/** * \file InsetMathGrid.cpp * This file is part of LyX, the document processor. * Licence details can be found in the file COPYING. * * \author André Pönitz * * Full author contact details are available in file CREDITS. */ #include #include #include "InsetMathGrid.h" #include "InsetMathUnknown.h" #include "MathData.h" #include "MathParser.h" #include "MathStream.h" #include "MetricsInfo.h" #include "Buffer.h" #include "BufferParams.h" #include "BufferView.h" #include "CoordCache.h" #include "Cursor.h" #include "CutAndPaste.h" #include "FuncRequest.h" #include "FuncStatus.h" #include "LaTeXFeatures.h" #include "TexRow.h" #include "frontends/Clipboard.h" #include "frontends/Painter.h" #include "support/debug.h" #include "support/docstream.h" #include "support/gettext.h" #include "support/lstrings.h" #include "support/lassert.h" #include using namespace std; using namespace lyx::support; namespace lyx { static docstring verboseHLine(int n) { docstring res; for (int i = 0; i < n; ++i) res += "\\hline"; if (n) res += ' '; return res; } static int extractInt(istream & is) { int num = 1; is >> num; return (num == 0) ? 1 : num; } static void resetGrid(InsetMathGrid & grid) { while (grid.ncols() > 1) grid.delCol(grid.ncols() - 1); while (grid.nrows() > 1) grid.delRow(grid.nrows() - 1); grid.cell(0).erase(0, grid.cell(0).size()); grid.setDefaults(); } ////////////////////////////////////////////////////////////// InsetMathGrid::CellInfo::CellInfo() : multi(CELL_NORMAL) {} ////////////////////////////////////////////////////////////// InsetMathGrid::RowInfo::RowInfo() : descent(0), ascent(0), lines(0), skip(0), allow_newpage(true) {} int InsetMathGrid::RowInfo::skipPixels(MetricsInfo const & mi) const { return mi.base.inPixels(crskip); } ////////////////////////////////////////////////////////////// InsetMathGrid::ColInfo::ColInfo() : align('c'), width(0), offset(0), lines(0), skip(0) {} ////////////////////////////////////////////////////////////// InsetMathGrid::InsetMathGrid(Buffer * buf) : InsetMathNest(buf, 1), rowinfo_(1 + 1), colinfo_(1 + 1), cellinfo_(1), v_align_('c') { setDefaults(); } InsetMathGrid::InsetMathGrid(Buffer * buf, col_type m, row_type n) : InsetMathNest(buf, m * n), rowinfo_(n + 1), colinfo_(m + 1), cellinfo_(m * n), v_align_('c') { setDefaults(); } InsetMathGrid::InsetMathGrid(Buffer * buf, col_type m, row_type n, char v, docstring const & h) : InsetMathNest(buf, m * n), rowinfo_(n + 1), colinfo_(m + 1), cellinfo_(m * n), v_align_(v) { setDefaults(); setVerticalAlignment(v); setHorizontalAlignments(h); } Inset * InsetMathGrid::clone() const { return new InsetMathGrid(*this); } InsetMath::idx_type InsetMathGrid::index(row_type row, col_type col) const { return col + ncols() * row; } void InsetMathGrid::setDefaults() { if (ncols() <= 0) lyxerr << "positive number of columns expected" << endl; //if (nrows() <= 0) // lyxerr << "positive number of rows expected" << endl; for (col_type col = 0; col < ncols(); ++col) { colinfo_[col].align = defaultColAlign(col); colinfo_[col].skip = defaultColSpace(col); colinfo_[col].special.clear(); } for (idx_type idx = 0; idx < nargs(); ++idx) cellinfo_[idx].multi = CELL_NORMAL; } bool InsetMathGrid::interpretString(Cursor & cur, docstring const & str) { if (str == "\\hline") { FuncRequest fr = FuncRequest(LFUN_TABULAR_FEATURE, "add-hline-above"); FuncStatus status; if (getStatus(cur, fr, status)) { if (status.enabled()) { rowinfo_[cur.row()].lines++; return true; } } } return InsetMathNest::interpretString(cur, str); } void InsetMathGrid::setHorizontalAlignments(docstring const & hh) { col_type col = 0; for (docstring::const_iterator it = hh.begin(); it != hh.end(); ++it) { char_type c = *it; if (c == '|') { colinfo_[col].lines++; } else if ((c == 'p' || c == 'm' || c == 'b'|| c == '!' || c == '@' || c == '>' || c == '<') && it + 1 != hh.end() && *(it + 1) == '{') { // @{decl.} and p{width} are standard LaTeX, the // others are extensions by array.sty bool const newcolumn = c == 'p' || c == 'm' || c == 'b'; if (newcolumn) { // this declares a new column if (col >= ncols()) // Only intercolumn stuff is allowed // in the last dummy column break; colinfo_[col].align = 'l'; } else { // this is intercolumn stuff if (colinfo_[col].special.empty()) // Overtake possible lines colinfo_[col].special = docstring(colinfo_[col].lines, '|'); } int brace_open = 0; int brace_close = 0; while (it != hh.end()) { c = *it; colinfo_[col].special += c; if (c == '{') ++brace_open; else if (c == '}') ++brace_close; ++it; if (brace_open > 0 && brace_open == brace_close) break; } --it; if (newcolumn) { colinfo_[col].lines = count( colinfo_[col].special.begin(), colinfo_[col].special.end(), '|'); LYXERR(Debug::MATHED, "special column separator: `" << to_utf8(colinfo_[col].special) << '\''); ++col; colinfo_[col].lines = 0; colinfo_[col].special.clear(); } } else if (col >= ncols()) { // Only intercolumn stuff is allowed in the last // dummy column break; } else if (c == 'c' || c == 'l' || c == 'r') { colinfo_[col].align = static_cast(c); if (!colinfo_[col].special.empty()) { colinfo_[col].special += c; colinfo_[col].lines = count( colinfo_[col].special.begin(), colinfo_[col].special.end(), '|'); LYXERR(Debug::MATHED, "special column separator: `" << to_utf8(colinfo_[col].special) << '\''); } ++col; colinfo_[col].lines = 0; colinfo_[col].special.clear(); } else { lyxerr << "unknown column separator: '" << c << "'" << endl; } } /* col_type n = hh.size(); if (n > ncols()) n = ncols(); for (col_type col = 0; col < n; ++col) colinfo_[col].align = hh[col]; */ } InsetMathGrid::col_type InsetMathGrid::guessColumns(docstring const & hh) { col_type col = 0; for (docstring::const_iterator it = hh.begin(); it != hh.end(); ++it) if (*it == 'c' || *it == 'l' || *it == 'r'|| *it == 'p' || *it == 'm' || *it == 'b') ++col; // let's have at least one column, even if we did not recognize its // alignment if (col == 0) col = 1; return col; } void InsetMathGrid::setHorizontalAlignment(char h, col_type col) { colinfo_[col].align = h; if (!colinfo_[col].special.empty()) { char_type & c = colinfo_[col].special[colinfo_[col].special.size() - 1]; if (c == 'l' || c == 'c' || c == 'r') c = h; } // FIXME: Change alignment of p, m and b columns, too } char InsetMathGrid::horizontalAlignment(col_type col) const { return colinfo_[col].align; } docstring InsetMathGrid::horizontalAlignments() const { docstring res; for (col_type col = 0; col < ncols(); ++col) { if (colinfo_[col].special.empty()) { res += docstring(colinfo_[col].lines, '|'); res += colinfo_[col].align; } else res += colinfo_[col].special; } if (colinfo_[ncols()].special.empty()) return res + docstring(colinfo_[ncols()].lines, '|'); return res + colinfo_[ncols()].special; } void InsetMathGrid::setVerticalAlignment(char c) { v_align_ = c; } char InsetMathGrid::verticalAlignment() const { return v_align_; } InsetMathGrid::col_type InsetMathGrid::ncols() const { return colinfo_.size() - 1; } InsetMathGrid::row_type InsetMathGrid::nrows() const { return rowinfo_.size() - 1; } InsetMathGrid::col_type InsetMathGrid::col(idx_type idx) const { return idx % ncols(); } InsetMathGrid::row_type InsetMathGrid::row(idx_type idx) const { return idx / ncols(); } InsetMathGrid::col_type InsetMathGrid::ncellcols(idx_type idx) const { col_type cols = 1; if (cellinfo_[idx].multi == CELL_NORMAL) return cols; // If the cell at idx is already CELL_PART_OF_MULTICOLUMN we return // the number of remaining columns, not the ones of the complete // multicolumn cell. This makes it possible to always go to the next // cell with idx + ncellcols(idx) - 1. row_type const r = row(idx); while (idx+cols < nargs() && row(idx+cols) == r && cellinfo_[idx+cols].multi == CELL_PART_OF_MULTICOLUMN) cols++; return cols; } void InsetMathGrid::vcrskip(Length const & crskip, row_type row) { rowinfo_[row].crskip = crskip; } Length InsetMathGrid::vcrskip(row_type row) const { return rowinfo_[row].crskip; } void InsetMathGrid::metrics(MetricsInfo & mi, Dimension & dim) const { // let the cells adjust themselves for (idx_type i = 0; i < nargs(); ++i) { if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) { Dimension dimc; // the 'false' is to make sure that the cell is tall enough cell(i).metrics(mi, dimc, false); } } BufferView & bv = *mi.base.bv; // compute absolute sizes of vertical structure for (row_type row = 0; row < nrows(); ++row) { int asc = 0; int desc = 0; for (col_type col = 0; col < ncols(); ++col) { idx_type const i = index(row, col); if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) { Dimension const & dimc = cell(i).dimension(bv); asc = max(asc, dimc.asc); desc = max(desc, dimc.des); } } rowinfo_[row].ascent = asc; rowinfo_[row].descent = desc; } rowinfo_[nrows()].ascent = 0; rowinfo_[nrows()].descent = 0; // compute vertical offsets rowinfo_[0].offset[&bv] = 0; for (row_type row = 1; row <= nrows(); ++row) { rowinfo_[row].offset[&bv] = rowinfo_[row - 1].offset[&bv] + rowinfo_[row - 1].descent + rowinfo_[row - 1].skipPixels(mi) + rowsep() + rowinfo_[row].lines * hlinesep() + rowinfo_[row].ascent; } // adjust vertical offset int h = 0; switch (v_align_) { case 't': h = 0; break; case 'b': h = rowinfo_[nrows() - 1].offset[&bv]; break; default: h = rowinfo_[nrows() - 1].offset[&bv] / 2; } for (row_type row = 0; row <= nrows(); ++row) rowinfo_[row].offset[&bv] -= h; // multicolumn cell widths, as a map from first column to width in a // vector of last columns. // This is only used if the grid has more than one row, since for // one-row grids multicolumn cells do not need special handling vector > mcolwidths(ncols()); // compute absolute sizes of horizontal structure for (col_type col = 0; col < ncols(); ++col) { int wid = 0; for (row_type row = 0; row < nrows(); ++row) { idx_type const i = index(row, col); if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) { int const w = cell(i).dimension(bv).wid; col_type const cols = ncellcols(i); if (cols > 1 && nrows() > 1) { col_type last = col+cols-1; LASSERT(last < ncols(), last = ncols()-1); map::iterator it = mcolwidths[last].find(col); if (it == mcolwidths[last].end()) mcolwidths[last][col] = w; else it->second = max(it->second, w); } else wid = max(wid, w); } } colinfo_[col].width = wid; } colinfo_[ncols()].width = 0; // compute horizontal offsets colinfo_[0].offset = border() + colinfo_[0].lines * vlinesep();; for (col_type col = 1; col <= ncols(); ++col) { colinfo_[col].offset = colinfo_[col - 1].offset + colinfo_[col - 1].width + displayColSpace(col - 1) + colsep() + colinfo_[col].lines * vlinesep(); } // increase column widths for multicolumn cells if needed // FIXME: multicolumn lines are not yet considered for (col_type last = 0; last < ncols(); ++last) { map const & widths = mcolwidths[last]; // We increase the width of the last column of the multicol // cell (some sort of left alignment). Since we iterate through // the last and the first columns from left to right, we ensure // that increased widths of previous columns are correctly // taken into account for later columns, thus preventing // unneeded width increasing. for (map::const_iterator it = widths.begin(); it != widths.end(); ++it) { int const wid = it->second; col_type const first = it->first; int const nextoffset = colinfo_[first].offset + wid + displayColSpace(last) + colsep() + colinfo_[last+1].lines * vlinesep(); int const dx = nextoffset - colinfo_[last+1].offset; if (dx > 0) { colinfo_[last].width += dx; for (col_type col = last + 1; col <= ncols(); ++col) colinfo_[col].offset += dx; } } } dim.wid = colinfo_[ncols() - 1].offset + colinfo_[ncols() - 1].width + vlinesep() * colinfo_[ncols()].lines + border(); dim.asc = - rowinfo_[0].offset[&bv] + rowinfo_[0].ascent + hlinesep() * rowinfo_[0].lines + border(); dim.des = rowinfo_[nrows() - 1].offset[&bv] + rowinfo_[nrows() - 1].descent + hlinesep() * rowinfo_[nrows()].lines + border() + 1; /* // Increase ws_[i] for 'R' columns (except the first one) for (int i = 1; i < nc_; ++i) if (align[i] == 'R') ws_[i] += 10 * df_width; // Increase ws_[i] for 'C' column if (align[0] == 'C') if (ws_[0] < 7 * workwidth / 8) ws_[0] = 7 * workwidth / 8; // Adjust local tabs width = colsep(); for (cxrow = row_.begin(); cxrow; ++cxrow) { int rg = COLSEP; int lf = 0; for (int i = 0; i < nc_; ++i) { bool isvoid = false; if (cxrow->getTab(i) <= 0) { cxrow->setTab(i, df_width); isvoid = true; } switch (align[i]) { case 'l': lf = 0; break; case 'c': lf = (ws_[i] - cxrow->getTab(i))/2; break; case 'r': case 'R': lf = ws_[i] - cxrow->getTab(i); break; case 'C': if (cxrow == row_.begin()) lf = 0; else if (cxrow.is_last()) lf = ws_[i] - cxrow->getTab(i); else lf = (ws_[i] - cxrow->getTab(i))/2; break; } int const ww = (isvoid) ? lf : lf + cxrow->getTab(i); cxrow->setTab(i, lf + rg); rg = ws_[i] - ww + colsep(); if (cxrow == row_.begin()) width += ws_[i] + colsep(); } cxrow->setBaseline(cxrow->getBaseline() - ascent); } */ dim.wid += leftMargin() + rightMargin(); } int InsetMathGrid::vLineHOffset(col_type col, unsigned int line) const { if (col < ncols()) return leftMargin() + colinfo_[col].offset - (colinfo_[col].lines - line - 1) * vlinesep() - vlinesep()/2 - colsep()/2; else { LASSERT(col == ncols(), return 0); return leftMargin() + colinfo_[col-1].offset + colinfo_[col-1].width + line * vlinesep() + vlinesep()/2 + colsep()/2; } } int InsetMathGrid::hLineVOffset(BufferView const & bv, row_type row, unsigned int line) const { return rowinfo_[row].offset[&bv] - rowinfo_[row].ascent - line * hlinesep() - hlinesep()/2 - rowsep()/2; } void InsetMathGrid::draw(PainterInfo & pi, int x, int y) const { BufferView const & bv = *pi.base.bv; for (idx_type idx = 0; idx < nargs(); ++idx) { if (cellinfo_[idx].multi != CELL_PART_OF_MULTICOLUMN) { cell(idx).draw(pi, x + leftMargin() + cellXOffset(bv, idx), y + cellYOffset(bv, idx)); row_type r = row(idx); int const yy1 = y + hLineVOffset(bv, r, 0); int const yy2 = y + hLineVOffset(bv, r + 1, rowinfo_[r + 1].lines - 1); auto draw_left_borders = [&](col_type c) { for (unsigned int i = 0; i < colinfo_[c].lines; ++i) { int const xx = x + vLineHOffset(c, i); pi.pain.line(xx, yy1, xx, yy2, Color_foreground); } }; col_type c = col(idx); // Draw inner left borders cell-by-cell because of multicolumns draw_left_borders(c); // Draw the right border (only once) if (c == 0) draw_left_borders(ncols()); } } // Draw horizontal borders for (row_type r = 