/** * \file Encoding.cpp * This file is part of LyX, the document processor. * Licence details can be found in the file COPYING. * * \author Lars Gullik Bjønnes * \author Jean-Marc Lasgouttes * \author Dekel Tsur * * Full author contact details are available in file CREDITS. */ #include #include "Encoding.h" #include "Lexer.h" #include "support/debug.h" #include "support/docstring.h" #include "support/gettext.h" #include "support/lstrings.h" #include "support/mutex.h" #include "support/textutils.h" #include "support/unicode.h" #include #include #include #include using namespace std; using namespace lyx::support; namespace lyx { int const Encoding::any = -1; Encodings encodings; Encodings::MathCommandSet Encodings::mathcmd; Encodings::TextCommandSet Encodings::textcmd; Encodings::MathSymbolSet Encodings::mathsym; namespace { typedef map CharInfoMap; CharInfoMap unicodesymbols; typedef set CharSet; typedef map CharSetMap; CharSet forced; CharSetMap forcedSelected; typedef set MathAlphaSet; MathAlphaSet mathalpha; /// The highest code point in UCS4 encoding (1<<20 + 1<<16) char_type const max_ucs4 = 0x110000; } // namespace EncodingException::EncodingException(char_type c) : failed_char(c), par_id(0), pos(0) { } const char * EncodingException::what() const noexcept { return "Could not find LaTeX command for a character"; } CharInfo::CharInfo( docstring const & text_command, docstring const & math_command, std::string const & text_preamble, std::string const & math_preamble, std::string const & tipa_shortcut, unsigned int flags) : text_commands_({text_command}), math_commands_({math_command}), text_preamble_(text_preamble), math_preamble_(math_preamble), tipa_shortcut_(tipa_shortcut), flags_(flags) { } CharInfo::CharInfo( std::vector const & text_commands, std::vector const & math_commands, std::string const & text_preamble, std::string const & math_preamble, std::string const & tipa_shortcut, unsigned int flags) : text_commands_(text_commands), math_commands_(math_commands), text_preamble_(text_preamble), math_preamble_(math_preamble), tipa_shortcut_(tipa_shortcut), flags_(flags) { } Encoding::Encoding(string const & n, string const & l, string const & g, string const & i, bool f, bool u, Encoding::Package p) : name_(n), latexName_(l), guiName_(g), iconvName_(i), fixedwidth_(f), unsafe_(u), forced_(&forcedSelected[n]), package_(p) { if (n == "ascii") { // ASCII can encode 128 code points and nothing else start_encodable_ = 128; complete_ = true; } else if (i == "UTF-8") { // UTF8 can encode all UCS4 code points start_encodable_ = max_ucs4; complete_ = true; } else { start_encodable_ = 0; complete_ = false; } } void Encoding::init() const { // Since the the constructor is the only method which sets complete_ // to false the test for complete_ is thread-safe without mutex. if (complete_) return; static Mutex mutex; Mutex::Locker lock(&mutex); // We need to test again for complete_, since another thread could // have set it to true while we were waiting for the lock and we must // not modify an encoding which is already complete. if (complete_) return; // We do not make any member mutable so that it can be easily verified // that all const methods are thread-safe: init() is the only const // method which changes complete_, encodable_ and start_encodable_, and // it uses a mutex to ensure thread-safety. CharSet & encodable = const_cast(this)->encodable_; char_type & start_encodable = const_cast(this)->start_encodable_; start_encodable = 0; // temporarily switch off lyxerr, since we will generate iconv errors lyxerr.disable(); if (fixedwidth_) { // We do not need to check all UCS4 code points, it is enough // if we check all 256 code points of this encoding. for (unsigned