#LyX 2.2 created this file. For more info see http://www.lyx.org/ \lyxformat 503 \begin_document \begin_header \origin /systemlyxdir/examples/ \textclass beamer \begin_preamble \beamertemplateshadingbackground{red!5}{structure!5} \usepackage{beamerthemeshadow} \usepackage{pgfnodes,pgfarrows,pgfheaps} \beamertemplatetransparentcovereddynamicmedium \pgfdeclareimage[width=0.6cm]{icsi-logo}{beamer-icsi-logo} \logo{\pgfuseimage{icsi-logo}} \newcommand{\Class}[1]{\operatorname{\mathchoice {\text{\small #1}} {\text{\small #1}} {\text{#1}} {\text{#1}}}} \newcommand{\Lang}[1]{\operatorname{\text{\textsc{#1}}}} % This gets defined by beamerbasecolor.sty, but only at the beginning of % the document \colorlet{averagebackgroundcolor}{normal text.bg} \newcommand{\tape}[3]{% \color{structure!30!averagebackgroundcolor} \pgfmoveto{\pgfxy(-0.5,0)} \pgflineto{\pgfxy(-0.6,0.1)} \pgflineto{\pgfxy(-0.4,0.2)} \pgflineto{\pgfxy(-0.6,0.3)} \pgflineto{\pgfxy(-0.4,0.4)} \pgflineto{\pgfxy(-0.5,0.5)} \pgflineto{\pgfxy(4,0.5)} \pgflineto{\pgfxy(4.1,0.4)} \pgflineto{\pgfxy(3.9,0.3)} \pgflineto{\pgfxy(4.1,0.2)} \pgflineto{\pgfxy(3.9,0.1)} \pgflineto{\pgfxy(4,0)} \pgfclosepath \pgffill \color{structure} \pgfputat{\pgfxy(0,0.7)}{\pgfbox[left,base]{#1}} \pgfputat{\pgfxy(0,-0.1)}{\pgfbox[left,top]{#2}} \color{black} \pgfputat{\pgfxy(-.1,0.25)}{\pgfbox[left,center]{\texttt{#3}}}% } \newcommand{\shorttape}[3]{% \color{structure!30!averagebackgroundcolor} \pgfmoveto{\pgfxy(-0.5,0)} \pgflineto{\pgfxy(-0.6,0.1)} \pgflineto{\pgfxy(-0.4,0.2)} \pgflineto{\pgfxy(-0.6,0.3)} \pgflineto{\pgfxy(-0.4,0.4)} \pgflineto{\pgfxy(-0.5,0.5)} \pgflineto{\pgfxy(1,0.5)} \pgflineto{\pgfxy(1.1,0.4)} \pgflineto{\pgfxy(0.9,0.3)} \pgflineto{\pgfxy(1.1,0.2)} \pgflineto{\pgfxy(0.9,0.1)} \pgflineto{\pgfxy(1,0)} \pgfclosepath \pgffill \color{structure} \pgfputat{\pgfxy(0.25,0.7)}{\pgfbox[center,base]{#1}} \pgfputat{\pgfxy(0.25,-0.1)}{\pgfbox[center,top]{#2}} \color{black} \pgfputat{\pgfxy(-.1,0.25)}{\pgfbox[left,center]{\texttt{#3}}}% } \pgfdeclareverticalshading{heap1}{\the\paperwidth}% {color(0pt)=(black); color(1cm)=(structure!65!white)} \pgfdeclareverticalshading{heap2}{\the\paperwidth}% {color(0pt)=(black); color(1cm)=(structure!55!white)} \pgfdeclareverticalshading{heap3}{\the\paperwidth}% {color(0pt)=(black); color(1cm)=(structure!45!white)} \pgfdeclareverticalshading{heap4}{\the\paperwidth}% {color(0pt)=(black); color(1cm)=(structure!35!white)} \pgfdeclareverticalshading{heap5}{\the\paperwidth}% {color(0pt)=(black); color(1cm)=(structure!25!white)} \pgfdeclareverticalshading{heap6}{\the\paperwidth}% {color(0pt)=(black); color(1cm)=(red!35!white)} \newcommand{\heap}[5]{% \begin{pgfscope} \color{#4} \pgfheappath{\pgfxy(0,#1)}{\pgfxy(-#2,0)}{\pgfxy(#2,0)} \pgfclip \begin{pgfmagnify}{1}{#1} \pgfputat{\pgfpoint{-.5\paperwidth}{0pt}}{\pgfbox[left,base]{\pgfuseshading{heap#5}}} \end{pgfmagnify} \end{pgfscope} %\pgffill \color{#4} \pgfheappath{\pgfxy(0,#1)}{\pgfxy(-#2,0)}{\pgfxy(#2,0)} \pgfstroke \color{white} \pgfheaplabel{\pgfxy(0,#1)}{#3}% } \newcommand{\langat}[2]{% \color{black!30!beamerexample} \pgfsetlinewidth{0.6pt} \pgfsetendarrow{\pgfarrowdot} \pgfline{\pgfxy(-3.5,#1)}{\pgfxy(0.05,#1)} \color{beamerexample} \pgfputat{\pgfxy(-3.6,#1)}{\pgfbox[right,center]{#2}}% } \newcommand{\langatother}[2]{% \color{black!30!beamerexample} \pgfsetlinewidth{0.6pt} \pgfsetendarrow{\pgfarrowdot} \pgfline{\pgfxy(3.5,#1)}{\pgfxy(-0.05,#1)} \color{beamerexample} \pgfputat{\pgfxy(3.6,#1)}{\pgfbox[left,center]{#2}}% } \pgfdeclaremask{knight1-mask}{beamer-knight1-mask} \pgfdeclareimage[height=2cm,mask=knight1-mask]{knight1}{beamer-knight1} \pgfdeclaremask{knight2-mask}{beamer-knight2-mask} \pgfdeclareimage[height=2cm,mask=knight2-mask]{knight2}{beamer-knight2} \pgfdeclaremask{knight3-mask}{beamer-knight3-mask} \pgfdeclareimage[height=2cm,mask=knight3-mask,interpolate=true]{knight3}{beamer-knight3} \pgfdeclaremask{knight4-mask}{beamer-knight4-mask} \pgfdeclareimage[height=2cm,mask=knight4-mask,interpolate=true]{knight4}{beamer-knight4} \pgfdeclareradialshading{graphnode} {\pgfpoint{-3pt}{3.6pt}}% {color(0cm)=(beamerexample!15); color(2.63pt)=(beamerexample!75); color(5.26pt)=(beamerexample!70!black); color(7.6pt)=(beamerexample!50!black); color(8pt)=(beamerexample!10!averagebackgroundcolor)} \newcommand{\graphnode}[2]{ \pgfnodecircle{#1}[virtual]{#2}{8pt} \pgfputat{#2}{\pgfbox[center,center]{\pgfuseshading{graphnode}}} } \end_preamble \options notes=show \use_default_options false \maintain_unincluded_children false \language english \language_package default \inputencoding auto \fontencoding global \font_roman "times" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 2 \use_package amssymb 2 \use_package cancel 0 \use_package esint 0 \use_package mathdots 1 \use_package mathtools 0 \use_package mhchem 1 \use_package stackrel 0 \use_package stmaryrd 0 \use_package undertilde 0 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 2 \tocdepth 2 \paragraph_separation indent \paragraph_indentation default \quotes_language english \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Title The Complexity of \begin_inset Newline newline \end_inset Finding Paths in Tournaments \end_layout \begin_layout Author Till Tantau \end_layout \begin_layout Institute International Computer Science Institute \begin_inset Newline newline \end_inset Berkeley, California \begin_inset Argument 1 status collapsed \begin_layout Plain Layout ICSI \end_layout \end_inset \end_layout \begin_layout Date January 30th, 2004 \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Outline \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset CommandInset toc LatexCommand tableofcontents \end_inset \begin_inset ERT status collapsed \begin_layout Plain Layout [pausesections] \end_layout \end_inset \end_layout \end_deeper \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout % Show the table of contents at the beginning \end_layout \begin_layout Plain Layout % of every subsection. \end_layout \begin_layout Plain Layout \backslash AtBeginSubsection[]{% \end_layout \begin_layout Plain Layout \backslash frame<handout:0>{ \end_layout \begin_layout Plain Layout \backslash frametitle{Outline} \end_layout \begin_layout Plain Layout \backslash tableofcontents[current,currentsubsection] \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout } \end_layout \end_inset \end_layout \begin_layout Section Introduction \end_layout \begin_layout Subsection What are Tournaments? \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Tournaments Consist of Jousts Between Knights \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Columns \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Column 5.75cm \end_layout \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash begin{pgfpicture}{1.25cm}{-1cm}{7cm}{4cm} \end_layout \begin_layout Plain Layout \backslash pgfnodebox{A}[virtual]{ \backslash pgfxy(2,1)}{% \end_layout \begin_layout Plain Layout \backslash pgfuseimage{knight1}}{2pt}{2pt} \end_layout \begin_layout Plain Layout \backslash pgfnodebox{B}[virtual]{ \backslash pgfxy(6,1)}{% \end_layout \begin_layout Plain Layout \backslash pgfuseimage{knight2}}{2pt}{2pt} \end_layout \begin_layout Plain Layout \backslash pgfnodebox{C}[virtual]{ \backslash pgfxy(4,-1)}{% \end_layout \begin_layout Plain Layout \backslash pgfuseimage{knight3}}{2pt}{2pt} \end_layout \begin_layout Plain Layout \backslash pgfnodebox{D}[virtual]{ \backslash pgfxy(4,3)}{% \end_layout \begin_layout Plain Layout \backslash pgfuseimage{knight4}}{2pt}{2pt} \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \backslash only<3->{ \backslash pgfsetendarrow{ \backslash pgfarrowto}} \end_layout \begin_layout Plain Layout \backslash