0; r <= nrows(); ++r) { int const xx1 = x + vLineHOffset(0, 0); int const xx2 = x + vLineHOffset(ncols(), colinfo_[ncols()].lines - 1); for (unsigned int i = 0; i < rowinfo_[r].lines; ++i) { int const yy = y + hLineVOffset(bv, r, i); pi.pain.line(xx1, yy, xx2, yy, Color_foreground); } } } void InsetMathGrid::metricsT(TextMetricsInfo const & /*mi*/, Dimension & /*dim*/) const { // FIXME: this does not compile anymore with offset being a map // It is not worth fixing it at this point since the code is basically dead. #if 0 // let the cells adjust themselves for (idx_type i = 0; i < nargs(); ++i) if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) cell(i).metricsT(mi, dim); // compute absolute sizes of vertical structure for (row_type row = 0; row < nrows(); ++row) { int asc = 0; int desc = 0; for (col_type col = 0; col < ncols(); ++col) { idx_type const i = index(row, col); if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) { //MathData const & c = cell(i); // FIXME: BROKEN! Dimension dimc; asc = max(asc, dimc.ascent()); desc = max(desc, dimc.descent()); } } rowinfo_[row].ascent = asc; rowinfo_[row].descent = desc; } rowinfo_[nrows()].ascent = 0; rowinfo_[nrows()].descent = 0; // compute vertical offsets rowinfo_[0].offset[&bv] = 0; for (row_type row = 1; row <= nrows(); ++row) { rowinfo_[row].offset[&bv] = rowinfo_[row - 1].offset + rowinfo_[row - 1].descent + //rowinfo_[row - 1].skipPixels(mi) + 1 + //rowsep() + //rowinfo_[row].lines * hlinesep() + rowinfo_[row].ascent; } // adjust vertical offset int h = 0; switch (v_align_) { case 't': h = 0; break; case 'b': h = rowinfo_[nrows() - 1].offset; break; default: h = rowinfo_[nrows() - 1].offset / 2; } for (row_type row = 0; row <= nrows(); ++row) rowinfo_[row].offset -= h; // compute absolute sizes of horizontal structure for (col_type col = 0; col < ncols(); ++col) { int wid = 0; for (row_type row = 0; row < nrows(); ++row) { // FIXME: BROKEN! //idx_type const i = index(row, col); //if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) // wid = max(wid, cell(i).width()); } colinfo_[col].width = wid; } colinfo_[ncols()].width = 0; // compute horizontal offsets colinfo_[0].offset = border(); for (col_type col = 1; col <= ncols(); ++col) { colinfo_[col].offset = colinfo_[col - 1].offset + colinfo_[col - 1].width + displayColSpace(col - 1) + 1 ; //colsep() + //colinfo_[col].lines * vlinesep(); } dim.wid = colinfo_[ncols() - 1].offset + colinfo_[ncols() - 1].width //+ vlinesep() * colinfo_[ncols()].lines + 2; dim.asc = -rowinfo_[0].offset + rowinfo_[0].ascent //+ hlinesep() * rowinfo_[0].lines + 1; dim.des = rowinfo_[nrows() - 1].offset + rowinfo_[nrows() - 1].descent //+ hlinesep() * rowinfo_[nrows()].lines + 1; #endif } void InsetMathGrid::drawT(TextPainter & /*pain*/, int /*x*/, int /*y*/) const { // for (idx_type idx = 0; idx < nargs(); ++idx) // if (cellinfo_[idx].multi != CELL_PART_OF_MULTICOLUMN) // cell(idx).drawT(pain, x + cellXOffset(idx), y + cellYOffset(idx)); } void InsetMathGrid::updateBuffer(ParIterator const & it, UpdateType utype, bool const deleted) { // pass down for (idx_type idx = 0; idx < nargs(); ++idx) if (cellinfo_[idx].multi != CELL_PART_OF_MULTICOLUMN) cell(idx).updateBuffer(it, utype, deleted); } docstring InsetMathGrid::eolString(row_type row, bool fragile, bool /*latex*/, bool last_eoln) const { docstring eol; if (!rowinfo_[row].crskip.zero()) eol += '[' + from_utf8(rowinfo_[row].crskip.asLatexString()) + ']'; else if(!rowinfo_[row].allow_newpage) eol += '*'; // make sure an upcoming '[' does not break anything if (row + 1 < nrows()) { MathData const & c = cell(index(row + 1, 0)); if (!c.empty() && c.front()->getChar() == '[') //eol += "[0pt]"; eol += "{}"; } // only add \\ if necessary if (eol.empty() && row + 1 == nrows() && (nrows() == 1 || !last_eoln)) return docstring(); return (fragile ? "\\protect\\\\" : "\\\\") + eol; } docstring InsetMathGrid::eocString(col_type col, col_type lastcol) const { if (col + 1 == lastcol) return docstring(); return from_ascii(" & "); } void InsetMathGrid::addRow(row_type row) { rowinfo_.insert(rowinfo_.begin() + row + 1, RowInfo()); cells_.insert (cells_.begin() + (row + 1) * ncols(), ncols(), MathData(buffer_)); cellinfo_.insert (cellinfo_.begin() + (row + 1) * ncols(), ncols(), CellInfo()); } void InsetMathGrid::delRow(row_type row) { if (nrows() == 1) return; cells_type::iterator it = cells_.begin() + row * ncols(); cells_.erase(it, it + ncols()); vector::iterator jt = cellinfo_.begin() + row * ncols(); cellinfo_.erase(jt, jt + ncols()); rowinfo_.erase(rowinfo_.begin() + row); } void InsetMathGrid::copyRow(row_type row) { addRow(row); for (col_type col = 0; col < ncols(); ++col) { cells_[(row + 1) * ncols() + col] = cells_[row * ncols() + col]; // copying the cell does not set the buffer