From cd45fe0b82381448265478a67730839fa6fa647e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Uwe=20St=C3=B6hr?= Date: Fri, 13 Feb 2015 02:13:59 +0100 Subject: [PATCH] EmbeddedObjects.lyx: fix link to the KOMA-script manual --- lib/doc/EmbeddedObjects.lyx | 30 +++++++++++++++--------------- lib/doc/de/EmbeddedObjects.lyx | 30 +++++++++++++++--------------- lib/doc/es/EmbeddedObjects.lyx | 30 +++++++++++++++--------------- lib/doc/fr/EmbeddedObjects.lyx | 30 +++++++++++++++--------------- lib/doc/ja/EmbeddedObjects.lyx | 24 ++++++++++++------------ 5 files changed, 72 insertions(+), 72 deletions(-) diff --git a/lib/doc/EmbeddedObjects.lyx b/lib/doc/EmbeddedObjects.lyx index 515ce6f338..a75b25285e 100644 --- a/lib/doc/EmbeddedObjects.lyx +++ b/lib/doc/EmbeddedObjects.lyx @@ -12268,7 +12268,7 @@ reference "cha:Explanation-of-Equation" \begin_layout Standard The width -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset which the user needs to set when @@ -12277,13 +12277,13 @@ n \emph default columns are spanned can be calculated, so that each column has a total width of -\begin_inset Formula $W_{\mathrm{tot\, multicolumn}}/n$ +\begin_inset Formula $W_{\mathrm{tot\,multicolumn}}/n$ \end_inset : \begin_inset Formula \begin{equation} -W_{g\, n}=(W_{g\,\mathrm{multicolumn}}+(1-n)\cdot(12.4\,\mathrm{pt}))/n\label{eq:Wgn} +W_{g\,n}=(W_{g\,\mathrm{multicolumn}}+(1-n)\cdot(12.4\,\mathrm{pt}))/n\label{eq:Wgn} \end{equation} \end_inset @@ -19686,9 +19686,9 @@ columns where 2 should have 0.75 times the width than the 3 others, the calculation is \begin_inset Formula \begin{align} -\backslash\mbox{columnwidth} & =3\, W_{\mathrm{column}}+2\cdot0.75\, W_{\mathrm{column}}+\backslash\mbox{arrayrulewidth}\nonumber \\ +\backslash\mbox{columnwidth} & =3\,W_{\mathrm{column}}+2\cdot0.75\,W_{\mathrm{column}}+\backslash\mbox{arrayrulewidth}\nonumber \\ & \phantom{=\,}+5\left(2\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth}\right)\nonumber \\ - & =4.5\, W_{\mathrm{column}}+62.4\,\mathrm{pt}\nonumber \\ + & =4.5\,W_{\mathrm{column}}+62.4\,\mathrm{pt}\nonumber \\ W_{\mathrm{column}} & =\frac{\backslash\mbox{columnwidth}-62.4\,\mathrm{pt}}{4.5} \end{align} @@ -21158,7 +21158,7 @@ Pixels \begin_inset Text \begin_layout Plain Layout -\begin_inset Formula $\: B_{\mathrm{red}}$ +\begin_inset Formula $\:B_{\mathrm{red}}$ \end_inset @@ -45144,19 +45144,19 @@ We can calculate the total width of n \emph default table cells -\begin_inset Formula $W_{\mathrm{tot\, n}}$ +\begin_inset Formula $W_{\mathrm{tot\,n}}$ \end_inset as follows: \begin_inset Formula \begin{equation} -W_{\mathrm{tot}\, n}=n\cdot(W_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} +W_{\mathrm{tot}\,n}=n\cdot(W_{g\,n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} \end{equation} \end_inset where -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset is the given width of all cells, @@ -45197,13 +45197,13 @@ reference "eq:Wtot_n" \end_inset , the total width of a multicolumn -\begin_inset Formula $W_{\mathrm{tot\, mult}}$ +\begin_inset Formula $W_{\mathrm{tot\,mult}}$ \end_inset is \begin_inset Formula \begin{equation} -W_{\mathrm{tot\, mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} +W_{\mathrm{tot\,mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} \end{equation} \end_inset @@ -45231,7 +45231,7 @@ reference "eq:Wtot_mult" \end_inset equal we can calculate the needed given width -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset when @@ -45239,13 +45239,13 @@ reference "eq:Wtot_mult" n \emph default columns are spanned, so that each column has a total width of -\begin_inset Formula $W_{\mathrm{tot\, mult}}/n$ +\begin_inset Formula $W_{\mathrm{tot\,mult}}/n$ \end_inset : \begin_inset Formula \begin{equation} -W_{g\, n}=\frac{W_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} +W_{g\,n}=\frac{W_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} \end{equation} \end_inset @@ -45568,7 +45568,7 @@ Documentation of the LaTeX-package \begin_inset CommandInset href LatexCommand href name "KOMA-Script" -target "http://mirror.ctan.org/macros/latex/contrib/koma-script/scrguien.pdf" +target "http://mirror.ctan.org/macros/latex/contrib/koma-script/doc/scrguien.pdf" \end_inset diff --git a/lib/doc/de/EmbeddedObjects.lyx b/lib/doc/de/EmbeddedObjects.lyx index 401aba0f7f..c744aeafdf 100644 --- a/lib/doc/de/EmbeddedObjects.lyx +++ b/lib/doc/de/EmbeddedObjects.lyx @@ -12242,17 +12242,17 @@ n \emph default Spalten zu einer Mehrfachspalte zusammengefasst werden, errechnet sich die definierte Breite -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset einer Spalte, deren totale Breite = -\begin_inset Formula $W_{\mathrm{tot\, multicolumn}}/n$ +\begin_inset Formula $W_{\mathrm{tot\,multicolumn}}/n$ \end_inset sein soll, wie folgt: \begin_inset Formula \begin{equation} -W_{g\, n}=(W_{g\,\mathrm{multicolumn}}+(1-n)\cdot(12.4\,\mathrm{pt}))/n\label{eq:Wgn} +W_{g\,n}=(W_{g\,\mathrm{multicolumn}}+(1-n)\cdot(12.4\,\mathrm{pt}))/n\label{eq:Wgn} \end{equation} \end_inset @@ -19831,9 +19831,9 @@ fache der Breite der anderen 3 Spalten haben sollen, ist die Berechnung \begin_inset Formula \begin{align} -\backslash\mbox{columnwidth} & =3\, W_{\mathrm{Spalte}}+2\cdot0,75\, W_{\mathrm{Spalte}}+\backslash\mbox{arrayrulewidth}\nonumber \\ +\backslash\mbox{columnwidth} & =3\,W_{\mathrm{Spalte}}+2\cdot0,75\,W_{\mathrm{Spalte}}+\backslash\mbox{arrayrulewidth}\nonumber \\ & \phantom{=\,}+5\left(2\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth}\right)\nonumber \\ - & =4,5\, W_{\mathrm{Spalte}}+62,4\,\mathrm{pt}\nonumber \\ + & =4,5\,W_{\mathrm{Spalte}}+62,4\,\mathrm{pt}\nonumber \\ W_{\mathrm{Spalte}} & =\frac{\backslash\mbox{columnwidth}-62,4\,\mathrm{pt}}{4,5} \end{align} @@ -21307,7 +21307,7 @@ Pixel \begin_inset Text \begin_layout Plain Layout -\begin_inset Formula $\: B_{\mathrm{red}}$ +\begin_inset Formula $\:B_{\mathrm{red}}$ \end_inset @@ -45226,13 +45226,13 @@ Die Gesamtbreite von n \emph default Tabellenzellen -\begin_inset Formula $W_{\mathrm{tot\, n}}$ +\begin_inset Formula $W_{\mathrm{tot\,n}}$ \end_inset kann wie folgt berechnet werden: \begin_inset Formula \begin{equation} -W_{\mathrm{tot}\, n}=n\cdot(W_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} +W_{\mathrm{tot}\,n}=n\cdot(W_{g\,n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} \end{equation} \end_inset @@ -45242,7 +45242,7 @@ W_{\mathrm{tot}\, n}=n\cdot(W_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cd \begin_layout Standard Dabei ist -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset die Breite jeder Zelle. @@ -45284,13 +45284,13 @@ reference "eq:Wtot_n" \end_inset ist die Gesamtbreite einer Mehrfachspalte, -\begin_inset Formula $W_{\mathrm{tot\, mult}}$ +\begin_inset Formula $W_{\mathrm{tot\,mult}}$ \end_inset , \begin_inset Formula \begin{equation} -W_{\mathrm{tot\, mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} +W_{\mathrm{tot\,mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} \end{equation} \end_inset @@ -45318,7 +45318,7 @@ reference "eq:Wtot_mult" \end_inset gleich, kann man die benötigte Breite -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset , wenn @@ -45326,13 +45326,13 @@ reference "eq:Wtot_mult" n \emph default Spalten überspannt sind, so dass jede Spalte eine Gesamtbreite -\begin_inset Formula $W_{\mathrm{tot\, mult}}/n$ +\begin_inset Formula $W_{\mathrm{tot\,mult}}/n$ \end_inset hat, berechnen: \begin_inset Formula \begin{equation} -W_{g\, n}=\frac{W_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} +W_{g\,n}=\frac{W_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} \end{equation} \end_inset @@ -45669,7 +45669,7 @@ Dokumentation des LaTeX-Pakets \begin_inset CommandInset href LatexCommand href name "KOMA-Script" -target "http://mirror.ctan.org/macros/latex/contrib/koma-script/scrguien.pdf" +target "http://mirror.ctan.org/macros/latex/contrib/koma-script/doc/scrguien.pdf" \end_inset diff --git a/lib/doc/es/EmbeddedObjects.lyx b/lib/doc/es/EmbeddedObjects.lyx index 0cda4936be..af7957ed99 100644 --- a/lib/doc/es/EmbeddedObjects.lyx +++ b/lib/doc/es/EmbeddedObjects.lyx @@ -12087,7 +12087,7 @@ reference "cap:Explicación-de-la-Ecuación" \begin_layout Standard La anchura dada -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset necesaria para combinar @@ -12096,13 +12096,13 @@ n \emph default columnas puede calcularse de manera que cada columna tenga una anchura total de -\begin_inset Formula $W_{\mathrm{tot\, multicolumn}}/n$ +\begin_inset Formula $W_{\mathrm{tot\,multicolumn}}/n$ \end_inset : \begin_inset Formula \begin{equation} -W_{g\, n}=(W_{g\,\mathrm{multicolumn}}+(1-n)\cdot(12.4\,\mathrm{pt}))/n\label{eq:Wgn} +W_{g\,n}=(W_{g\,\mathrm{multicolumn}}+(1-n)\cdot(12.4\,\mathrm{pt}))/n\label{eq:Wgn} \end{equation} \end_inset @@ -19542,9 +19542,9 @@ columnas en el que dos de ellas tengan 0.75 veces la anchura de las otras, el cálculo es \begin_inset Formula \begin{align} -\backslash\mbox{columnwidth} & =3\, W_{\mathrm{column}}+2\cdot0.75\, W_{\mathrm{column}}+\backslash\mbox{arrayrulewidth}\nonumber \\ +\backslash\mbox{columnwidth} & =3\,W_{\mathrm{column}}+2\cdot0.75\,W_{\mathrm{column}}+\backslash\mbox{arrayrulewidth}\nonumber \\ & \phantom{=\,}+5\left(2\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth}\right)\nonumber \\ - & =4.5\, W_{\mathrm{column}}+62.4\,\mathrm{pt}\nonumber \\ + & =4.5\,W_{\mathrm{column}}+62.4\,\mathrm{pt}\nonumber \\ W_{\mathrm{column}} & =\frac{\backslash\mbox{columnwidth}-62.4\,\mathrm{pt}}{4.5} \end{align} @@ -21009,7 +21009,7 @@ Pixels \begin_inset Text \begin_layout Plain Layout -\begin_inset Formula $\: B_{\mathrm{red}}$ +\begin_inset Formula $\:B_{\mathrm{red}}$ \end_inset @@ -44540,13 +44540,13 @@ La anchura total de n \emph default celdas de un cuadro -\begin_inset Formula $W_{\mathrm{tot\, n}}$ +\begin_inset Formula $W_{\mathrm{tot\,n}}$ \end_inset puede calcularse con \begin_inset Formula \begin{equation} -W_{\mathrm{tot}\, n}=n\cdot(W_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} +W_{\mathrm{tot}\,n}=n\cdot(W_{g\,n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} \end{equation} \end_inset @@ -44556,7 +44556,7 @@ W_{\mathrm{tot}\, n}=n\cdot(W_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cd \begin_layout Standard donde -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset es el ancho dado de todas las celdas. @@ -44597,13 +44597,13 @@ reference "eq:Wtot_n" \end_inset , el ancho total de una multicolumna, -\begin_inset Formula $W_{\mathrm{tot\, mult}}$ +\begin_inset Formula $W_{\mathrm{tot\,mult}}$ \end_inset es \begin_inset Formula \begin{equation} -W_{\mathrm{tot\, mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} +W_{\mathrm{tot\,mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} \end{equation} \end_inset @@ -44631,7 +44631,7 @@ reference "eq:Wtot_mult" \end_inset podemos calcular el ancho dado necesario -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset cuando se expanden @@ -44639,13 +44639,13 @@ reference "eq:Wtot_mult" n \emph default columnas, de forma que cada una de ellas tiene una anchura total -\begin_inset Formula $W_{\mathrm{tot\, mult}}/n$ +\begin_inset Formula $W_{\mathrm{tot\,mult}}/n$ \end_inset : \begin_inset Formula \begin{equation} -W_{g\, n}=\frac{W_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} +W_{g\,n}=\frac{W_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} \end{equation} \end_inset @@ -44968,7 +44968,7 @@ Documentación del paquete LaTeX \begin_inset CommandInset href LatexCommand href name "KOMA-Script" -target "http://mirror.ctan.org/macros/latex/contrib/koma-script/scrguien.pdf" +target "http://mirror.ctan.org/macros/latex/contrib/koma-script/doc/scrguien.pdf" \end_inset diff --git a/lib/doc/fr/EmbeddedObjects.lyx b/lib/doc/fr/EmbeddedObjects.lyx index c5987a1eda..344f3396c8 100644 --- a/lib/doc/fr/EmbeddedObjects.lyx +++ b/lib/doc/fr/EmbeddedObjects.lyx @@ -12381,7 +12381,7 @@ reference "cha:Explication-de-l'Equation" \begin_layout Standard La largeur nécessaire -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset quand @@ -12390,13 +12390,13 @@ n \emph default colonnes sont couvertes peut être calculée de façon à ce que chaque colonne ait une largeur totale de -\begin_inset Formula $W_{\mathrm{tot\, multicolonne}}/n$ +\begin_inset Formula $W_{\mathrm{tot\,multicolonne}}/n$ \end_inset : \begin_inset Formula \begin{equation} -W_{g\, n}=(W_{g\,\mathrm{multicolonne}}+(1-n)\cdot(12.4\,\mathrm{pt}))/n\label{eq:Wgn} +W_{g\,n}=(W_{g\,\mathrm{multicolonne}}+(1-n)\cdot(12.4\,\mathrm{pt}))/n\label{eq:Wgn} \end{equation} \end_inset @@ -19995,9 +19995,9 @@ fois celle des 3 autres, le calcul est le suivant: \begin_layout Standard \begin_inset Formula \begin{align} -\backslash\mbox{columnwidth} & =3\, L_{\mathrm{colonne}}+2\cdot0.75\, L_{\mathrm{colonne}}+\backslash\mbox{arrayrulewidth}\nonumber \\ +\backslash\mbox{columnwidth} & =3\,L_{\mathrm{colonne}}+2\cdot0.75\,L_{\mathrm{colonne}}+\backslash\mbox{arrayrulewidth}\nonumber \\ & \phantom{=\,}+5\left(2\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth}\right)\nonumber \\ - & =4.5\, L_{\mathrm{colonne}}+62.4\,\mathrm{pt}\nonumber \\ + & =4.5\,L_{\mathrm{colonne}}+62.4\,\mathrm{pt}\nonumber \\ L_{\mathrm{colonne}} & =\frac{\backslash\mbox{columnwidth}-62.4\,\mathrm{pt}}{4.5} \end{align} @@ -21490,7 +21490,7 @@ Pixels \begin_inset Text \begin_layout Plain Layout -\begin_inset Formula $\: B_{\mathrm{red}}$ +\begin_inset Formula $\:B_{\mathrm{red}}$ \end_inset @@ -46057,13 +46057,13 @@ La largeur totale de n \emph default cellules de tableau -\begin_inset Formula $L_{\mathrm{tot\, n}}$ +\begin_inset Formula $L_{\mathrm{tot\,n}}$ \end_inset peut être calculée avec \begin_inset Formula \begin{equation} -L_{\mathrm{tot}\, n}=n\cdot(L_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} +L_{\mathrm{tot}\,n}=n\cdot(L_{g\,n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} \end{equation} \end_inset @@ -46073,7 +46073,7 @@ L_{\mathrm{tot}\, n}=n\cdot(L_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cd \begin_layout Standard où -\begin_inset Formula $L_{g\, n}$ +\begin_inset Formula $L_{g\,n}$ \end_inset est la largeur fixe de toutes les cellules. @@ -46115,13 +46115,13 @@ reference "eq:Wtot_n" \end_inset , la largeur totale d'une multi-colonnes, -\begin_inset Formula $L_{\mathrm{tot\, mult}}$ +\begin_inset Formula $L_{\mathrm{tot\,mult}}$ \end_inset est \begin_inset Formula \begin{equation} -L_{\mathrm{tot\, mult}}=L_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} +L_{\mathrm{tot\,mult}}=L_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} \end{equation} \end_inset @@ -46149,7 +46149,7 @@ reference "eq:Wtot_mult" \end_inset sont égales, on peut calculer la largeur nécessaire -\begin_inset Formula $L_{g\, n}$ +\begin_inset Formula $L_{g\,n}$ \end_inset quand @@ -46158,13 +46158,13 @@ n \emph default colonnes sont couvertes, de façon à ce que chaque colonne ait une largeur de -\begin_inset Formula $L_{\mathrm{tot\, mult}}/n$ +\begin_inset Formula $L_{\mathrm{tot\,mult}}/n$ \end_inset : \begin_inset Formula \begin{equation} -L_{g\, n}=\frac{L_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} +L_{g\,n}=\frac{L_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} \end{equation} \end_inset @@ -46487,7 +46487,7 @@ Documentation du paquetage LaTeX \begin_inset CommandInset href LatexCommand href name "KOMA-Script" -target "http://mirror.ctan.org/macros/latex/contrib/koma-script/scrguien.pdf" +target "http://mirror.ctan.org/macros/latex/contrib/koma-script/doc/scrguien.pdf" \end_inset diff --git a/lib/doc/ja/EmbeddedObjects.lyx b/lib/doc/ja/EmbeddedObjects.lyx index 3a82848ae4..608c0bf937 100644 --- a/lib/doc/ja/EmbeddedObjects.lyx +++ b/lib/doc/ja/EmbeddedObjects.lyx @@ -18924,9 +18924,9 @@ columnwidth-62.4pt)/5} というコマンドを入力します。