only<2->{% \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.6pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A}{B} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A}{C} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D}{A} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C}{B} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B}{D} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C}{D} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash end{pgfpicture} \end_layout \end_inset \end_layout \begin_layout Column 6cm \end_layout \begin_layout Block \begin_inset Argument 2 status open \begin_layout Plain Layout What is a Tournament? \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize \begin_inset Argument item:2 status open \begin_layout Plain Layout 1- \end_layout \end_inset A group of knights. \end_layout \begin_layout Itemize \begin_inset Argument item:2 status open \begin_layout Plain Layout 2- \end_layout \end_inset Every pair has a joust. \end_layout \begin_layout Itemize \begin_inset Argument item:2 status open \begin_layout Plain Layout 3- \end_layout \end_inset In every joust one knight wins. \end_layout \end_deeper \end_deeper \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Tournaments are Complete Directed Graphs \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Columns \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Column 5cm \end_layout \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash begin{pgfpicture}{1.5cm}{-1cm}{6.5cm}{4cm} \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.6pt} \end_layout \begin_layout Plain Layout \backslash graphnode{A}{ \backslash pgfxy(2.5,1)} \end_layout \begin_layout Plain Layout \backslash graphnode{B}{ \backslash pgfxy(5.5,1)} \end_layout \begin_layout Plain Layout \backslash graphnode{C}{ \backslash pgfxy(4,-0.5)} \end_layout \begin_layout Plain Layout \backslash graphnode{D}{ \backslash pgfxy(4,2.5)} \end_layout \begin_layout Plain Layout \backslash color{white} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{A}}{ \backslash pgfbox[center,center]{$v_2$}} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{B}}{ \backslash pgfbox[center,center]{$v_3$}} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{C}}{ \backslash pgfbox[center,center]{$v_4$}} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{D}}{ \backslash pgfbox[center,center]{$v_1$}} \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \backslash pgfsetendarrow{ \backslash pgfarrowto} \end_layout \begin_layout Plain Layout \backslash pgfnodesetsepstart{2pt} \end_layout \begin_layout Plain Layout \backslash pgfnodesetsepend{4pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A}{B} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A}{C} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D}{A} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C}{B} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B}{D} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D}{C} \end_layout \begin_layout Plain Layout \backslash end{pgfpicture} \end_layout \end_inset \end_layout \begin_layout Column 6cm \end_layout \begin_layout Definition \begin_inset Argument 1 status collapsed \begin_layout Plain Layout 2- \end_layout \end_inset A \color none \color red tournament \color none \color inherit is a \color inherit \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Enumerate directed graphs, \end_layout \begin_layout Enumerate with exactly one edge between \begin_inset Newline newline \end_inset any two different vertices. \end_layout \end_deeper \end_deeper \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 2 status collapsed \begin_layout Plain Layout + \end_layout \end_inset \begin_inset Argument 4 status open \begin_layout Plain Layout Tournaments Arise Naturally in Different Situations \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout ExampleBlock \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Applications in Ordering Theory \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard Elements in a set need to be sorted. \begin_inset Newline newline \end_inset The comparison relation may be cyclic, however. \end_layout \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout ExampleBlock \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Applications in Sociology \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard Several candidates apply for a position. \begin_inset Newline newline \end_inset Reviewers decide for any two candidates whom they prefer. \end_layout \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout ExampleBlock \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Applications in Structural Complexity Theory \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard A language \begin_inset Formula $L$ \end_inset is given and a selector function \begin_inset Formula $f$ \end_inset . \begin_inset Newline newline \end_inset It chooses from any two words the one more likely to be in \begin_inset Formula $f$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Subsection What Does ``Finding Paths'' Mean? \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout ``Finding Paths'' is Ambiguous \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Block \begin_inset Argument 2 status open \begin_layout Plain Layout Input for \begin_inset Flex Only status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 1 \end_layout \end_inset Path Finding Problems \end_layout \end_inset \begin_inset Flex Only status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 2-3 \end_layout \end_inset \begin_inset Formula $\Lang{reach}$ \end_inset \end_layout \end_inset \begin_inset Flex Only status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 4-5 \end_layout \end_inset the Construction Problem \end_layout \end_inset \begin_inset Flex Only status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 6-7 \end_layout \end_inset the Optimization Problem \end_layout \end_inset \begin_inset Flex Only status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 8-9 \end_layout \end_inset \begin_inset Formula $\Lang{distance}$ \end_inset \end_layout \end_inset \begin_inset Flex Only status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 10- \end_layout \end_inset the Approximation Problem \end_layout \end_inset \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize A \color none \color red graph \color none \color inherit \begin_inset Formula $G=(V,E)$ \end_inset , a \color none \color red source \color none \color inherit \begin_inset Formula $s\in V$ \end_inset and a \color none \color red target \color none \color inherit \begin_inset Formula $t\in V$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Argument item:2 status open \begin_layout Plain Layout only@-9| visible@8- \end_layout \end_inset A \color none \color red maximum distance \color inherit \begin_inset space ~ \end_inset \begin_inset Formula $d$ \end_inset . \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash phantom{p} \end_layout \end_inset \end_layout \begin_layout Itemize \begin_inset Argument item:2 status open \begin_layout Plain Layout only@10- \end_layout \end_inset An \color none \color red approximation ratio \color none \color inherit \begin_inset Formula $r>1$ \end_inset . \end_layout \end_deeper \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash nointerlineskip \end_layout \end_inset \end_layout \begin_layout Overprint \begin_inset Argument item:1 status open \begin_layout Plain Layout 1,3,5,7,9,11-12 \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Columns \begin_inset Argument 1 status open \begin_layout Plain Layout t,onlytextwidth \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset Flex Alternative status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 1-2 \end_layout \end_inset \begin_inset Argument 2 status open \begin_layout Plain Layout \begin_inset ERT status open \begin_layout Plain Layout \backslash column{ \backslash textwidth} \end_layout \end_inset \end_layout \end_inset \begin_inset ERT status open \begin_layout Plain