cells_[(row + 1) * ncols() + col].setBuffer(*buffer_); } } void InsetMathGrid::swapRow(row_type row) { if (nrows() == 1) return; if (row + 1 == nrows()) --row; for (col_type col = 0; col < ncols(); ++col) swap(cells_[row * ncols() + col], cells_[(row + 1) * ncols() + col]); } void InsetMathGrid::addCol(col_type newcol) { const col_type nc = ncols(); const row_type nr = nrows(); cells_type new_cells((nc + 1) * nr); vector new_cellinfo((nc + 1) * nr); for (row_type row = 0; row < nr; ++row) for (col_type col = 0; col < nc; ++col) { new_cells[row * (nc + 1) + col + (col >= newcol)] = cells_[row * nc + col]; new_cellinfo[row * (nc + 1) + col + (col >= newcol)] = cellinfo_[row * nc + col]; } swap(cells_, new_cells); // copying cells loses the buffer reference setBuffer(*buffer_); swap(cellinfo_, new_cellinfo); ColInfo inf; inf.skip = defaultColSpace(newcol); inf.align = defaultColAlign(newcol); colinfo_.insert(colinfo_.begin() + newcol, inf); } void InsetMathGrid::delCol(col_type col) { if (ncols() == 1) return; cells_type tmpcells; vector tmpcellinfo; for (col_type i = 0; i < nargs(); ++i) if (i % ncols() != col) { tmpcells.push_back(cells_[i]); tmpcellinfo.push_back(cellinfo_[i]); } swap(cells_, tmpcells); // copying cells loses the buffer reference setBuffer(*buffer_); swap(cellinfo_, tmpcellinfo); colinfo_.erase(colinfo_.begin() + col); } void InsetMathGrid::copyCol(col_type col) { addCol(col+1); for (row_type row = 0; row < nrows(); ++row) { cells_[row * ncols() + col + 1] = cells_[row * ncols() + col]; // copying the cell does not set the buffer cells_[row * ncols() + col + 1].setBuffer(*buffer_); } } void InsetMathGrid::swapCol(col_type col) { if (ncols() == 1) return; if (col + 1 == ncols()) --col; for (row_type row = 0; row < nrows(); ++row) swap(cells_[row * ncols() + col], cells_[row * ncols() + col + 1]); } int InsetMathGrid::cellXOffset(BufferView const & bv, idx_type idx) const { if (cellinfo_[idx].multi == CELL_PART_OF_MULTICOLUMN) return 0; col_type c = col(idx); int x = colinfo_[c].offset; char align = displayColAlign(idx); Dimension const & celldim = cell(idx).dimension(bv); if (align == 'r' || align == 'R') x += cellWidth(idx) - celldim.wid; if (align == 'c' || align == 'C') x += (cellWidth(idx) - celldim.wid) / 2; return x; } int InsetMathGrid::cellYOffset(BufferView const & bv, idx_type idx) const { return rowinfo_[row(idx)].offset[&bv]; } int InsetMathGrid::cellWidth(idx_type idx) const { switch (cellinfo_[idx].multi) { case CELL_NORMAL: return colinfo_[col(idx)].width; case CELL_BEGIN_OF_MULTICOLUMN: { col_type c1 = col(idx); col_type c2 = c1 + ncellcols(idx); return colinfo_[c2].offset - colinfo_[c1].offset - displayColSpace(c2) - colsep() - colinfo_[c2].lines * vlinesep(); } case CELL_PART_OF_MULTICOLUMN: return 0; } return 0; } bool InsetMathGrid::idxUpDown(Cursor & cur, bool up) const { if (up) { if (cur.row() == 0) return false; cur.idx() -= ncols(); } else { if (cur.row() + 1 >= nrows()) return false; cur.idx() += ncols(); } // If we are in a multicolumn cell, move to the "real" cell while (cellinfo_[cur.idx()].multi == CELL_PART_OF_MULTICOLUMN) { LASSERT(cur.idx() > 0, return false); --cur.idx(); } // FIXME: this is only a workaround to avoid a crash if the inset // in not in coord cache. The best would be to force a FitCursor // operation. CoordCache::Arrays const & arraysCache = cur.bv().coordCache().arrays(); if (arraysCache.has(&cur.cell())) cur.pos() = cur.cell().x2pos(&cur.bv(), cur.x_target() - cur.cell().xo(cur.bv())); else cur.pos() = 0; return true; } bool InsetMathGrid::idxBackward(Cursor & cur) const { // leave matrix if at the front edge if (cur.col() == 0) return false; --cur.idx(); // If we are in a multicolumn cell, move to the "real" cell while (cellinfo_[cur.idx()].multi == CELL_PART_OF_MULTICOLUMN) { LASSERT(cur.idx() > 0, return false); --cur.idx(); } cur.pos() = cur.lastpos(); return true; } bool InsetMathGrid::idxForward(Cursor & cur) const { // leave matrix if at the back edge if (cur.col() + 1 == ncols()) return false; ++cur.idx(); // If we are in a multicolumn cell, move to the next cell while (cellinfo_[cur.idx()].multi == CELL_PART_OF_MULTICOLUMN) { // leave matrix if at the back edge if (cur.col() + 1 == ncols()) return false; ++cur.idx(); } cur.pos() = 0; return true; } idx_type InsetMathGrid::firstIdx() const { size_type idx = 0; switch (v_align_) { case 't': //idx = 0; break; case 'b': idx = (nrows() - 1) * ncols(); break; default: idx = ((nrows() - 1) / 2) * ncols(); } // If we are in a multicolumn cell, move to the "real" cell while (cellinfo_[idx].multi == CELL_PART_OF_MULTICOLUMN) { LASSERT(idx > 0, return 0); --idx; } return idx; } idx_type InsetMathGrid::lastIdx() const { size_type idx = 0; switch (v_align_) { case 't': idx = ncols() - 1; break; case 'b': idx = nargs() - 1; break; default: idx = ((nrows() - 1) / 2 + 1) * ncols() - 1; } // If we are in a multicolumn cell, move to the "real" cell while (cellinfo_[idx].multi == CELL_PART_OF_MULTICOLUMN) { LASSERT(idx > 0, return false); --idx; } return idx; } bool InsetMathGrid::idxDelete(idx_type & idx) { // nothing to do if we have just one row if (nrows() == 1) return false; // nothing to do if we are in the middle of the last row of the inset if (idx + ncols() > nargs()) return false; // try to delete entire sequence of ncols() empty cells if possible for (idx_type i = idx; i < idx + ncols(); ++i) if (!cell(i).empty()) return false; // move cells if necessary for (idx_type i = index(row(idx), 0); i < idx; ++i) swap(cell(i), cell(i + ncols())); delRow(row(idx)); if (idx >= nargs()) idx = nargs() - 1; // undo effect of Ctrl-Tab (i.e. pull next cell) //if (idx + 1 != nargs()) // cell(idx).swap(cell(idx + 1)); // we handled the event.. return true; } // reimplement old behaviour when pressing Delete in the last position // of a cell void InsetMathGrid::idxGlue(idx_type idx) { col_type c = col(idx); if (c + 1 == ncols()) { if (row(idx) + 1 != nrows()) { for (col_type cc = 0; cc < ncols(); ++cc) cell(idx).append(cell(idx + cc + 1)); delRow(row(idx) + 1); } } else { idx_type idx_next = idx + 1; while (idx_next < nargs() && cellinfo_[idx_next].multi == CELL_PART_OF_MULTICOLUMN) ++idx_next; if (idx_next < nargs()) cell(idx).append(cell(idx_next)); col_type oldcol = c + 1; for (col_type cc = c + 2; cc < ncols(); ++cc) cell(idx - oldcol + cc) = cell(idx - oldcol + 1 + cc); cell(idx - c + ncols() - 1).clear(); } } InsetMathGrid::RowInfo const & InsetMathGrid::rowinfo(row_type row) const { return rowinfo_[row]; } InsetMathGrid::RowInfo & InsetMathGrid::rowinfo(row_type row) { return rowinfo_[row]; } bool InsetMathGrid::idxBetween(idx_type idx, idx_type from, idx_type to) const { row_type const ri = row(idx); row_type const r1 = min(row(from), row(to)); row_type const r2 = max(row(from), row(to)); col_type const ci = col(idx); col_type const c1 = min(col(from), col(to)); col_type const c2 = max(col(from), col(to)); return r1 <= ri && ri <= r2 && c1 <= ci && ci <= c2; } void InsetMathGrid::normalize(NormalStream & os) const { os << "[grid "; for (row_type row = 0; row < nrows(); ++row) { os << "[row "; for (col_type col = 0; col < ncols(); ++col) { idx_type const i = index(row, col); switch (cellinfo_[i].multi) { case CELL_NORMAL: os << "[cell " << cell(i) << ']'; break; case CELL_BEGIN_OF_MULTICOLUMN: os << "[cell colspan=" << static_cast(ncellcols(i)) << ' ' << cell(i) << ']'; break; case CELL_PART_OF_MULTICOLUMN: break; } } os << ']'; } os << ']'; } void InsetMathGrid::mathmlize(MathStream & ms) const { bool const havetable = nrows() > 1 || ncols() > 1; if (havetable) ms << MTag("mtable"); char const * const celltag = havetable ? "mtd" : "mrow"; for (row_type row = 0; row < nrows(); ++row) { if (havetable) ms << MTag("mtr"); for (col_type col = 0; col < ncols(); ++col) { idx_type const i = index(row, col); if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) { col_type const cellcols = ncellcols(i); ostringstream attr; if (havetable && cellcols > 1) attr << "colspan='" << cellcols << '\''; ms << MTag(celltag, attr.str()); ms << cell(index(row, col)); ms << ETag(celltag); } } if (havetable) ms << ETag("mtr"); } if (havetable) ms << ETag("mtable"); } // FIXME XHTML // We need to do something about alignment here. void InsetMathGrid::htmlize(HtmlStream & os, string attrib) const { bool const havetable = nrows() > 1 || ncols() > 1; if (!havetable) { os << cell(index(0, 0)); return; } os << MTag("table", attrib); for (row_type row = 0; row < nrows(); ++row) { os << MTag("tr"); for (col_type col = 0; col < ncols(); ++col) { idx_type const i = index(row, col); if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) { col_type const cellcols = ncellcols(i); ostringstream attr; if (cellcols > 1) attr << "colspan='" << cellcols << '\''; os << MTag("td", attr.str()); os << cell(index(row, col)); os << ETag("td"); } } os << ETag("tr"); } os << ETag("table"); } void InsetMathGrid::htmlize(HtmlStream & os) const { htmlize(os, "class='mathtable'"); } void InsetMathGrid::validate(LaTeXFeatures & features) const { if (features.runparams().math_flavor == OutputParams::MathAsHTML && (nrows() > 1 || ncols() > 1)) { // CSS taken from InsetMathCases features.addCSSSnippet( "table.mathtable{display: inline-block; text-align: center; border: none;" "border-left: thin solid black; vertical-align: middle; padding-left: 0.5ex;}\n" "table.mathtable td {text-align: left; border: none;}"); } InsetMathNest::validate(features); } void InsetMathGrid::write(WriteStream & os) const { write(os, 0, 0, nrows(), ncols()); } void InsetMathGrid::write(WriteStream & os, row_type beg_row, col_type beg_col, row_type end_row, col_type end_col) const { MathEnsurer ensurer(os, false); docstring eol; for (row_type row = beg_row; row < end_row; ++row) { os << verboseHLine(rowinfo_[row].lines); // don't write & and empty cells at end of line, // unless there are vertical lines col_type lastcol = 0; bool emptyline = true; bool last_eoln = true; for (col_type col = beg_col; col < end_col; ++col) { idx_type const idx = index(row, col); bool const empty_cell = cell(idx).empty(); if (!empty_cell || cellinfo_[idx].multi != CELL_NORMAL) last_eoln = false; if (!empty_cell || cellinfo_[idx].multi != CELL_NORMAL || colinfo_[col + 1].lines) { lastcol = col + 1; emptyline = false; } } for (col_type col = beg_col; col < end_col;) { int nccols = 1; idx_type const idx = index(row, col); TexRow::RowEntry entry = TexRow::mathEntry(id(),idx); os.texrow().start(entry); if (col >= lastcol) { ++col; continue; } Changer dummy = os.changeRowEntry(entry); if (cellinfo_[idx].multi == CELL_BEGIN_OF_MULTICOLUMN) { size_t s = col + 1; while (s < ncols() && cellinfo_[index(row, s)].multi == CELL_PART_OF_MULTICOLUMN) s++; nccols = s - col; os << "\\multicolumn{" << nccols << "}{" << cellinfo_[idx].align << "}{"; } os << cell(idx); if (os.pendingBrace()) ModeSpecifier specifier(os, TEXT_MODE); if (cellinfo_[idx].multi == CELL_BEGIN_OF_MULTICOLUMN) os << '}'; os << eocString(col + nccols - 1, lastcol); col += nccols; } eol = eolString(row, os.fragile(), os.latex(), last_eoln); os << eol; // append newline only if line wasn't completely empty // and the formula is not written on a single line bool const empty = emptyline && eol.empty(); if (!empty && nrows() > 1) os << "\n"; } // @TODO use end_row instead of nrows() ? docstring const s = verboseHLine(rowinfo_[nrows()].lines); if (!s.empty()) { if (eol.empty()) { if (os.fragile()) os << "\\protect"; os << "\\\\"; } os << s; } } int InsetMathGrid::colsep() const { return 6; } int InsetMathGrid::rowsep() const { return 6; } int InsetMathGrid::hlinesep() const { return 3; } int InsetMathGrid::vlinesep() const { return 3; } int InsetMathGrid::border() const { return 1; } void InsetMathGrid::splitCell(Cursor & cur) { if (cur.idx() == cur.lastidx()) return; MathData ar = cur.cell(); ar.erase(0, cur.pos()); cur.cell().erase(cur.pos(), cur.lastpos()); ++cur.idx(); while (cur.idx() << nargs() && cellinfo_[cur.idx()].multi == CELL_BEGIN_OF_MULTICOLUMN) ++cur.idx(); cur.pos() = 0; cur.cell().insert(0, ar); } char InsetMathGrid::displayColAlign(idx_type idx) const { if (cellinfo_[idx].multi == CELL_BEGIN_OF_MULTICOLUMN) { // align may also contain lines like "||r|", so this is // not complete, but we catch at least the simple cases. if (cellinfo_[idx].align == "c") return 'c'; if (cellinfo_[idx].align == "l") return 'l'; if (cellinfo_[idx].align == "r") return 'r'; } return colinfo_[col(idx)].align; } int InsetMathGrid::displayColSpace(col_type col) const { return colinfo_[col].skip; } void InsetMathGrid::doDispatch(Cursor & cur, FuncRequest & cmd) { //lyxerr << "*** InsetMathGrid: request: " << cmd << endl; Parse::flags parseflg = Parse::QUIET | Parse::USETEXT; FuncCode const act = cmd.action(); switch (act) { // insert file functions case LFUN_LINE_DELETE_FORWARD: cur.recordUndoInset(); //autocorrect_ = false; //macroModeClose(); //if (selection_) { // selDel(); // break; //} if (nrows() > 1) delRow(cur.row()); if (cur.idx() > cur.lastidx()) cur.idx() = cur.lastidx(); if (cur.pos() > cur.lastpos()) cur.pos() = cur.lastpos(); break; case LFUN_CELL_SPLIT: cur.recordUndo(); splitCell(cur); break; case LFUN_NEWLINE_INSERT: { cur.recordUndoInset(); row_type const r = cur.row(); addRow(r); // split line for (col_type c = col(cur.idx()) + 1; c < ncols(); ++c) swap(cell(index(r, c)), cell(index(r + 1, c))); // split cell splitCell(cur); if (ncols() > 1) swap(cell(cur.idx()), cell(cur.idx() + ncols() - 1)); if (cur.idx() > 0) --cur.idx(); cur.pos() = cur.lastpos(); cur.forceBufferUpdate(); //mathcursor->normalize(); //cmd = FuncRequest(LFUN_FINISHED_BACKWARD); break; } case LFUN_TABULAR_FEATURE: { cur.recordUndoInset(); //lyxerr << "handling tabular-feature " << to_utf8(cmd.argument()) << endl; istringstream is(to_utf8(cmd.argument())); string s; is >> s; if (s == "valign-top") setVerticalAlignment('t'); else if (s == "valign-middle") setVerticalAlignment('c'); else if (s == "valign-bottom") setVerticalAlignment('b'); else if (s == "align-left") setHorizontalAlignment('l', cur.col()); else if (s == "align-right") setHorizontalAlignment('r', cur.col()); else if (s == "align-center") setHorizontalAlignment('c', cur.col()); else if (s == "append-row") for (int i = 0, n = extractInt(is); i < n; ++i) addRow(cur.row()); else if (s == "delete-row") { cur.clearSelection(); // bug 4323 for (int i = 