short j = 0; j < 256; ++j) { char const c = char(j); vector const ucs4 = eightbit_to_ucs4(&c, 1, iconvName_); if (ucs4.size() != 1) continue; char_type const uc = ucs4[0]; CharInfoMap::const_iterator const it = unicodesymbols.find(uc); if (it == unicodesymbols.end()) encodable.insert(uc); else if (!it->second.force()) { if (forced_->empty() || forced_->find(uc) == forced_->end()) encodable.insert(uc); } } } else { // We do not know how many code points this encoding has, and // they do not have a direct representation as a single byte, // therefore we need to check all UCS4 code points. // This is expensive! for (char_type c = 0; c < max_ucs4; ++c) { vector const eightbit = ucs4_to_eightbit(&c, 1, iconvName_); if (!eightbit.empty()) { CharInfoMap::const_iterator const it = unicodesymbols.find(c); if (it == unicodesymbols.end()) encodable.insert(c); else if (!it->second.force()) { if (forced_->empty() || forced_->find(c) == forced_->end()) encodable.insert(c); } } } } lyxerr.enable(); CharSet::iterator it = encodable.find(start_encodable); while (it != encodable.end()) { encodable.erase(it); ++start_encodable; it = encodable.find(start_encodable); } const_cast(this)->complete_ = true; } bool Encoding::isForced(char_type c) const { if (!forced.empty() && forced.find(c) != forced.end()) return true; return !forced_->empty() && forced_->find(c) != forced_->end(); } bool Encoding::encodable(char_type c) const { // assure the used encoding is properly initialized init(); if (iconvName_ == "UTF-8" && package_ == none) return true; // platex does not load inputenc: force conversion of supported characters if (package_ == Encoding::japanese && ((0xb7 <= c && c <= 0x05ff) // Latin-1 Supplement ... Hebrew || (0x1d00 <= c && c <= 0x218f) // Phonetic Extensions ... Number Forms || (0x2193 <= c && c <= 0x2aff) // Arrows ... Supplemental Mathematical Operators || (0xfb00 <= c && c <= 0xfb4f) // Alphabetic Presentation Forms || (0x1d400 <= c && c <= 0x1d7ff))) // Mathematical Alphanumeric Symbols return false; if (c < start_encodable_ && !isForced(c)) return true; if (encodable_.find(c) != encodable_.end()) return true; return false; } pair Encoding::latexChar(char_type c) const { if (encodable(c)) return make_pair(docstring(1, c), false); // c cannot (or should not) be encoded in this encoding CharInfoMap::const_iterator const it = unicodesymbols.find(c); if (it == unicodesymbols.end()) throw EncodingException(c); // at least one of mathCommand and textCommand is nonempty if (it->second.textCommand().empty()) return make_pair( "\\ensuremath{" + it->second.mathCommand() + '}', false); return make_pair(it->second.textCommand(), !it->second.textNoTermination()); } pair Encoding::latexString(docstring const & input, bool dryrun) const { docstring result; docstring uncodable; bool terminate = false; for (char_type const c : input) { try { pair latex_char = latexChar(c); docstring const latex = latex_char.first; if (terminate && !prefixIs(latex, '\\') && !prefixIs(latex, '{') && !prefixIs(latex, '}')) { // Prevent eating of a following // space or command corruption by // following characters if (latex == " ") result += "{}"; else result += " "; } result += latex; terminate = latex_char.second; } catch (EncodingException & /* e */) { LYXERR0("Uncodable character <" << docstring(1, c) << "> in latexString!"); if (dryrun) { result += "<" + _("LyX Warning: ") + _("uncodable character") + " '"; result += docstring(1, c); result += "'>"; } else uncodable += c; } } return make_pair(result, uncodable); } vector Encoding::symbolsList() const { // assure the used encoding is properly initialized init(); // first all those below start_encodable_ vector symbols; for (char_type c = 0; c < start_encodable_; ++c) symbols.push_back(c); // add all encodable characters copy(encodable_.begin(), encodable_.end(), back_inserter(symbols)); // now the ones from the unicodesymbols file that are not already there for (auto const & elem : unicodesymbols) { if (find(symbols.begin(), symbols.end(), elem.first) == symbols.end()) symbols.push_back(elem.first); } // finally, sort the vector sort(symbols.begin(), symbols.end()); return symbols; } bool Encodings::latexMathChar(char_type c, bool mathmode, Encoding const * encoding, docstring & command, bool & needsTermination) { command = empty_docstring(); if (encoding) if (encoding->encodable(c)) command = docstring(1, c); needsTermination = false; CharInfoMap::const_iterator const it = unicodesymbols.find(c); if (it == unicodesymbols.end()) { if (!encoding || command.empty()) throw EncodingException(c); if (mathmode) addMathSym(c); return false; } // at least one of mathCommand and textCommand is nonempty bool use_math = (mathmode && !it->second.mathCommand().empty()) || (!mathmode && it->second.textCommand().empty()); if (use_math) { command = it->second.mathCommand(); needsTermination = !it->second.mathNoTermination(); addMathCmd(c); } else { if (!encoding || command.empty()) { command = it->second.textCommand(); needsTermination = !it->second.textNoTermination(); } if (mathmode) addMathSym(c); else addTextCmd(c); } return use_math; } char_type Encodings::fromLaTeXCommand(docstring const & cmd, int cmdtype, bool & combining, bool & needsTermination, set * req) { CharInfoMap::const_iterator const end = unicodesymbols.end(); CharInfoMap::const_iterator it = unicodesymbols.begin(); for (combining = false; it != end; ++it) { if (it->second.deprecated()) continue; if (cmdtype & MATH_CMD) { for (const docstring& math : it->second.mathCommands()) { if ((cmdtype & MATH_CMD) && math == cmd) { combining = it->second.combining(); needsTermination = !it->second.mathNoTermination(); if (req && it->second.mathFeature() && !it->second.mathPreamble().empty()) req->insert(it->second.mathPreamble()); return it->first; } } } if (cmdtype & TEXT_CMD) { for (const docstring& text : it->second.textCommands()) { if (text == cmd) { combining = it->second.combining(); needsTermination = !it->second.textNoTermination(); if (req && it->second.textFeature() && !it->second.textPreamble().empty()) req->insert(it->second.textPreamble()); return it->first; } } } } needsTermination = false; return 0; } docstring Encodings::fromLaTeXCommand(docstring const & cmd, int cmdtype, bool & needsTermination, docstring & rem, set * req) { needsTermination = false; rem = empty_docstring(); bool const mathmode = cmdtype & MATH_CMD; bool const textmode = cmdtype & TEXT_CMD; // Easy case: the command is a complete entry of unicodesymbols. for (const auto & unicodeSymbol : unicodesymbols) { if (mathmode) { for (const auto & command : unicodeSymbol.second.mathCommands()) { if (command == cmd) { docstring value; value += unicodeSymbol.first; needsTermination = !unicodeSymbol.second.mathNoTermination(); if (req && unicodeSymbol.second.mathFeature() && !unicodeSymbol.second.mathPreamble().empty()) req->insert(unicodeSymbol.second.mathPreamble()); return value; } } } if (textmode) { for (const auto & command : unicodeSymbol.second.textCommands()) { if (command == cmd) { docstring value; value += unicodeSymbol.first; needsTermination = !unicodeSymbol.second.textNoTermination(); if (req && unicodeSymbol.second.textFeature() && !unicodeSymbol.second.textPreamble().empty()) req->insert(unicodeSymbol.second.textPreamble()); return value; } } } } // Otherwise, try to map as many commands as possible, matching prefixes of the command. docstring symbols; size_t const cmdend = cmd.size(); size_t prefix = 0; CharInfoMap::const_iterator const uniend = unicodesymbols.end(); for (size_t i = 0, j = 0; j < cmdend; ++j) { // Also get the char after a backslash if (j + 1 < cmdend && cmd[j] == '\\') { ++j; prefix = 1; // Detect things like \=*{e} as well if (j + 3 < cmdend && cmd[j+1] == '*' && cmd[j+2] == '{') { ++j; prefix = 2; } } // position of the last character before a possible macro // argument size_t m = j; // If a macro argument follows, get it, too // Do it here only for single character commands. Other // combining commands need this too, but they are handled in // the loop below for performance reasons. if (j + 1 < cmdend && cmd[j + 1] == '{') { size_t k = j + 1; int count = 1; while (k < cmdend && count) { k = cmd.find_first_of(from_ascii("{}"), k + 1); // braces may not be balanced if (k == docstring::npos) break; if (cmd[k] == '{') ++count; else --count; } if (k != docstring::npos) j = k; } else if (m + 1 < cmdend && isAlphaASCII(cmd[m])) { while (m + 2 < cmdend && isAlphaASCII(cmd[m+1])) m++; } // Start with this substring and try augmenting it when it is // the prefix of some command in the unicodesymbols file docstring subcmd = cmd.substr(i, j - i + 1); // First part of subcmd which might be a combining character docstring combcmd = (m == j) ? docstring() : cmd.substr(i, m - i + 1); // The combining character of combcmd if it exists size_t unicmd_size = 0; char_type c = 0; CharInfoMap::const_iterator it = unicodesymbols.begin(); CharInfoMap::const_iterator combining = uniend; for (; it != uniend; ++it) { if (it->second.deprecated()) continue; docstring const math = mathmode ? it->second.mathCommand() : docstring(); docstring const text = textmode ? it->second.textCommand() : docstring(); if (!combcmd.empty() && it->second.combining() && (math == combcmd || text == combcmd)) combining = it; size_t cur_size = max(math.size(), text.size()); // The current math or text unicode command cannot // match, or we already matched a longer one if (cur_size < subcmd.size() || cur_size <= unicmd_size) continue; docstring tmp = subcmd; size_t k = j; while (prefixIs(math, tmp) || prefixIs(text, tmp)) { ++k; if (k >= cmdend || cur_size <= tmp.size()) break; tmp += cmd[k]; } // No match if (k == j) continue; // The last added char caused a mismatch, because // we didn't exhaust the chars in cmd and didn't // exceed the maximum size of the current unicmd if (k < cmdend && cur_size > tmp.size()) tmp.resize(tmp.size() - 1); // If this is an exact match, we found a (longer) // matching entry in the unicodesymbols file. if (math != tmp && text != tmp) continue; // If we found a combining command, we need to append // the macro argument if this has not been done above. if (tmp == combcmd && combining != uniend && k < cmdend && cmd[k] == '{') { size_t l = k; int count = 1; while (l < cmdend && count) { l = cmd.find_first_of(from_ascii("{}"), l + 1); // braces may not be balanced if (l == docstring::npos) break; if (cmd[l] == '{') ++count; else --count; } if (l != docstring::npos) { j = l; subcmd = cmd.substr(i, j - i + 1); } } // If the entry doesn't start with '\', we take note // of the match and continue (this is not a ultimate // acceptance, as some other entry may match a longer // portion of the cmd string). However, if the entry // does start with '\', we accept the match only if // this is a valid macro, i.e., either it is a single // (nonletter) char macro, or nothing else follows, // or what follows is a nonletter char, or the last // character is a }. else if (tmp[0] != '\\' || (tmp.size() == prefix + 1 && !isAlphaASCII(tmp[1]) && (prefix == 1 || !isAlphaASCII(tmp[2]))) || k == cmdend || !isAlphaASCII(cmd[k]) || tmp[tmp.size() - 