Layout \backslash column{5cm} \end_layout \end_inset \end_layout \end_inset \end_layout \begin_layout ExampleBlock \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Example Input \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash begin{pgfpicture}{2.5cm}{-0.6cm}{7.5cm}{2.6cm} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.6pt} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash graphnode{A}{ \backslash pgfxy(3,1)} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash graphnode{B}{ \backslash pgfxy(5,1)} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash graphnode{C}{ \backslash pgfxy(4,0)} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash graphnode{D}{ \backslash pgfxy(4,2)} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash color{white} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{B}}{ \backslash pgfbox[center,center]{$t$}} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{D}}{ \backslash pgfbox[center,center]{$s$}} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfsetendarrow{ \backslash pgfarrowto} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfnodesetsepstart{2pt} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfnodesetsepend{4pt} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A}{B} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A}{C} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D}{A} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C}{B} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B}{D} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D}{C} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash only<9> { \backslash pgfputat{ \backslash pgfxy(5.3,1)}{ \backslash pgfbox[left,center]{, $d=2$}}} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash only<11>{ \backslash pgfputat{ \backslash pgfxy(5.3,1)}{ \backslash pgfbox[left,center]{, $r=1.5$}}} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash only<12>{ \backslash pgfputat{ \backslash pgfxy(5.3,1)}{ \backslash pgfbox[left,center]{, $r=1.25$}}} \end_layout \begin_layout Plain Layout \end_layout \begin_layout Plain Layout \backslash end{pgfpicture} \end_layout \end_inset \end_layout \end_deeper \begin_layout Standard \begin_inset Flex Only status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 3- \end_layout \end_inset \begin_inset ERT status open \begin_layout Plain Layout \backslash column{5cm} \end_layout \end_inset \end_layout \end_inset \end_layout \begin_layout ExampleBlock \begin_inset Argument 1 status collapsed \begin_layout Plain Layout only@3- \end_layout \end_inset \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Example Output \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash begin{pgfpicture}{2.5cm}{-0.6cm}{7.5cm}{2.6cm} \end_layout \begin_layout Plain Layout \backslash only<5-8,10->{% \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.6pt} \end_layout \begin_layout Plain Layout \backslash graphnode{A}{ \backslash pgfxy(3,1)} \end_layout \begin_layout Plain Layout \backslash graphnode{B}{ \backslash pgfxy(5,1)} \end_layout \begin_layout Plain Layout \backslash graphnode{C}{ \backslash pgfxy(4,0)} \end_layout \begin_layout Plain Layout \backslash graphnode{D}{ \backslash pgfxy(4,2)} \end_layout \begin_layout Plain Layout \backslash color{white} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{B}}{ \backslash pgfbox[center,center]{$t$}} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{D}}{ \backslash pgfbox[center,center]{$s$}} \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \backslash pgfsetendarrow{ \backslash pgfarrowto} \end_layout \begin_layout Plain Layout \backslash pgfnodesetsepstart{2pt} \end_layout \begin_layout Plain Layout \backslash pgfnodesetsepend{4pt} \end_layout \begin_layout Plain Layout \backslash alert<7,12>{ \backslash pgfnodeconnline{A}{B}} \end_layout \begin_layout Plain Layout \backslash alert<5,11>{ \backslash pgfnodeconnline{A}{C}} \end_layout \begin_layout Plain Layout \backslash alert<5,7,11-12>{ \backslash pgfnodeconnline{D}{A}} \end_layout \begin_layout Plain Layout \backslash alert<5,11>{ \backslash pgfnodeconnline{C}{B}} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B}{D} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D}{C} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<3,9>{ \backslash pgfputat{ \backslash pgfxy(2.75,1)}{ \backslash pgfbox[left,center]{ \backslash alert{``Yes''}}}} \end_layout \begin_layout Plain Layout \backslash end{pgfpicture} \end_layout \end_inset \end_layout \end_deeper \end_deeper \end_deeper \begin_layout Overprint \begin_inset Argument item:1 status open \begin_layout Plain Layout 2,4,6,8,10 \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Block \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Variants of Path Finding Problems \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Description \begin_inset Argument item:1 status open \begin_layout Plain Layout 2- \end_layout \end_inset Reachability \begin_inset space ~ \end_inset Problem: Is there a path from \begin_inset Formula $s$ \end_inset to \begin_inset space ~ \end_inset \begin_inset Formula $t$ \end_inset ? \begin_inset Argument 2 status open \begin_layout Plain Layout Approximation Problem: \end_layout \end_inset \end_layout \begin_layout Description \begin_inset Argument item:1 status open \begin_layout Plain Layout 4- \end_layout \end_inset Construction \begin_inset space ~ \end_inset Problem: Construct a path from \begin_inset Formula $s$ \end_inset to \begin_inset space ~ \end_inset \begin_inset Formula $t$ \end_inset ? \end_layout \begin_layout Description \begin_inset Argument item:1 status open \begin_layout Plain Layout 6- \end_layout \end_inset Optimization \begin_inset space ~ \end_inset Problem: Construct a shortest path from \begin_inset Formula $s$ \end_inset to \begin_inset space ~ \end_inset \begin_inset Formula $t$ \end_inset . \end_layout \begin_layout Description \begin_inset Argument item:1 status open \begin_layout Plain Layout 8- \end_layout \end_inset Distance \begin_inset space ~ \end_inset Problem: Is the distance of \begin_inset Formula $s$ \end_inset and \begin_inset space ~ \end_inset \begin_inset Formula $t$ \end_inset at most \begin_inset space ~ \end_inset \begin_inset Formula $d$ \end_inset ? \end_layout \begin_layout Description \begin_inset Argument item:1 status open \begin_layout Plain Layout 10- \end_layout \end_inset Approximation \begin_inset space ~ \end_inset Problem: Construct a path from \begin_inset Formula $s$ \end_inset to \begin_inset space ~ \end_inset \begin_inset Formula $t$ \end_inset of length \begin_inset Newline newline \end_inset approximately their distance. \end_layout \end_deeper \end_deeper \end_deeper \begin_layout Section Review \end_layout \begin_layout Subsection Standard Complexity Classes \end_layout \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash pgfdeclaremask{computer-mask}{beamer-g4-mask} \backslash pgfdeclareimage[height=2cm,mask=computer-mask,interpolate=true]{computer}{beamer -g4} \end_layout \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout The Classes L and NL are Defined via \begin_inset Newline newline \end_inset Logspace Turing Machines \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash begin{pgfpicture}{-0.5cm}{0cm}{8cm}{5cm} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfxy(0,4)}{% \end_layout \begin_layout Plain Layout \backslash tape{input tape (read only), $n$ symbols}{}{3401234*3143223=}} \end_layout \begin_layout Plain Layout \backslash uncover<2->{% \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfxy(0,0.5)}{% \end_layout \begin_layout Plain Layout \backslash tape{}{output tape (write only)}{10690836937182}} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash uncover<3->{% \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfxy(7,2)}{% \end_layout \begin_layout Plain Layout \backslash