//////////////////////////////////////////////////////////////////////////////// // // Visual Leak Detector - Red-black Tree Template // Copyright (c) 2005-2006 Dan Moulding // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA // // See COPYING.txt for the full terms of the GNU Lesser General Public License. // //////////////////////////////////////////////////////////////////////////////// #pragma once #ifndef VLDBUILD #error \ "This header should only be included by Visual Leak Detector when building it from source. \ Applications should never include this header." #endif #include "vldheap.h" // Provides internal new and delete operators. #define TREE_DEFAULT_RESERVE 32 // By default, trees reserve enough space, in advance, for this many nodes. //////////////////////////////////////////////////////////////////////////////// // // The Tree Template Class // // This data structure is the internal data structure behind the lightweight // STL-like container classes. This is a red-black tree which provides for // fast insert, find, and erase operations. // // The binary tree nodes are overlaid on top of larger chunks of allocated // memory (called chunks) which are arranged in a simple linked list. This // allows the tree to grow (add nodes) dynamically without incurring a heap // hit each time a new node is added. // // The Tree class provides member functions which make it easily adaptable to // an STL-like interface so that it can be used as the backend for STL-like // container classes. // template class Tree { public: // This is a red-black tree. enum color_e { red, black }; // The node is the basic data structure which the tree is built from. typedef struct node_s { color_e color; // The node's color. T key; // The node's value, by which nodes are sorted. union { struct node_s *left; // For nodes in the tree, the node's left child. struct node_s *next; // For nodes in the free list, the next node on the free list. }; struct node_s *parent; // The node's parent. struct node_s *right; // The node's right child. } node_t; // Reserve capacity for the tree is allocated in large chunks with room for // many nodes. typedef struct chunk_s { struct chunk_s *next; // Pointer to the next node in the chunk list. node_t *nodes; // Pointer to an array (of variable size) where nodes are stored. } chunk_t; // Constructor Tree () { m_freelist = NULL; InitializeCriticalSection(&m_lock); m_nil.color = black; m_nil.key = T(); m_nil.left = &m_nil; m_nil.parent = &m_nil; m_nil.right = &m_nil; m_reserve = TREE_DEFAULT_RESERVE; m_root = &m_nil; m_store = NULL; m_storetail = NULL; } // Copy constructor - The sole purpose of this constructor's existence is // to ensure that trees are not being inadvertently copied. Tree (const Tree& source) { assert(FALSE); // Do not make copies of trees! } // Destructor ~Tree () { chunk_t *cur; chunk_t *temp; // Free all the chunks in the chunk list. EnterCriticalSection(&m_lock); cur = m_store; while (cur != NULL) { temp = cur; cur = cur->next; delete [] temp->nodes; delete temp; } LeaveCriticalSection(&m_lock); DeleteCriticalSection(&m_lock); } // operator = - Assignment operator. For efficiency, we want to avoid ever // making copies of Trees (only pointer passing or reference passing // should be performed). The sole purpose of this assignment operator is // to ensure that no copying is being done inadvertently. // Tree& operator = (const Tree &other) { // Don't make copies of Trees! assert(FALSE); return *this; } // begin - Obtains a pointer to the first node (the node with the smallest // key value) in the tree. // // Return Value: // // Returns a pointer to the first node in the tree. // typename Tree::node_t* begin () const { node_t *cur; EnterCriticalSection(&m_lock); if (m_root == &m_nil) { LeaveCriticalSection(&m_lock); return NULL; } cur = m_root; while (cur->left != &m_nil) { cur = cur->left; } LeaveCriticalSection(&m_lock); return cur; } // erase - Erases the specified node from the tree. Note that this does // not cause the key associated with the erased node to be freed. The // caller is responsible for freeing any dynamically allocated memory // associated with the key. // // - node (IN): Pointer to the node to erase from the tree. // // Return Value: // // None. // VOID erase (typename Tree::node_t *node) { node_t *child; node_t *cur; node_t *erasure; node_t *sibling; EnterCriticalSection(&m_lock); if ((node->left == &m_nil) || (node->right == &m_nil)) { // The node to be erased has less than two children. It can be directly // removed from the tree. erasure = node; } else { // The node to be erased has two children. It can only be removed // indirectly. The