1] == '}' ) { c = it->first; j = k - 1; i = j + 1; unicmd_size = cur_size; if (math == tmp) needsTermination = !it->second.mathNoTermination(); else needsTermination = !it->second.textNoTermination(); if (req) { if (math == tmp && it->second.mathFeature() && !it->second.mathPreamble().empty()) req->insert(it->second.mathPreamble()); if (text == tmp && it->second.textFeature() && !it->second.textPreamble().empty()) req->insert(it->second.textPreamble()); } } } if (unicmd_size) symbols += c; else if (combining != uniend && prefixIs(subcmd, combcmd + '{')) { // We know that subcmd starts with combcmd and // contains an argument in braces. docstring const arg = subcmd.substr( combcmd.length() + 1, subcmd.length() - combcmd.length() - 2); // If arg is a single character we can construct a // combining sequence. char_type a; bool argcomb = false; if (arg.size() == 1 && isAlnumASCII(arg[0])) a = arg[0]; else { // Use the version of fromLaTeXCommand() that // parses only one command, since we cannot // use more than one character. bool dummy = false; set r; a = fromLaTeXCommand(arg, cmdtype, argcomb, dummy, &r); if (a && req && !argcomb) req->insert(r.begin(), r.end()); } if (a && !argcomb) { // In unicode the combining character comes // after its base symbols += a; symbols += combining->first; i = j + 1; unicmd_size = 2; } } if (j + 1 == cmdend && !unicmd_size) { // No luck. Return what remains rem = cmd.substr(i); if (needsTermination && !rem.empty()) { if (rem.substr(0, 2) == "{}") { rem = rem.substr(2); needsTermination = false; } else if (rem[0] == ' ') { needsTermination = false; // LaTeX would swallow all spaces rem = ltrim(rem); } } } } return symbols; } CharInfo const & Encodings::unicodeCharInfo(char_type c) { static CharInfo empty; CharInfoMap::const_iterator const it = unicodesymbols.find(c); return it != unicodesymbols.end() ? it->second : empty; } bool Encodings::isCombiningChar(char_type c) { CharInfoMap::const_iterator const it = unicodesymbols.find(c); if (it != unicodesymbols.end()) return it->second.combining(); return false; } string const Encodings::TIPAShortcut(char_type c) { CharInfoMap::const_iterator const it = unicodesymbols.find(c); if (it != unicodesymbols.end()) return it->second.tipaShortcut(); return string(); } string const Encodings::isKnownScriptChar(char_type const c) { CharInfoMap::const_iterator const it = unicodesymbols.find(c); if (it == unicodesymbols.end()) return string(); // FIXME: parse complex textPreamble (may be list or alternatives, // e.g., "subscript,textgreek" or "textcomp|textgreek") if (it->second.textPreamble() == "textgreek" || it->second.textPreamble() == "textcyrillic") return it->second.textPreamble(); return string(); } bool Encodings::fontencSupportsScript(string const & fontenc, string const & script) { if (script == "textgreek") return (fontenc == "LGR" || fontenc == "TU"); if (script == "textcyrillic") return (fontenc == "T2A" || fontenc == "T2B" || fontenc == "T2C" || fontenc == "X2" || fontenc == "TU"); return false; } bool Encodings::isMathAlpha(char_type c) { return mathalpha.count(c); } bool Encodings::isUnicodeTextOnly(char_type c) { if (isASCII(c) || isMathAlpha(c)) return false; CharInfoMap::const_iterator const it = unicodesymbols.find(c); return it == unicodesymbols.end() || it->second.mathCommand().empty(); } Encoding const * Encodings::fromLyXName(string const & name, bool allowUnsafe) const { EncodingList::const_iterator const it = encodinglist.find(name); if (it == encodinglist.end()) return nullptr; if (!allowUnsafe && it->second.unsafe()) return nullptr; return &it->second; } Encoding const * Encodings::fromLaTeXName(string const & n, int p, bool allowUnsafe) const { string name = n; // FIXME: if we have to test for too many of these synonyms, // we should instead extend the format of lib/encodings if (n == "ansinew") name = "cp1252"; // We don't use find_if because it makes copies of the pairs in // the map. // This linear search is OK since we don't have many encodings. // Users could even optimize it by putting the encodings they use // most at the top of lib/encodings. EncodingList::const_iterator const end = encodinglist.end(); for (EncodingList::const_iterator it = encodinglist.begin(); it != end; ++it) if ((it->second.latexName() == name) && (it->second.package() & p) && (!it->second.unsafe() || allowUnsafe)) return &it->second; return nullptr; } Encoding const * Encodings::fromIconvName(string const & n, int p, bool allowUnsafe) const { EncodingList::const_iterator const end = encodinglist.end(); for (EncodingList::const_iterator it = encodinglist.begin(); it != end; ++it) if ((it->second.iconvName() == n) && (it->second.package() & p) && (!it->second.unsafe() || allowUnsafe)) return &it->second; return nullptr; } Encodings::Encodings() {} void Encodings::read(FileName const & encfile, FileName const & symbolsfile) { // We must read the symbolsfile first, because the Encoding // constructor depends on it. CharSetMap forcedNotSelected; Lexer symbolsLex; symbolsLex.setFile(symbolsfile); bool getNextToken = true; while (symbolsLex.isOK()) { char_type symbol; if (getNextToken) { if (!symbolsLex.next(true)) break; } else getNextToken = true; istringstream is(symbolsLex.getString()); // reading symbol directly does not work if // char_type == wchar_t. uint32_t tmp; if(!(is >> hex >> tmp)) break; symbol = tmp; // Special case: more than one entry for one character (to add other LaTeX commands). if (unicodesymbols.find(symbol) != unicodesymbols.end()) { if (!symbolsLex.next(true)) break; docstring textCommand = symbolsLex.getDocString(); if (!symbolsLex.next(true)) break; string mathCommand = symbolsLex.getString(); if (!textCommand.empty()) unicodesymbols.at(symbol).addTextCommand(textCommand); if (!mathCommand.empty()) unicodesymbols.at(symbol).addMathCommand(textCommand); continue; } // If the symbol is not the same as the previous entry, consider it is a totally new symbol. if (!symbolsLex.next(true)) break; docstring textCommand = symbolsLex.getDocString(); if (!symbolsLex.next(true)) break; string textPreamble = symbolsLex.getString(); if (!symbolsLex.next(true)) break; string sflags = symbolsLex.getString(); string tipaShortcut; int flags = 0; if (suffixIs(textCommand, '}')) flags |= CharInfoTextNoTermination; while (!sflags.empty()) { string flag; sflags = split(sflags, flag, ','); if (flag == "combining") { flags |= CharInfoCombining; } else if (flag == "force") { flags |= CharInfoForce; forced.insert(symbol); } else if (prefixIs(flag, "force=")) { vector encs = getVectorFromString(flag.substr(6), ";"); for (auto const & enc : encs) forcedSelected[enc].insert(symbol); flags |= CharInfoForceSelected; } else if (prefixIs(flag, "force!=")) { vector encs = getVectorFromString(flag.substr(7), ";"); for (auto const & enc : encs) forcedNotSelected[enc].insert(symbol); flags |= CharInfoForceSelected; } else if (flag == "mathalpha") { mathalpha.insert(symbol); } else if (flag == "notermination=text") { flags |= CharInfoTextNoTermination; } else if (flag == "notermination=math") { flags |= CharInfoMathNoTermination; } else if (flag == "notermination=both") { flags |= CharInfoTextNoTermination; flags |= CharInfoMathNoTermination; } else if (flag == "notermination=none") { flags &= ~CharInfoTextNoTermination; flags &= ~CharInfoMathNoTermination; } else if (contains(flag, "tipashortcut=")) { tipaShortcut = split(flag, '='); } else if (flag == "deprecated") { flags |= CharInfoDeprecated; } else { lyxerr << "Ignoring unknown flag `" << flag << "' for symbol `0x" << hex << symbol << dec << "'." << endl; } } // mathCommand and mathPreamble have been added for 1.6.0. // make them optional so that old files still work. int const lineNo = symbolsLex.lineNumber(); bool breakout = false; docstring mathCommand; string mathPreamble; if (symbolsLex.next(true)) { if (symbolsLex.lineNumber() != lineNo) { // line in old format without mathCommand and mathPreamble getNextToken = false; } else { mathCommand = symbolsLex.getDocString(); if (suffixIs(mathCommand, '}')) flags |= CharInfoMathNoTermination; if (symbolsLex.next(true)) { if (symbolsLex.lineNumber() != lineNo) { // line in new format with mathCommand only getNextToken = false; } else { // line in new format with mathCommand and mathPreamble mathPreamble = symbolsLex.getString(); } } else breakout = true; } } else { breakout = true; } // backward compatibility if (mathPreamble == "esintoramsmath") mathPreamble = "esint|amsmath"; if (!textPreamble.empty()) if (textPreamble[0] != '\\') flags |= CharInfoTextFeature; if (!mathPreamble.empty()) if (mathPreamble[0] != '\\') flags |= CharInfoMathFeature; CharInfo info = CharInfo( textCommand, mathCommand, textPreamble, mathPreamble, tipaShortcut, flags); LYXERR(Debug::INFO, "Read unicode symbol " << symbol << " '" << to_utf8(info.textCommand()) << "' '" << info.textPreamble() << " '" << info.textFeature() << ' ' << info.textNoTermination() << ' ' << to_utf8(info.mathCommand()) << "' '" << info.mathPreamble() << "' " << info.mathFeature() << ' ' << info.mathNoTermination() << ' ' << info.combining() << ' ' << info.force() << ' ' << info.forceSelected()); // we assume that at least one command is nonempty when using unicodesymbols if (info.isUnicodeSymbol()) { unicodesymbols[symbol] = info; } if (breakout) break; } // Now read the encodings enum { et_encoding = 1, et_end }; LexerKeyword encodingTags[] = { { "encoding", et_encoding }, { "end", et_end } }; Lexer lex(encodingTags); lex.setFile(encfile); lex.setContext("Encodings::read"); while (lex.isOK()) { switch (lex.lex()) { case et_encoding: { lex.next(); string const name = lex.getString(); lex.next(); string const latexName = lex.getString(); lex.next(); string const guiName = lex.getString(); lex.next(); string const iconvName = lex.getString(); lex.next(); string const width = lex.getString(); bool fixedWidth = false; bool unsafe = false; if (width == "fixed") fixedWidth = true; else if (width == "variable") fixedWidth = false; else if (width == "variableunsafe") { fixedWidth = false; unsafe = true; } else lex.printError("Unknown width"); lex.next(); string const p = lex.getString(); Encoding::Package package = Encoding::none; if (p == "none") package = Encoding::none; else if (p == "inputenc") package = Encoding::inputenc; else if (p == "CJK") package = Encoding::CJK; else if (p == "japanese") package = Encoding::japanese; else lex.printError("Unknown package"); LYXERR(Debug::INFO, "Reading encoding " << name); encodinglist[name] = Encoding(name, latexName, guiName, iconvName, fixedWidth, unsafe, package); if (lex.lex() != et_end) lex.printError("Missing end"); break; } case et_end: lex.printError("Misplaced end"); break; case Lexer::LEX_FEOF: break; default: lex.printError("Unknown tag"); break; } } // Move all information from forcedNotSelected to forcedSelected for (CharSetMap::const_iterator it1 = forcedNotSelected.begin(); it1 != forcedNotSelected.end(); ++it1) { for (CharSetMap::iterator it2 = forcedSelected.begin(); it2 != forcedSelected.end(); ++it2) { if (it2->first != it1->first) it2->second.insert(it1->second.begin(), it1->second.end()); } } } } // namespace lyx