shorttape{work tape (read/write), $O( \backslash log n)$ symbols}{}{42}} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfxy(1.75,2.5)}{% \end_layout \begin_layout Plain Layout \backslash pgfbox[center,center]{ \backslash pgfuseimage{computer}}} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.6pt} \end_layout \begin_layout Plain Layout \backslash color{structure} \end_layout \begin_layout Plain Layout \backslash pgfsetendarrow{ \backslash pgfarrowto} \end_layout \begin_layout Plain Layout \backslash pgfxycurve(1.75,3.5)(1.75,3.75)(0,3.5)(0,3.85) \end_layout \begin_layout Plain Layout \backslash uncover<2->{ \backslash pgfxycurve(1.75,1.5)(1.75,1)(0,1.5)(0,1.05)} \end_layout \begin_layout Plain Layout \backslash uncover<3->{ \backslash pgfxycurve(2.65,2.5)(3.75,2.5)(7,1)(7,1.9)} \end_layout \begin_layout Plain Layout \backslash end{pgfpicture} \end_layout \end_inset \end_layout \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Logspace Turing Machines Are Quite Powerful \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Block \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Deterministic logspace machines can compute \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize addition, multiplication, and even division \end_layout \begin_layout Itemize reductions used in completeness proofs, \end_layout \begin_layout Itemize reachability in forests. \end_layout \end_deeper \begin_layout Pause \end_layout \begin_layout Block \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Non-deterministic logspace machines can compute \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize reachability in graphs, \end_layout \begin_layout Itemize non-reachability in graphs, \end_layout \begin_layout Itemize satisfiability with two literals per clause. \end_layout \end_deeper \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 1 status collapsed \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Argument 3 status collapsed \begin_layout Plain Layout label=hierarchy \end_layout \end_inset \begin_inset Argument 4 status open \begin_layout Plain Layout The Complexity Class Hierarchy \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash begin{pgfpicture}{-5.4cm}{0cm}{5.4cm}{5.5cm} \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.8pt} \end_layout \begin_layout Plain Layout \backslash heap{5.5}{3.5}{$ \backslash Class P$}{black}{1} \end_layout \begin_layout Plain Layout \backslash pgfsetdash{{2pt}}{0pt} \end_layout \begin_layout Plain Layout \backslash only<2->{ \backslash heap{4.5}{3}{$ \backslash Class{NC}^2$}{black!50!structure}{2}} \end_layout \begin_layout Plain Layout \backslash heap{3.5}{2.5}{$ \backslash Class{NL}$}{black!50!structure}{3} \end_layout \begin_layout Plain Layout \backslash heap{2.5}{2}{$ \backslash Class{L}$}{black!50!structure}{4} \end_layout \begin_layout Plain Layout \backslash only<2->{ \backslash heap{1.75}{1.5}{$ \backslash vphantom{A}% \end_layout \begin_layout Plain Layout \backslash smash{ \backslash Class{NC}^1}$}{black!50!structure}{5} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash pgfsetdash{}{0pt} \end_layout \begin_layout Plain Layout \backslash only<2->{ \backslash heap{1.1}{1}{$ \backslash vphantom{A}% \end_layout \begin_layout Plain Layout \backslash smash{ \backslash Class{AC}^0}$}{black}{6} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{1.0pt} \end_layout \begin_layout Plain Layout \backslash color{black} \end_layout \begin_layout Plain Layout \backslash pgfxyline(-5,0)(5,0) \end_layout \begin_layout Plain Layout \backslash only<1-2>{ \backslash langat{3.375}{$ \backslash Lang{reach}$}} \end_layout \begin_layout Plain Layout \backslash only<1-2>{ \backslash langat{2.375}{$ \backslash Lang{reach}_{ \backslash operatorname{forest}}$}} \end_layout \begin_layout Plain Layout \backslash only<2>{ \backslash langat{0.975}{$ \backslash Lang{addition}$}} \end_layout \begin_layout Plain Layout \backslash only<2>{ \backslash langatother{1.6}{ \backslash vbox{ \backslash hbox{$ \backslash Lang{division}$,} \backslash hbox{$ \backslash Lang{parity}$}}}} \end_layout \begin_layout Plain Layout \backslash only<3-5>{ \backslash langat{3.375}{ \backslash vbox{ \backslash hbox{$ \backslash Lang{distance}$,} \backslash hbox{$ \backslash Lang{reach}$}}}} \end_layout \begin_layout Plain Layout \backslash only<4->{ \backslash langatother{2.375}{ \backslash vbox{ \backslash ignorespaces \end_layout \begin_layout Plain Layout \backslash hbox{$ \backslash Lang{distance}_{ \backslash operatorname{forest}}$,} \backslash ignorespaces \end_layout \begin_layout Plain Layout \backslash hbox{$ \backslash Lang{reach}_{ \backslash operatorname{forest}}$,} \backslash ignorespaces \end_layout \begin_layout Plain Layout \backslash hbox{$ \backslash Lang{distance}_{ \backslash operatorname{path}}$,} \backslash ignorespaces \end_layout \begin_layout Plain Layout \backslash hbox{$ \backslash Lang{reach}_{ \backslash operatorname{path}}$}}} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<5->{ \backslash langat{0.975}{$ \backslash Lang{reach}_{ \backslash operatorname{tourn}}$}} \end_layout \begin_layout Plain Layout \backslash only<6->{ \backslash langat{3.375}{ \backslash vbox{ \backslash ignorespaces \end_layout \begin_layout Plain Layout \backslash hbox{$ \backslash Lang{distance}_{ \backslash operatorname{tourn}}$,} \backslash ignorespaces \end_layout \begin_layout Plain Layout \backslash hbox{$ \backslash Lang{distance}$,} \backslash ignorespaces \end_layout \begin_layout Plain Layout \backslash hbox{$ \backslash Lang{reach}$}}} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<7->{ \backslash pgfsetdash{{1pt}}{0pt}% \end_layout \begin_layout Plain Layout \backslash langat{2.375}{``$ \backslash Lang{approx}_{ \backslash operatorname{tourn}}$''} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash end{pgfpicture} \end_layout \end_inset \end_layout \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout The Circuit Complexity Classes AC \begin_inset Formula $^{0}$ \end_inset , NC \begin_inset Formula $^{1}$ \end_inset , and NC \begin_inset Formula $^{2}$ \end_inset \begin_inset Newline newline \end_inset Limit the Circuit Depth \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash setlength \backslash leftmargini{1em} \end_layout \begin_layout Plain Layout \backslash nointerlineskip \end_layout \end_inset \end_layout \begin_layout Columns \begin_inset Argument 1 status open \begin_layout Plain Layout t \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Column 3.6cm \end_layout \begin_layout Block \begin_inset Argument 2 status open \begin_layout Plain Layout Circuit Class \begin_inset Formula $\Class{AC}^{0}$ \end_inset \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $O(1)$ \end_inset depth \end_layout \begin_layout Itemize unbounded fan-in \end_layout \end_deeper \begin_layout Examples \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $\Lang{addition}\in\Class{AC}^{0}$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\Lang{parity}\notin\Class{AC}^{0}$ \end_inset . \end_layout \end_deeper \begin_layout Pause \end_layout \begin_layout Column 3.6cm \end_layout \begin_layout Block \begin_inset Argument 2 status open \begin_layout Plain Layout Circuit Class \begin_inset Formula $\Class{NC}^{1}$ \end_inset \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $O(\log n)$ \end_inset depth \end_layout \begin_layout Itemize bounded fan-in \end_layout \end_deeper \begin_layout Examples \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $\Lang{parity}\in\Class{NC}^{1}$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\Lang{mutiply}\in\Class{NC}^{1}$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\Lang{divide}\in\Class{NC}^{1}$ \end_inset . \end_layout \end_deeper \begin_layout Pause \end_layout \begin_layout Column 3.6cm \end_layout \begin_layout Block \begin_inset Argument 2 status open \begin_layout Plain Layout Circuit Class \begin_inset Formula $\Class{NC}^{2}$ \end_inset \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $O(\log^{2}n)$ \end_inset depth \end_layout \begin_layout Itemize bounded fan-in \end_layout \end_deeper \begin_layout Examples \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $\Class{NL}\subseteq\Class{NC}^{2}$ \end_inset . \end_layout \end_deeper \end_deeper \end_deeper \begin_layout AgainFrame \begin_inset Argument 1 status collapsed \begin_layout Plain Layout 2 \end_layout \end_inset hierarchy \end_layout \begin_layout Subsection Standard Complexity Results on Finding Paths \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout All Variants of Finding Paths in Directed Graphs \begin_inset Newline newline \end_inset Are Equally Difficult \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Fact \begin_inset Formula $\Lang{reach}$ \end_inset and \begin_inset Formula $\Lang{distance}$ \end_inset are \begin_inset Formula $\Class{NL}$ \end_inset -complete. \end_layout \begin_layout Pause \end_layout \begin_layout Corollary For directed graphs, we can solve \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize the reachability problem in logspace iff \begin_inset Formula $\Class{L}=\Class{NL}$ \end_inset . \end_layout \begin_layout Itemize the construction problem in logspace iff \begin_inset Formula $\Class{L}=\Class{NL}$ \end_inset . \end_layout \begin_layout Itemize the optimization problem in logspace iff \begin_inset Formula $\Class{L}=\Class{NL}$ \end_inset . \end_layout \begin_layout Itemize the approximation problem in logspace iff \begin_inset Formula $\Class{L}=\Class{NL}$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout AgainFrame \begin_inset Argument 1 status collapsed \begin_layout Plain Layout 3 \end_layout \end_inset hierarchy \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Finding Paths in Forests and Directed Paths is Easy, \begin_inset Newline newline \end_inset But Not Trivial \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Fact \begin_inset Formula $\Lang{reach}_{\operatorname{forest}}$ \end_inset and \begin_inset Formula $\Lang{distance}_{\operatorname{forest}}$ \end_inset are \begin_inset Formula $\Class{L}$ \end_inset -complete. \end_layout \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Fact \begin_inset Formula $\Lang{reach}_{\operatorname{path}}$ \end_inset and \begin_inset Formula $\Lang{distance}_{\operatorname{path}}$ \end_inset are \begin_inset Formula $\Class{L}$ \end_inset -complete. \end_layout \end_deeper \begin_layout AgainFrame \begin_inset Argument 1 status collapsed \begin_layout Plain Layout 4 \end_layout \end_inset hierarchy \end_layout \begin_layout Section Finding Paths in Tournaments \end_layout \begin_layout Subsection Complexity of: Does a Path Exist? \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Definition of the Tournament Reachability Problem \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Definition Let \color none \color red \begin_inset Formula $\Lang{reach}_{\operatorname{tourn}}$ \end_inset \color none \color inherit contain all triples \begin_inset Formula $(T,s,t)$ \end_inset such that \color inherit \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $T=(V,E)$ \end_inset is a tournament and \end_layout \begin_layout Enumerate there exists a path from \begin_inset space ~ \end_inset \begin_inset Formula $s$ \end_inset to \begin_inset space ~ \end_inset \begin_inset Formula $t$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout The Tournament Reachability Problem is Very Easy \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Theorem \begin_inset Formula $\Lang{reach}_{\operatorname{tourn}}\in\Class{AC}^{0}$ \end_inset . \end_layout \begin_layout Pause \end_layout \begin_layout AlertBlock \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Implications \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize The problem is \begin_inset Quotes eld \end_inset easier \begin_inset Quotes erd \end_inset than \begin_inset Formula $\Lang{reach}$ \end_inset and even \begin_inset Formula $\Lang{reach}_{\operatorname{path}}$ \end_inset . \end_layout \begin_layout Itemize \begin_inset Formula $\Lang{reach}\not\le_{\operatorname{m}}^{\Class{AC}^{0}}\Lang{reach}_{\operatorname{tourn}}$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout AgainFrame \begin_inset Argument 1 status open \begin_layout Plain Layout 5 \end_layout \end_inset hierarchy \end_layout \begin_layout Subsection Complexity of: Construct a Shortest Path \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Finding a Shortest Path Is as Difficult as \begin_inset Newline newline \end_inset the Distance Problem \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Definition Let \color none \color red \begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}$ \end_inset \color none \color inherit contain all tuples \begin_inset Formula $(T,s,t,d)$ \end_inset such that \color inherit \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Formula $T=(V,E)$ \end_inset is a tournament in which \end_layout \begin_layout Enumerate the distance of \begin_inset Formula $s$ \end_inset and \begin_inset space ~ \end_inset \begin_inset Formula $t$ \end_inset is at most \begin_inset space ~ \end_inset \begin_inset Formula $d$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout The Tournament Distance Problem is Hard \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Theorem \begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}$ \end_inset is \begin_inset Formula $\Class{NL}$ \end_inset -complete. \end_layout \begin_layout Standard \begin_inset space \hfill{} \end_inset \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash hyperlink{hierarchy<6>}{ \backslash beamerskipbutton{Skip Proof}} \end_layout \end_inset \end_layout \begin_layout Pause \end_layout \begin_layout Corollary Shortest path in tournaments can be constructed \begin_inset Newline newline \end_inset in logarithmic space, iff \begin_inset Formula $\Class{L}=\Class{NL}$ \end_inset . \end_layout \begin_layout Pause \end_layout \begin_layout Corollary \begin_inset Formula $\Lang{distance}\le_{\operatorname{m}}^{\Class{AC}^{0}}\Lang{distance}_{\operatorname{tourn}}$ \end_inset . \end_layout \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Proof That \begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}$ \end_inset is NL-complete \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash nointerlineskip \end_layout \end_inset \end_layout \begin_layout Columns \begin_inset Argument 1 status open \begin_layout Plain Layout t,onlytextwidth \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Column 5.7cm \end_layout \begin_layout Standard \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash setlength \backslash leftmargini{1.5em} \end_layout \end_inset \end_layout \begin_layout Block \begin_inset Argument 2 status open \begin_layout Plain Layout Reduce \begin_inset Formula $\Lang{reach}$ \end_inset to \begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}$ \end_inset \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:2 status open \begin_layout Plain Layout alert@1 \end_layout \end_inset Is input \begin_inset Formula $(G,s,t)$ \end_inset in \begin_inset Formula $\Lang{reach}$ \end_inset ? \end_layout \begin_layout Enumerate \begin_inset Argument item:2 status open \begin_layout Plain Layout 2-| alert@2-8 \end_layout \end_inset Map \begin_inset Formula $G$ \end_inset to \begin_inset Formula $G'$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:2 status open \begin_layout Plain Layout 9-| alert@9 \end_layout \end_inset Query: \begin_inset Newline newline \end_inset \begin_inset Formula $(G',s',t',3)\in\Lang{distance}_{\operatorname{tourn}}$ \end_inset ? \end_layout \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Block \begin_inset Argument 2 status open \begin_layout Plain Layout Correctness \end_layout \end_inset \begin_inset Argument 1 status open \begin_layout Plain Layout 10- \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Enumerate \begin_inset Argument item:2 status open \begin_layout Plain Layout 10-| alert@10-11 \end_layout \end_inset A path in \begin_inset space ~ \end_inset \begin_inset Formula $G$ \end_inset induces \begin_inset Newline newline \end_inset a length-3 path in \begin_inset space ~ \end_inset \begin_inset Formula $G'$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Argument item:2 status open \begin_layout Plain Layout 12-| alert@12-13 \end_layout \end_inset A length-3 path in \begin_inset space ~ \end_inset \begin_inset Formula $G'$ \end_inset induces \begin_inset Newline newline \end_inset a path in \begin_inset space ~ \end_inset \begin_inset Formula $G'$ \end_inset . \end_layout \end_deeper \begin_layout Column 4.5cm \end_layout \begin_layout Example \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash begin{pgfpicture}{0cm}{-1.25cm}{4.5cm}{3.75cm} \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.6pt} \end_layout \begin_layout Plain Layout \backslash graphnode{A}{ \backslash pgfxy(1,3.3)} \end_layout \begin_layout Plain Layout \backslash graphnode{B}{ \backslash pgfxy(2,3.3)} \end_layout \begin_layout Plain Layout \backslash graphnode{C}{ \backslash pgfxy(3,3.3)} \end_layout \begin_layout Plain Layout \backslash graphnode{D}{ \backslash pgfxy(4,3.3)} \end_layout \begin_layout Plain Layout \backslash color{white} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{A}}{ \backslash pgfbox[center,center]{$s$}} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{D}}{ \backslash pgfbox[center,center]{$t$}} \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \backslash pgfsetendarrow{ \backslash pgfarrowto} \end_layout \begin_layout Plain Layout \backslash pgfnodesetsepstart{2pt} \end_layout \begin_layout Plain Layout \backslash pgfnodesetsepend{2pt} \end_layout \begin_layout Plain Layout \backslash alert<3>{ \backslash pgfnodeconnline{B}{A}} \end_layout \begin_layout Plain Layout \backslash alert<4>{ \backslash pgfnodeconnline{B}{C}} \end_layout \begin_layout Plain Layout \backslash alert<5,10-11,13>{ \backslash pgfnodeconnline{C}{D}} \end_layout \begin_layout Plain Layout \backslash alert<6,10-11,13>{ \backslash pgfnodeconncurve{A}{C}{45}{135}{15pt}{15pt}} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfxy(0,3.3)}{ \backslash pgfbox[left,center]{$G \backslash colon$}} \end_layout \begin_layout Plain Layout \backslash only<2->{% \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfxy(0,2.25)}{ \backslash pgfbox[left,center]{$G' \backslash colon$}} \end_layout \begin_layout Plain Layout \backslash graphnode{A1}{ \backslash pgfxy(1,2.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{B1}{ \backslash pgfxy(2,2.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{C1}{ \backslash pgfxy(3,2.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{D1}{ \backslash pgfxy(4,2.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{A2}{ \backslash pgfxy(1,1.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{B2}{ \backslash pgfxy(2,1.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{C2}{ \backslash pgfxy(3,1.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{D2}{ \backslash pgfxy(4,1.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{A3}{ \backslash pgfxy(1,0.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{B3}{ \backslash pgfxy(2,0.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{C3}{ \backslash pgfxy(3,0.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{D3}{ \backslash pgfxy(4,0.25)} \end_layout \begin_layout Plain Layout \backslash graphnode{A4}{ \backslash pgfxy(1,-.75)} \end_layout \begin_layout Plain Layout \backslash graphnode{B4}{ \backslash pgfxy(2,-.75)} \end_layout \begin_layout Plain Layout \backslash graphnode{C4}{ \backslash pgfxy(3,-.75)} \end_layout \begin_layout Plain Layout \backslash graphnode{D4}{ \backslash pgfxy(4,-.75)} \end_layout \begin_layout Plain Layout { \backslash color{white} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{A1}}{ \backslash pgfbox[center,center]{$s'$}} \end_layout \begin_layout Plain Layout \backslash pgfputat{ \backslash pgfnodecenter{D4}}{ \backslash pgfbox[center,center]{$t'$}} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<8->{% \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.4pt} \end_layout \begin_layout Plain Layout \backslash color{beamerexample!25!averagebackgroundcolor} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A2}{C1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A2}{D1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B2}{A1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B2}{C1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B2}{D1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C2}{D1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D2}{A1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D2}{B1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A3}{C2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A3}{D2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B3}{A2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B3}{C2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B3}{D2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C3}{D2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D3}{A2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D3}{B2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A4}{C3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A4}{D3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B4}{A3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B4}{C3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B4}{D3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C4}{D3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D4}{A3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D4}{B3} \end_layout \begin_layout Plain Layout \backslash pgfsetstartarrow{ \backslash pgfarrowto} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A1}{B1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B1}{C1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C1}{D1} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A2}{B2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B2}{C2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C2}{D2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A3}{B3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B3}{C3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C3}{D3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A4}{B4} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B4}{C4} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C4}{D4} \end_layout \begin_layout Plain Layout \backslash pgfclearstartarrow \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{A3}{A1}{135}{-135}{10pt}{10pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{A4}{A2}{135}{-135}{10pt}{10pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{A4}{A1}{135}{-135}{15pt}{15pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{B3}{B1}{135}{-135}{10pt}{10pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{B4}{B2}{135}{-135}{10pt}{10pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{B4}{B1}{135}{-135}{15pt}{15pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{C3}{C1}{135}{-135}{10pt}{10pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{C4}{C2}{135}{-135}{10pt}{10pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{C4}{C1}{135}{-135}{15pt}{15pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{D3}{D1}{135}{-135}{10pt}{10pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{D4}{D2}{135}{-135}{10pt}{10pt} \end_layout \begin_layout Plain Layout \backslash pgfnodeconncurve{D4}{D1}{135}{-135}{15pt}{15pt} \end_layout \begin_layout Plain Layout \backslash