mirror of
https://git.lyx.org/repos/lyx.git
synced 2024-11-22 01:59:02 +00:00
Math.lyx: add info contributed by Pavel
This commit is contained in:
parent
fb85b57af1
commit
96665053c4
@ -1,13 +1,18 @@
|
||||
For LyX 2.2.1:
|
||||
|
||||
- sec. 23.1: new note
|
||||
|
||||
|
||||
For LyX 2.2.0:
|
||||
|
||||
In the first step:
|
||||
|
||||
Modified:
|
||||
|
||||
- sec. 15.1: Spanish only: new note behind the table
|
||||
- sec. 16.1: Spanish only: correct note in the table
|
||||
- sec. 18.1: Japanese only: updated paragraph
|
||||
|
||||
New:
|
||||
|
||||
- sec. 13.3: new note behind the table
|
||||
|
||||
|
||||
|
@ -1,4 +1,9 @@
|
||||
Modified:
|
||||
For LyX 2.2.1:
|
||||
|
||||
- sec. 6.11: new sentence
|
||||
|
||||
|
||||
For LyX 2.2.0:
|
||||
|
||||
in the first step:
|
||||
- sec. 3.3.10.1 (Japanese only) changed sentence
|
||||
|
@ -213,7 +213,6 @@
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\author 5863208 "ab"
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
@ -34200,31 +34199,32 @@ Maxima
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
|
||||
\change_inserted 5863208 1465782906
|
||||
\begin_inset Formula $\int\left(\frac{1}{1+x^{3}}\right)dx=-\frac{\log\left(x^{2}-x+1\right)}{6}+\frac{\arctan\left(\frac{2\,x-1}{\sqrt{3}}\right)}{\sqrt{3}}+\frac{\log\left(x+1\right)}{3}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Foot
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Greyedout
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\change_inserted 5863208 1465782906
|
||||
Note that one needs to use proper delimiter insets
|
||||
\series bold
|
||||
Note:
|
||||
\series default
|
||||
One needs to use proper delimiter insets
|
||||
\begin_inset Formula $\left(\right)$
|
||||
\end_inset
|
||||
|
||||
instead of simple '(' ')' characters.
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\change_unchanged
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
@ -34245,30 +34245,18 @@ Note that one needs to use proper delimiter insets
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\change_inserted 5863208 1465782942
|
||||
One can also use standard commands known to CAS:
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
|
||||
\change_inserted 5863208 1465782942
|
||||
\begin_inset Formula $powerseries\left(-\log\left(5-x\right),x,1\right)=\sum_{{\mathit i_{2}}=0}^{\infty}{\frac{4^{-{\mathit i_{2}}-1}\,\left(x-1\right)^{{\mathit i_{2}}+1}}{{\mathit i_{2}}+1}}-\log4$
|
||||
\begin_inset Formula $powerseries\left(-\log\left(5-x\right),x,1\right)=\sum_{{\mathit{i}_{2}}=0}^{\infty}{\frac{4^{-{\mathit{i}_{2}}-1}\,\left(x-1\right)^{{\mathit{i}_{2}}+1}}{{\mathit{i}_{2}}+1}}-\log4$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
|
||||
\change_inserted 5863208 1465782942
|
||||
\begin_inset Formula $solve\left(x_{1}+y_{1}^{3}=y_{1}+x_{1}^{2},x_{1}\right)=\left[x_{1}=-\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}-1}{2},x_{1}=\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}+1}{2}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\change_unchanged
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
@ -35173,6 +35161,13 @@ As one can see, the distance of the numerator and the denominator to the
|
||||
fraction bar is round about three times the bar thickness.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Newpage newpage
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Canceled Formulas
|
||||
\begin_inset Index idx
|
||||
|
@ -34086,6 +34086,35 @@ Maxima
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $\int\left(\frac{1}{1+x^{3}}\right)dx=-\frac{\log\left(x^{2}-x+1\right)}{6}+\frac{\arctan\left(\frac{2\,x-1}{\sqrt{3}}\right)}{\sqrt{3}}+\frac{\log\left(x+1\right)}{3}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Greyedout
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\series bold
|
||||
Achtung:
|
||||
\series default
|
||||
Es muss die Einfügung für automatische Klammern
|
||||
\begin_inset Formula $\left(\right)$
|
||||
\end_inset
|
||||
|
||||
verwendet werden statt einfacher zeichen für Klammern '(' ')'.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
@ -34104,6 +34133,20 @@ Maxima
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $powerseries\left(-\log\left(5-x\right),x,1\right)=\sum_{{\mathit{i}_{2}}=0}^{\infty}{\frac{4^{-{\mathit{i}_{2}}-1}\,\left(x-1\right)^{{\mathit{i}_{2}}+1}}{{\mathit{i}_{2}}+1}}-\log4$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $solve\left(x_{1}+y_{1}^{3}=y_{1}+x_{1}^{2},x_{1}\right)=\left[x_{1}=-\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}-1}{2},x_{1}=\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}+1}{2}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