5列の表で、うち2列が他の3列の幅の0.75倍であるような表の場合には、計算は \begin_inset Formula \begin{align} -\backslash\mbox{columnwidth} & =3\, W_{\text{列}}+2\cdot0.75\, W_{\text{列}}+\backslash\mbox{arrayrulewidth}\nonumber \\ +\backslash\mbox{columnwidth} & =3\,W_{\text{列}}+2\cdot0.75\,W_{\text{列}}+\backslash\mbox{arrayrulewidth}\nonumber \\ & \phantom{=\,}+5\left(2\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth}\right)\nonumber \\ - & =4.5\, W_{\text{列}}+62.4\,\mathrm{pt}\nonumber \\ + & =4.5\,W_{\text{列}}+62.4\,\mathrm{pt}\nonumber \\ W_{\text{列}} & =\frac{\backslash\mbox{columnwidth}-62.4\,\mathrm{pt}}{4.5} \end{align} @@ -20307,7 +20307,7 @@ name "tab:表セル揃え" \begin_inset Text \begin_layout Plain Layout -\begin_inset Formula $\: B_{\mathrm{red}}$ +\begin_inset Formula $\:B_{\mathrm{red}}$ \end_inset @@ -42302,13 +42302,13 @@ name "cha:式の説明" \end_inset 個の表セルの全幅 -\begin_inset Formula $W_{\mathrm{tot\, n}}$ +\begin_inset Formula $W_{\mathrm{tot\,n}}$ \end_inset は \begin_inset Formula \begin{equation} -W_{\mathrm{tot}\, n}=n\cdot(W_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} +W_{\mathrm{tot}\,n}=n\cdot(W_{g\,n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_n} \end{equation} \end_inset @@ -42318,7 +42318,7 @@ W_{\mathrm{tot}\, n}=n\cdot(W_{g\, n}+2\cdot\backslash\mbox{tabcolsep})+(n+1)\cd \begin_layout Standard で計算できます。ここで -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset は、すべてのセルが持つ固定幅です。 @@ -42353,13 +42353,13 @@ reference "eq:Wtot_n" \end_inset 式にしたがえば、連結列の全幅 -\begin_inset Formula $W_{\mathrm{tot\, mult}}$ +\begin_inset Formula $W_{\mathrm{tot\,mult}}$ \end_inset は \begin_inset Formula \begin{equation} -W_{\mathrm{tot\, mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} +W_{\mathrm{tot\,mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\cdot\backslash\mbox{arrayrulewidth}\label{eq:Wtot_mult} \end{equation} \end_inset @@ -42373,7 +42373,7 @@ W_{\mathrm{tot\, mult}}=W_{g\,\mathrm{mult}}+2\cdot\backslash\mbox{tabcolsep}+2\ \end_inset 列を連結する時には各列の全幅は -\begin_inset Formula $W_{\mathrm{tot\, mult}}/n$ +\begin_inset Formula $W_{\mathrm{tot\,mult}}/n$ \end_inset となるので、第 @@ -42391,13 +42391,13 @@ reference "eq:Wtot_mult" \end_inset 式が等しいものと置けば、必要となる固定幅 -\begin_inset Formula $W_{g\, n}$ +\begin_inset Formula $W_{g\,n}$ \end_inset を計算することができて、 \begin_inset Formula \begin{equation} -W_{g\, n}=\frac{W_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} +W_{g\,n}=\frac{W_{g\,\mathrm{mult}}+(1-n)\cdot(2\cdot\backslash\mbox{tabcolsep}+\backslash\mbox{arrayrulewidth})}{n} \end{equation} \end_inset @@ -42732,7 +42732,7 @@ LaTeXパッケージ \begin_inset CommandInset href LatexCommand href name "KOMA-script" -target "http://mirror.ctan.org/macros/latex/contrib/koma-script/scrguien.pdf" +target "http://mirror.ctan.org/macros/latex/contrib/koma-script/doc/scrguien.pdf" \end_inset