mirror of
https://git.lyx.org/repos/lyx.git
synced 2024-12-23 05:25:26 +00:00
* Math.lyx put last changes under CT.
This commit is contained in:
parent
210f97c67b
commit
3545c51bc1
@ -213,6 +213,7 @@
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\author 5863208 "ab"
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
@ -34199,6 +34200,8 @@ Maxima
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
|
||||
\change_inserted 5863208 1465782906
|
||||
\begin_inset Formula $\int\left(\frac{1}{1+x^{3}}\right)dx=-\frac{\log\left(x^{2}-x+1\right)}{6}+\frac{\arctan\left(\frac{2\,x-1}{\sqrt{3}}\right)}{\sqrt{3}}+\frac{\log\left(x+1\right)}{3}$
|
||||
\end_inset
|
||||
|
||||
@ -34207,6 +34210,8 @@ Maxima
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\change_inserted 5863208 1465782906
|
||||
Note that one needs to use proper delimiter insets
|
||||
\begin_inset Formula $\left(\right)$
|
||||
\end_inset
|
||||
@ -34218,6 +34223,8 @@ Note that one needs to use proper delimiter insets
|
||||
\end_inset
|
||||
|
||||
|
||||
\change_unchanged
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
@ -34239,10 +34246,14 @@ Note that one needs to use proper delimiter insets
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\change_inserted 5863208 1465782942
|
||||
One can also use standard commands known to CAS:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
|
||||
\change_inserted 5863208 1465782942
|
||||
\begin_inset Formula $powerseries\left(-\log\left(5-x\right),x,1\right)=\sum_{{\it i_{1}}=0}^{\infty}{\frac{4^{-{\it i_{1}}-1}\,\left(x-1\right)^{{\it i_{1}}+1}}{{\it i_{1}}+1}}-\log\left(-1\right)$
|
||||
\end_inset
|
||||
|
||||
@ -34250,10 +34261,14 @@ One can also use standard commands known to CAS:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
|
||||
\change_inserted 5863208 1465782942
|
||||
\begin_inset Formula $solve\left(x_{1}+y_{1}^{3}=y_{1}+x_{1}^{2},x_{1}\right)=\left[x_{1}=-\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}-1}{2},x_{1}=\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}+1}{2}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\change_unchanged
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
Loading…
Reference in New Issue
Block a user