color{beamerexample} \end_layout \begin_layout Plain Layout \backslash pgfsetlinewidth{0.6pt} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<3->{% \end_layout \begin_layout Plain Layout \backslash color<3>{red} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B1}{A2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B2}{A3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B3}{A4} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<4->{% \end_layout \begin_layout Plain Layout \backslash color<4>{red} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B1}{C2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B2}{C3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B3}{C4} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<5->{% \end_layout \begin_layout Plain Layout \backslash color<5>{red} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C1}{D2} \end_layout \begin_layout Plain Layout \backslash alert<11>{ \backslash pgfnodeconnline{C2}{D3}} \end_layout \begin_layout Plain Layout \backslash alert<12-13>{ \backslash pgfnodeconnline{C3}{D4}} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<6->{% \end_layout \begin_layout Plain Layout \backslash color<6>{red} \end_layout \begin_layout Plain Layout \backslash alert<11>{ \backslash pgfnodeconnline{A1}{C2}} \end_layout \begin_layout Plain Layout \backslash alert<12-13>{ \backslash pgfnodeconnline{A2}{C3}} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A3}{C4} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash only<7->{% \end_layout \begin_layout Plain Layout \backslash color<7>{red} \end_layout \begin_layout Plain Layout \backslash alert<12-13>{ \backslash pgfnodeconnline{A1}{A2}} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A2}{A3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{A3}{A4} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B1}{B2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B2}{B3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{B3}{B4} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C1}{C2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C2}{C3} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{C3}{C4} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D1}{D2} \end_layout \begin_layout Plain Layout \backslash pgfnodeconnline{D2}{D3} \end_layout \begin_layout Plain Layout \backslash alert<11>{ \backslash pgfnodeconnline{D3}{D4}} \end_layout \begin_layout Plain Layout } \end_layout \begin_layout Plain Layout \backslash end{pgfpicture} \end_layout \end_inset \end_layout \end_deeper \end_deeper \begin_layout AgainFrame \begin_inset Argument 1 status open \begin_layout Plain Layout 6 \end_layout \end_inset hierarchy \end_layout \begin_layout Subsection Complexity of: Approximating the Shortest Path \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Approximators Compute Paths that Are Nearly As Short As a Shortest Path \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Definition An \color none \color red approximation scheme for \begin_inset Formula $\Lang{tournament-shortest-path}$ \end_inset \color none \color inherit gets as input \color inherit \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Enumerate a tuple \begin_inset Formula $(T,s,t)\in\Lang{reach}_{\operatorname{tourn}}$ \end_inset and \end_layout \begin_layout Enumerate a number \begin_inset Formula $r>1$ \end_inset . \end_layout \begin_layout Standard It outputs \end_layout \begin_layout Itemize a path from \begin_inset Formula $s$ \end_inset to \begin_inset space ~ \end_inset \begin_inset Formula $t$ \end_inset of length at most \begin_inset Formula $r\operatorname{d_{T}}(s,t)$ \end_inset . \end_layout \end_deeper \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout There Exists a Logspace Approximation Scheme for \begin_inset Newline newline \end_inset the Tournament Shortest Path Problem \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Theorem There exists an approximation scheme for \begin_inset Formula $\Lang{tournament-shortest-path}$ \end_inset that for \begin_inset Formula $1<r<2$ \end_inset needs space \begin_inset Formula \[ O\left(\log|V|\log\frac{1}{r-1}\right). \] \end_inset \end_layout \begin_layout Pause \end_layout \begin_layout Corollary In tournaments, paths can be constructed in logarithmic space. \end_layout \begin_layout Standard \begin_inset space \hfill{} \end_inset \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash hyperlink{optimality}{ \backslash beamergotobutton{More Details}} \end_layout \end_inset \end_layout \end_deeper \begin_layout AgainFrame \begin_inset Argument 1 status collapsed \begin_layout Plain Layout 7 \end_layout \end_inset hierarchy \end_layout \begin_layout Standard \begin_inset Note Note status open \begin_layout Plain Layout If a frame includes a program listing, the frame needs to be marked as \begin_inset Quotes eld \end_inset fragile \begin_inset Quotes erd \end_inset . \SpecialCharNoPassThru LyX has the FragileFrame layout for this. \end_layout \end_inset \end_layout \begin_layout FragileFrame \begin_inset Argument 4 status open \begin_layout Plain Layout Just a frame with a program code listing \end_layout \end_inset \end_layout \begin_layout FragileFrame This is some program code: \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset listings lstparams "extendedchars=true,language=Python,numbers=left,stepnumber=3,tabsize=4" inline false status open \begin_layout Plain Layout def func(param): \end_layout \begin_layout Plain Layout 'this is a python function' \end_layout \begin_layout Plain Layout pass \end_layout \begin_layout Plain Layout def func(param): \end_layout \begin_layout Plain Layout 'This is a German word: Tschüs' \end_layout \begin_layout Plain Layout pass \end_layout \begin_layout Plain Layout def func(param): \end_layout \begin_layout Plain Layout 'this is a python function' \end_layout \begin_layout Plain Layout pass \end_layout \end_inset \end_layout \end_deeper \begin_layout Section* Summary \end_layout \begin_layout Subsection* Summary \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout Summary \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Block \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Summary \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize Tournament \color none \color red reachability \color none \color inherit is in \color none \color red \begin_inset Formula $\Class{AC}^{0}$ \end_inset \color inherit . \end_layout \begin_layout Itemize There exists a \color none \color red logspace approximation scheme \color none \color inherit for \color none \color red approximating \color none \color inherit shortest paths in tournaments. \end_layout \begin_layout Itemize Finding \color none \color red shortest paths \color none \color inherit in tournaments is \color none \color red \begin_inset Formula $\Class{NL}$ \end_inset -complete \color inherit . \end_layout \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Block \begin_inset Argument 2 status collapsed \begin_layout Plain Layout Outlook \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize The same results apply to graphs with \begin_inset Newline newline \end_inset bounded independence number. \begin_inset space \hfill{} \end_inset \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash hyperlink{independence}{ \backslash beamergotobutton{More Details}} \end_layout \end_inset \end_layout \begin_layout Itemize The complexity of finding paths in undirected graphs \begin_inset Newline newline \end_inset is partly open. \begin_inset space \hfill{} \end_inset \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash hyperlink{undirected}{ \backslash beamergotobutton{More Details}} \end_layout \end_inset \end_layout \end_deeper \end_deeper \begin_layout Subsection* For Further Reading \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout For Further Reading \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash beamertemplatebookbibitems \end_layout \end_inset \end_layout \begin_layout Bibliography \begin_inset CommandInset bibitem LatexCommand bibitem key "Moon1968" \end_inset \begin_inset space ~ \end_inset John Moon. \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash newblock \end_layout \end_inset \emph on Topics on Tournaments. \emph default \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash newblock \end_layout \end_inset Holt, Rinehart, and Winston, 1968. \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash beamertemplatearticlebibitems \end_layout \end_inset \end_layout \begin_layout Bibliography \begin_inset CommandInset bibitem LatexCommand bibitem key "NickelsenT2002" \end_inset \begin_inset space ~ \end_inset Arfst Nickelsen and Till Tantau. \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash newblock \end_layout \end_inset On reachability in graphs with bounded independence number. \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash newblock \end_layout \end_inset In \emph on Proc. of COCOON 2002 \emph default , Springer-Verlag, 2002. \end_layout \begin_layout Bibliography \begin_inset CommandInset bibitem LatexCommand bibitem key "Tantau2004b" \end_inset \begin_inset space ~ \end_inset Till Tantau \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash newblock \end_layout \end_inset A logspace approximation scheme for the shortest path problem for graphs with bounded independence number. \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash newblock \end_layout \end_inset In \emph on Proc. of STACS 2004 \emph default , Springer-Verlag, 2004. \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash newblock \end_layout \end_inset In press. \end_layout \end_deeper \begin_layout Standard \start_of_appendix \begin_inset ERT status open \begin_layout Plain Layout \backslash AtBeginSubsection[]{} \end_layout \end_inset \end_layout \begin_layout Section Appendix \end_layout \begin_layout Subsection Graphs With Bounded Independence Number \end_layout \begin_layout Frame \begin_inset Argument 3 status collapsed \begin_layout Plain Layout label=independence \end_layout \end_inset \begin_inset Argument 4 status open \begin_layout Plain Layout Definition of Independence Number of a Graph \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Definition The \color none \color red independence number \color none \color inherit \begin_inset Formula $\alpha(G)$ \end_inset of a directed graph \begin_inset Newline newline \end_inset is the maximum number of vertices we can pick, \begin_inset Newline newline \end_inset such that there is no edge between them. \end_layout \begin_layout Example Tournaments have independence number 1. \end_layout \end_deeper \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Frame \begin_inset Argument 4 status open \begin_layout Plain Layout The Results for Tournaments also Apply to \begin_inset Newline newline \end_inset Graphs With Bounded Independence Number \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Theorem For each \begin_inset space ~ \end_inset \begin_inset Formula $k$ \end_inset , \color none \color red reachability \color none \color inherit in graphs with independence number \begin_inset Newline newline \end_inset at most \begin_inset space ~ \end_inset \begin_inset Formula $k$ \end_inset is in \begin_inset Formula $\Class{AC}^{0}$ \end_inset . \end_layout \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Theorem For each \begin_inset space ~ \end_inset \begin_inset Formula $k$ \end_inset , there exists a \color none \color red logspace approximation scheme \color none \color inherit for approximating the shortest path in graphs with independence number at most \begin_inset space ~ \end_inset \begin_inset Formula $k$ \end_inset \end_layout \begin_layout Standard \begin_inset Separator parbreak \end_inset \end_layout \begin_layout Theorem For each \begin_inset space ~ \end_inset \begin_inset Formula $k$ \end_inset , finding the \color none \color red shortest path \color none \color inherit in graphs with independence number at most \begin_inset space ~ \end_inset \begin_inset Formula $k$ \end_inset is \color none \color red \begin_inset Formula $\Class{NL}$ \end_inset -complete \color inherit . \end_layout \end_deeper \begin_layout Subsection Finding Paths in Undirected Graphs \end_layout \begin_layout Frame \begin_inset Argument 1 status collapsed \begin_layout Plain Layout 1-2 \end_layout \end_inset \begin_inset Argument 3 status collapsed \begin_layout Plain Layout label=undirected \end_layout \end_inset \begin_inset Argument 4 status open \begin_layout Plain Layout The Complexity of Finding Paths in Undirected Graphs \begin_inset Newline newline \end_inset Is Party Unknown. \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Fact \begin_inset Formula $\Lang{reach}_{\operatorname{undirected}}$ \end_inset is \begin_inset Formula $\Class{SL}$ \end_inset -complete. \end_layout \begin_layout Corollary For undirected graphs, we can solve \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Itemize the reachability problem in logspace iff \begin_inset Formula $\Class L=\Class{SL}$ \end_inset , \end_layout \begin_layout Itemize the construction problem in logspace iff \begin_inset Flex Alternative status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Argument 2 status open \begin_layout Plain Layout ? \end_layout \end_inset \begin_inset Flex Alert status open \begin_layout Plain Layout \begin_inset Formula $\Class L=\Class{SL}$ \end_inset \end_layout \end_inset \end_layout \end_inset , \end_layout \begin_layout Itemize the optimization problem in logspace iff \begin_inset Flex Alternative status open \begin_layout Plain Layout \begin_inset Argument 1 status open \begin_layout Plain Layout 1 \end_layout \end_inset \begin_inset Argument 2 status open \begin_layout Plain Layout ? \end_layout \end_inset \begin_inset Flex Alert status open \begin_layout Plain Layout \begin_inset Formula $\Class L=\Class{NL}$ \end_inset \end_layout \end_inset \end_layout \end_inset , \end_layout \begin_layout Itemize the approximation problem in logspace iff ?. \end_layout \end_deeper \end_deeper \begin_layout Subsection The Approximation Scheme is Optimal \end_layout \begin_layout Frame \begin_inset Argument 3 status collapsed \begin_layout Plain Layout label=optimality \end_layout \end_inset \begin_inset Argument 4 status open \begin_layout Plain Layout The Approximation Scheme is Optimal \end_layout \end_inset \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Theorem Suppose there exists an approximation scheme for \begin_inset Formula $\Lang{tournament-shortest-path}$ \end_inset that needs space \begin_inset Formula $O\bigl(\log|V|\log^{1-\epsilon}\frac{1}{r-1}\bigr)$ \end_inset . Then \begin_inset Formula $\Class{NL}\subseteq\Class{DSPACE}\bigl[\log^{2-\epsilon}n\bigr]$ \end_inset . \end_layout \begin_layout Proof \begin_inset Separator parbreak \end_inset \end_layout \begin_deeper \begin_layout Enumerate Suppose the approximation scheme exists. \begin_inset Newline newline \end_inset We show \begin_inset Formula $\Lang{distance}_{\operatorname{tourn}}\in\Class{DSPACE}\bigl[\log^{2-\epsilon}n\bigr]$ \end_inset . \end_layout \begin_layout Enumerate Let \begin_inset Formula $(T,s,t)$ \end_inset be an input. Let \begin_inset Formula $n$ \end_inset be the number of vertices. \end_layout \begin_layout Enumerate Run the approximation scheme for \begin_inset Formula $r:=1+\smash{\frac{1}{n+1}}$ \end_inset . \begin_inset Newline newline \end_inset This needs space \begin_inset Formula $\smash{O(\log^{2-\epsilon}n)}$ \end_inset . \end_layout \begin_layout Enumerate The resulting path has optimal length. \begin_inset ERT status collapsed \begin_layout Plain Layout \backslash qedhere \end_layout \end_inset \end_layout \end_deeper \end_deeper \end_body \end_document