actual node will stay where it is, but it's contents // will be replaced by it's in-order successor's contents. The successor // node will then be erased. Find the successor. erasure = node->right; while (erasure->left != &m_nil) { erasure = erasure->left; } } // Select the child node which will replace the node to be erased. if (erasure->left != &m_nil) { child = erasure->left; } else { child = erasure->right; } // Replace the node to be erased with the selected child. child->parent = erasure->parent; if (child->parent == &m_nil) { // The root of the tree is being erased. The child becomes root. m_root = child; } else { if (erasure == erasure->parent->left) { erasure->parent->left = child; } else { erasure->parent->right = child; } } if (erasure != node) { // The node being erased from the tree is the successor of the actual // node to be erased. Replace the contents of the node to be erased // with the successor's contents. node->key = erasure->key; } if (erasure->color == black) { // The node being erased from the tree is black. Restructuring of the // tree may be needed so that black-height is maintained. cur = child; while ((cur != m_root) && (cur->color == black)) { if (cur == cur->parent->left) { // Current node is a left child. sibling = cur->parent->right; if (sibling->color == red) { // Sibling is red. Rotate sibling up and color it black. sibling->color = black; cur->parent->color = red; _rotateleft(cur->parent); sibling = cur->parent->right; } if ((sibling->left->color == black) && (sibling->right->color == black)) { // Both of sibling's children are black. Color sibling red. sibling->color = red; cur = cur->parent; } else { // At least one of sibling's children is red. if (sibling->right->color == black) { sibling->left->color = black; sibling->color = red; _rotateright(sibling); sibling = cur->parent->right; } sibling->color = cur->parent->color; cur->parent->color = black; sibling->right->color = black; _rotateleft(cur->parent); cur = m_root; } } else { // Current node is a right child. sibling = cur->parent->left; if (sibling->color == red) { // Sibling is red. Rotate sibling up and color it black. sibling->color = black; cur->parent->color = red; _rotateright(cur->parent); sibling = cur->parent->left; } if ((sibling->left->color == black) && (sibling->right->color == black)) { // Both of sibling's children are black. Color sibling red. sibling->color = red; cur = cur->parent; } else { // At least one of sibling's children is red. if (sibling->left->color == black) { sibling->right->color = black; sibling->color = red; _rotateleft(sibling); sibling = cur->parent->left; } sibling->color = cur->parent->color; cur->parent->color = black; sibling->left->color = black; _rotateright(cur->parent); cur = m_root; } } } cur->color = black; } // Put the erased node onto the free list. erasure->next = m_freelist; m_freelist = erasure; LeaveCriticalSection(&m_lock); } // erase - Erases the specified key from the tree. Note that this does // not cause the key associated with the erased node to be freed. The // caller is responsible for freeing any dynamically allocated memory // associated with the key. // // - key (IN): The key to erase from the tree. This value is treated as // the key for sorting within the tree. It must therefore be of a type // which supports the "<" operator. // // Return Value: // // None. // VOID erase (const T &key) { node_t *node; // Find the node to erase. EnterCriticalSection(&m_lock); node = m_root; while (node != &m_nil) { if (node->key < key) { // Go right. node = node->right; } else if (key < node->key) { // Go left. node = node->left; } else { // Found it. erase(node); LeaveCriticalSection(&m_lock); return; } } LeaveCriticalSection(&m_lock); // 'key' is not in the tree. return; } // find - Obtains a pointer to the node corresponding to the specified key. // // - key (IN): The value to search for in the tree. This value is treated // as the key for sorting within the tree. It must therefore be of a // type which supports the "<" operator. // // Return Value: // // Returns a pointer to the node corresponding to the specified key. If // the key is not in the tree, then "find" returns NULL. // typename Tree::node_t* find (const T &key) const { node_t *cur; EnterCriticalSection(&m_lock); cur = m_root; while (cur != &m_nil) { if (cur->key < key) { // Go right. cur = cur->right; } else if (key < cur->key) { // Go left. cur = cur->left; } else { // Found it. LeaveCriticalSection(&m_lock); return cur; } } LeaveCriticalSection(&m_lock); // 'key' is not in the tree. return NULL; } // insert - Inserts a new key into the tree. // // - key (IN): The key to insert into the