace();
return;
}
if (mathcursor->popRight())
return;
#warning look here
// this would not work if the inset is in an table!
//bv->text->cursorRight(bv, true);
//result = FINISHED;
return;
}
if (lastcode_ != LM_TC_TEX && strchr("{}", c)) {
insert(c, LM_TC_TEX);
return;
}
if (lastcode_ != LM_TC_TEX && strchr("#$%", c)) {
insert(new MathSpecialCharInset(c));
lastcode_ = LM_TC_VAR;
return;
}
if (lastcode_ == LM_TC_TEX) {
if (macroName().empty()) {
insert(c, LM_TC_TEX);
if (!isalpha(c) && c != '#') {
macroModeClose();
lastcode_ = LM_TC_VAR;
}
} else {
if ('1' <= c && c <= '9' && macroName() == "#") {
insert(c, LM_TC_TEX);
macroModeClose();
lastcode_ = LM_TC_VAR;
}
else if (isalpha(c)) {
insert(c, LM_TC_TEX);
}
else {
macroModeClose();
lastcode_ = LM_TC_VAR;
}
}
return;
}
if (isalpha(c) && (lastcode_ == LM_TC_GREEK || lastcode_ == LM_TC_GREEK1)) {
static char const greekl[][26] =
{"alpha", "beta", "chi", "delta", "epsilon", "phi",
"gamma", "eta", "iota", "iota", "kappa", "lambda", "mu",
"nu", "omikron", "pi", "omega", "rho", "sigma",
"tau", "upsilon", "theta", "omega", "xi", "upsilon", "zeta"};
static char const greeku[][26] =
{"Alpha", "Beta", "Chi", "Delta", "Epsilon", "Phi",
"Gamma", "Eta", "Iota", "Iota", "Kappa", "Lambda", "Mu",
"Nu", "Omikron", "Pi", "Omega", "Rho", "Sigma", "Tau",
"Upsilon", "Theta", "Omega", "xi", "Upsilon", "Zeta"};
latexkeys const * l = 0;
if ('a' <= c && c <= 'z')
l = in_word_set(greekl[c - 'a']);
if ('A' <= c && c <= 'Z')
l = in_word_set(greeku[c - 'A']);
if (l)
insert(createMathInset(l));
else
insert(c, LM_TC_VAR);
#warning greek insert problem? look here!
if (lastcode_ == LM_TC_GREEK1)
lastcode_ = LM_TC_VAR;
return;
}
if (c == '\\') {
lastcode_ = LM_TC_TEX;
insert(c, LM_TC_TEX);
//bv->owner()->message(_("TeX mode"));
return;
}
// no special circumstances, so insert the character without any fuss
insert(c, LM_TC_MIN);
}
////////////////////////////////////////////////////////////////////////
bool operator==(MathCursorPos const & ti, MathCursorPos const & it)
{
return ti.par_ == it.par_ && ti.idx_ == it.idx_ && ti.pos_ == it.pos_;
}
bool operator<(MathCursorPos const & ti, MathCursorPos const & it)
{
if (ti.par_ != it.par_) {
lyxerr << "can't compare cursor and anchor in different insets\n";
return true;
}
if (ti.idx_ != it.idx_)
return ti.idx_ < it.idx_;
return ti.pos_ < it.pos_;
}
MathArray & MathCursorPos::cell(MathCursor::idx_type idx) const
{
return par_->cell(idx);
}
MathArray & MathCursorPos::cell() const
{
return par_->cell(idx_);
}
MathXArray & MathCursorPos::xcell(MathCursor::idx_type idx) const
{
return par_->xcell(idx);
}
MathXArray & MathCursorPos::xcell() const
{
return par_->xcell(idx_);
}
MathAtom * MathCursorPos::at() const
{
return cell().at(pos_);
}
MathCursorPos MathCursor::normalAnchor() const
{
// use Anchor on the same level as Cursor
MathCursorPos normal = Anchor_[Cursor_.size() - 1];
if (Cursor_.size() < Anchor_.size() && !(normal < cursor())) {
// anchor is behind cursor -> move anchor behind the inset
++normal.pos_;
}
return normal;
}