@ -34997,6 +35040,13 @@ Wie man sieht, entspricht der Abstand des Zählers und Nenners vom Strich
|
||||
in etwa der dreifachen Strichdicke.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Newpage newpage
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Durchgestrichene Formeln
|
||||
\begin_inset Index idx
|
||||
|
@ -34683,6 +34683,38 @@ Maxima
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $\int\left(\frac{1}{1+x^{3}}\right)dx=-\frac{\log\left(x^{2}-x+1\right)}{6}+\frac{\arctan\left(\frac{2\,x-1}{\sqrt{3}}\right)}{\sqrt{3}}+\frac{\log\left(x+1\right)}{3}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\lang english
|
||||
|
||||
\begin_inset Note Greyedout
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\series bold
|
||||
\lang english
|
||||
Note:
|
||||
\series default
|
||||
One needs to use proper delimiter insets
|
||||
\begin_inset Formula $\left(\right)$
|
||||
\end_inset
|
||||
|
||||
instead of simple '(' ')' characters.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
@ -34701,6 +34733,20 @@ Maxima
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $powerseries\left(-\log\left(5-x\right),x,1\right)=\sum_{{\mathit{i}_{2}}=0}^{\infty}{\frac{4^{-{\mathit{i}_{2}}-1}\,\left(x-1\right)^{{\mathit{i}_{2}}+1}}{{\mathit{i}_{2}}+1}}-\log4$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $solve\left(x_{1}+y_{1}^{3}=y_{1}+x_{1}^{2},x_{1}\right)=\left[x_{1}=-\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}-1}{2},x_{1}=\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}+1}{2}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -34725,6 +34725,38 @@ Maxima
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $\int\left(\frac{1}{1+x^{3}}\right)dx=-\frac{\log\left(x^{2}-x+1\right)}{6}+\frac{\arctan\left(\frac{2\,x-1}{\sqrt{3}}\right)}{\sqrt{3}}+\frac{\log\left(x+1\right)}{3}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\lang english
|
||||
|
||||
\begin_inset Note Greyedout
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\series bold
|
||||
\lang english
|
||||
Note:
|
||||
\series default
|
||||
One needs to use proper delimiter insets
|
||||
\begin_inset Formula $\left(\right)$
|
||||
\end_inset
|
||||
|
||||
instead of simple '(' ')' characters.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
@ -34743,6 +34775,20 @@ Maxima
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $powerseries\left(-\log\left(5-x\right),x,1\right)=\sum_{{\mathit{i}_{2}}=0}^{\infty}{\frac{4^{-{\mathit{i}_{2}}-1}\,\left(x-1\right)^{{\mathit{i}_{2}}+1}}{{\mathit{i}_{2}}+1}}-\log4$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $solve\left(x_{1}+y_{1}^{3}=y_{1}+x_{1}^{2},x_{1}\right)=\left[x_{1}=-\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}-1}{2},x_{1}=\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}+1}{2}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -33428,6 +33428,38 @@ Maxima
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $\int\left(\frac{1}{1+x^{3}}\right)dx=-\frac{\log\left(x^{2}-x+1\right)}{6}+\frac{\arctan\left(\frac{2\,x-1}{\sqrt{3}}\right)}{\sqrt{3}}+\frac{\log\left(x+1\right)}{3}$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\lang english
|
||||
|
||||
\begin_inset Note Greyedout
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\series bold
|
||||
\lang english
|
||||
Note:
|
||||
\series default
|
||||
One needs to use proper delimiter insets
|
||||
\begin_inset Formula $\left(\right)$
|
||||
\end_inset
|
||||
|
||||
instead of simple '(' ')' characters.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
@ -33446,6 +33478,20 @@ Maxima
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $powerseries\left(-\log\left(5-x\right),x,1\right)=\sum_{{\mathit{i}_{2}}=0}^{\infty}{\frac{4^{-{\mathit{i}_{2}}-1}\,\left(x-1\right)^{{\mathit{i}_{2}}+1}}{{\mathit{i}_{2}}+1}}-\log4$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $solve\left(x_{1}+y_{1}^{3}=y_{1}+x_{1}^{2},x_{1}\right)=\left[x_{1}=-\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}-1}{2},x_{1}=\frac{\sqrt{4\,y_{1}^{3}-4\,y_{1}+1}+1}{2}\right]$
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
Loading…
Reference in New Issue
Block a user