tree. This value is treated as // the key for sorting within the tree. It must therefore be of a type // which supports the "<" operator. // // Return Value: // // Returns a pointer to the node corresponding to the newly inserted // key. If an attempt is made to insert a key which is already in the // tree, then NULL is returned and the new key is not inserted. // typename Tree::node_t* insert (const T &key) { node_t *cur; node_t *node; node_t *parent; node_t *uncle; EnterCriticalSection(&m_lock); // Find the location where the new node should be inserted.. cur = m_root; parent = &m_nil; while (cur != &m_nil) { parent = cur; if (cur->key < key) { // Go right. cur = cur->right; } else if (key < cur->key) { // Go left. cur = cur->left; } else { // Keys in the tree must be unique. LeaveCriticalSection(&m_lock); return NULL; } } // Obtain a new node from the free list. if (m_freelist == NULL) { // Allocate additional storage. reserve(m_reserve); } node = m_freelist; m_freelist = m_freelist->next; // Initialize the new node and insert it. node->color = red; node->key = key; node->left = &m_nil; node->parent = parent; node->right = &m_nil; if (parent == &m_nil) { // The tree is empty. The new node becomes root. m_root = node; } else { if (parent->key < key) { // New node is a right child. parent->right = node; } else { // New node is a left child. parent->left = node; } } // Rebalance and/or adjust the tree, if necessary. cur = node; while (cur->parent->color == red) { // Double-red violation. Rebalancing/adjustment needed. if (cur->parent == cur->parent->parent->left) { // Parent is the left child. Uncle is the right child. uncle = cur->parent->parent->right; if (uncle->color == red) { // Uncle is red. Recolor. cur->parent->parent->color = red; cur->parent->color = black; uncle->color = black; cur = cur->parent->parent; } else { // Uncle is black. Restructure. if (cur == cur->parent->right) { cur = cur->parent; _rotateleft(cur); } cur->parent->color = black; cur->parent->parent->color = red; _rotateright(cur->parent->parent); } } else { // Parent is the right child. Uncle is the left child. uncle = cur->parent->parent->left; if (uncle->color == red) { // Uncle is red. Recolor. cur->parent->parent->color = red; cur->parent->color = black; uncle->color = black; cur = cur->parent->parent; } else { // Uncle is black. Restructure. if (cur == cur->parent->left) { cur = cur->parent; _rotateright(cur); } cur->parent->color = black; cur->parent->parent->color = red; _rotateleft(cur->parent->parent); } } } // The root node is always colored black. m_root->color = black; LeaveCriticalSection(&m_lock); return node; } // next - Obtains a pointer to the in-order successor of the specified // node. // // - node (IN): Pointer to the node whose in-order successor to retrieve. // // Return Value: // // Returns a pointer to the node's in-order successor. If the specified // node corresponds to the largest value in the tree, then the specified // node has no successor and "next" will return NULL. // typename Tree::node_t* next (typename Tree::node_t *node) const { node_t* cur; if (node == NULL) { return NULL; } EnterCriticalSection(&m_lock); if (node->right != &m_nil) { // 'node' has a right child. Successor is the far left node in // the right subtree. cur = node->right; while (cur->left != &m_nil) { cur = cur->left; } LeaveCriticalSection(&m_lock); return cur; } else if (node->parent != &m_nil) { // 'node' has no right child, but does have a parent. if (node == node->parent->left) { // 'node' is a left child; node's parent is successor. LeaveCriticalSection(&m_lock); return node->parent; } else { // 'node' is a right child. cur = node; // Go up the tree until we find a parent to the right. while (cur->parent != &m_nil) { if (cur == cur->parent->right) { cur = cur->parent; continue; } else { LeaveCriticalSection(&m_lock); return cur->parent; } } // There is no parent greater than 'node'. 'node' is the // maximum node. LeaveCriticalSection(&m_lock); return NULL; } } else { // 'node' is root and root is the maximum node. LeaveCriticalSection(&m_lock); return NULL; } } // prev - Obtains a pointer to the in-order predecessor of the specified // node. // // - node (IN): Pointer to the node whose in-order predecessor to retrieve. // // Return Value: // // Returns a pointer to the node's in-order predecessor. If the specified // node corresponds to the smallest value in the tree, then the specified // node has no predecessor and "prev" will return NULL. // typename Tree::node_t* prev (typename Tree::node_t *node) const { node_t* cur; if (node == NULL) { return NULL; } EnterCriticalSection(&m_lock); if (node->left != &m_nil) { // 'node' has left child. Predecessor is the far right node in the // left subtree. cur = node->left; while (cur->right != &m_nil) { cur = cur->right; } LeaveCriticalSection(&m_lock); return cur; } else if (node->parent != & m_nil) { // 'node' has no left child, but does have a parent. if (node == node->parent->right) { // 'node' is a right child; node's parent is predecessor. LeaveCriticalSection(&m_lock); return node->parent; } else { // 'node is a left child. cur = node; // Go up the tree until we find a parent to the left. while (cur->parent != &m_nil) { if (cur == cur->parent->left) { cur = cur->parent; continue; } else { LeaveCriticalSection(&m_lock); return cur->parent; } } // There is no parent less than 'node'. 'node' is the minimum // node. LeaveCriticalSection(&m_lock); return NULL; } } else { // 'node' is root and root is the minimum node. LeaveCriticalSection(&m_lock); return NULL; } } // reserve - Reserves storage for a number of nodes in advance and/or sets // the number of nodes for which the tree will automatically reserve // storage when the tree needs to "grow" to accomodate new values being // inserted into the tree. If this function is not called to set the // reserve size to a specific value, then a pre-determined default value // will be used. If this function is called when the tree currently has // no reserve storage, then in addition to setting the tree's reserve // value, it will also cause the tree to immediately reserve the // specified amount of storage. // // - count (IN): The number of individual nodes' worth of storage to // reserve. // // Return Value: // // Returns the previously defined reserve value. // UINT32 reserve (UINT32 count) { chunk_t *chunk; UINT32 index; UINT32 oldreserve = m_reserve; if (count != m_reserve) { if (count < 1) { // Minimum reserve size is 1. m_reserve = 1; } else { m_reserve = count; } } EnterCriticalSection(&m_lock); if (m_freelist == NULL) { // Allocate additional storage. // Link a new chunk into the chunk list. chunk = new Tree::chunk_t; chunk->nodes = new Tree::node_s [m_reserve]; chunk->next = NULL; if (m_store == NULL) { m_store = chunk; } else { m_storetail->next = chunk; } m_storetail = chunk; // Link the individual nodes together to form a new free list. for (index = 0; index < m_reserve - 1; index++) { chunk->nodes[index].next = &chunk->nodes[index + 1]; } chunk->nodes[index].next = NULL; m_freelist = chunk->nodes; } LeaveCriticalSection(&m_lock); return oldreserve; } private: // _rotateleft: Rotates a pair of nodes counter-clockwise so that the parent // node becomes the left child and the right child becomes the parent. // // - parent (IN): Pointer to the parent to rotate about. // // Return Value: // // None. // VOID _rotateleft (typename Tree::node_t *parent) { node_t *child = parent->right; // Reassign the child's left subtree to the parent. parent->right = child->left; if (child->left != &m_nil) { child->left->parent = parent; } // Reassign the child/parent relationship. child->parent = parent->parent; if (parent->parent == &m_nil) { // The child becomes the new root node. m_root = child; } else { // Point the grandparent at the child. if (parent == parent->parent->left) { parent->parent->left = child; } else { parent->parent->right = child; } } child->left = parent; parent->parent = child; } // _rotateright - Rotates a pair of nodes clockwise so that the parent node // becomes the right child and the left child becomes the parent. // // - parent (IN): Pointer to the parent to rotate about. // // Return Value: // // None. // VOID _rotateright (typename Tree::node_t *parent) { node_t *child = parent->left; // Reassign the child's right subtree to the parent. parent->left = child->right; if (child->right != &m_nil) { child->right->parent = parent; } // Reassign the child/parent relationship. child->parent = parent->parent; if (parent->parent == &m_nil) { // The child becomes the new root node. m_root = child; } else { // Point the grandparent at the child. if (parent == parent->parent->left) { parent->parent->left = child; } else { parent->parent->right = child; } } child->right = parent; parent->parent = child; } // Private data members. node_t *m_freelist; // Pointer to the list of free nodes (reserve storage). mutable CRITICAL_SECTION m_lock; // Protects the tree's integrity against concurrent accesses. node_t m_nil; // The tree's nil node. All leaf nodes point to this. UINT32 m_reserve; // The size (in nodes) of the chunks of reserve storage. node_t *m_root; // Pointer to the tree's root node. chunk_t *m_store; // Pointer to the start of the chunk list. chunk_t *m_storetail; // Pointer to the end of the chunk list. };