0, n = extractInt(is); i < n; ++i) { delRow(cur.row()); if (cur.idx() >= nargs()) cur.idx() -= ncols(); } cur.pos() = 0; // trick, see below } else if (s == "copy-row") { // Here (as later) we save the cursor col/row // in order to restore it after operation. row_type const r = cur.row(); col_type const c = cur.col(); for (int i = 0, n = extractInt(is); i < n; ++i) copyRow(cur.row()); cur.idx() = index(r, c); } else if (s == "swap-row") { swapRow(cur.row()); // Trick to suppress same-idx-means-different-cell // assertion crash: cur.pos() = 0; } else if (s == "add-hline-above") rowinfo_[cur.row()].lines++; else if (s == "add-hline-below") rowinfo_[cur.row()+1].lines++; else if (s == "delete-hline-above") rowinfo_[cur.row()].lines--; else if (s == "delete-hline-below") rowinfo_[cur.row()+1].lines--; else if (s == "append-column") { row_type const r = cur.row(); col_type const c = cur.col(); for (int i = 0, n = extractInt(is); i < n; ++i) addCol(cur.col() + 1); cur.idx() = index(r, c); } else if (s == "delete-column") { cur.clearSelection(); // bug 4323 row_type const r = cur.row(); col_type const c = cur.col(); for (int i = 0, n = extractInt(is); i < n; ++i) delCol(col(cur.idx())); cur.idx() = index(r, min(c, cur.ncols() - 1)); cur.pos() = 0; // trick, see above } else if (s == "copy-column") { row_type const r = cur.row(); col_type const c = cur.col(); copyCol(cur.col()); cur.idx() = index(r, c); } else if (s == "swap-column") { swapCol(cur.col()); cur.pos() = 0; // trick, see above } else if (s == "add-vline-left") { colinfo_[cur.col()].lines++; if (!colinfo_[cur.col()].special.empty()) colinfo_[cur.col()].special += '|'; } else if (s == "add-vline-right") { colinfo_[cur.col()+1].lines++; if (!colinfo_[cur.col()+1].special.empty()) colinfo_[cur.col()+1].special.insert(0, 1, '|'); } else if (s == "delete-vline-left") { colinfo_[cur.col()].lines--; docstring & special = colinfo_[cur.col()].special; if (!special.empty()) { docstring::size_type i = special.rfind('|'); LASSERT(i != docstring::npos, break); special.erase(i, 1); } } else if (s == "delete-vline-right") { colinfo_[cur.col()+1].lines--; docstring & special = colinfo_[cur.col()+1].special; if (!special.empty()) { docstring::size_type i = special.find('|'); LASSERT(i != docstring::npos, break); special.erase(i, 1); } } else { cur.undispatched(); break; } // perhaps this should be FINISHED_BACKWARD -- just for clarity? //lyxerr << "returning FINISHED_LEFT" << endl; break; } case LFUN_CLIPBOARD_PASTE: parseflg |= Parse::VERBATIM; // fall through case LFUN_PASTE: { if (cur.currentMode() != MATH_MODE) parseflg |= Parse::TEXTMODE; cur.message(_("Paste")); cap::replaceSelection(cur); docstring topaste; if (cmd.argument().empty() && !theClipboard().isInternal()) topaste = theClipboard().getAsText(frontend::Clipboard::PlainTextType); else { idocstringstream is(cmd.argument()); int n = 0; is >> n; topaste = cap::selection(n, buffer().params().documentClassPtr()); } InsetMathGrid grid(buffer_, 1, 1); if (!topaste.empty()) if ((topaste.size() == 1 && isAscii(topaste)) || !mathed_parse_normal(grid, topaste, parseflg)) { resetGrid(grid); mathed_parse_normal(grid, topaste, parseflg | Parse::VERBATIM); } bool hline_enabled = false; FuncRequest fr = FuncRequest(LFUN_TABULAR_FEATURE, "add-hline-above"); FuncStatus status; if (getStatus(cur, fr, status)) hline_enabled = status.enabled(); if (grid.nargs() == 1) { // single cell/part of cell cur.recordUndoInset(); cur.cell().insert(cur.pos(), grid.cell(0)); cur.pos() += grid.cell(0).size(); if (hline_enabled) rowinfo_[cur.row()].lines += grid.rowinfo_[0].lines; else { for (unsigned int l = 0; l < grid.rowinfo_[0].lines; ++l) { cur.cell().insert(0, MathAtom(new InsetMathUnknown(from_ascii("\\hline")))); cur.pos()++; } } } else { // multiple cells cur.recordUndoInset(); col_type startcol = col(cur.idx()); row_type startrow = cur.row(); col_type oldncols = ncols(); col_type numcols = min(grid.ncols(), ncols() - startcol); row_type const numrows = min(grid.nrows(), nrows() - cur.row()); for (row_type r = 0; r < numrows; ++r) { for (col_type c = 0; c < numcols; ++c) { idx_type i = index(r + cur.row(), c + col(cur.idx())); cell(i).insert(c == 0 ? cur.pos() : 0, grid.cell(grid.index(r, c))); } if (hline_enabled) rowinfo_[r].lines += grid.rowinfo_[r].lines; else { for (unsigned int l = 0; l < grid.rowinfo_[r].lines; ++l) { idx_type i = index(r + cur.row(), 0); cell(i).insert(0, MathAtom(new InsetMathUnknown(from_ascii("\\hline")))); } } // append columns for the left over horizontal cells for (InsetMath::col_type c = numcols; c < grid.ncols(); ++c) { addCol(c + 1); idx_type i = index(r + cur.row(), c + 1); cell(i).append(grid.cell(grid.index(r, c))); ++numcols; } } // amend cursor position if cols have been appended cur.idx() += startrow * (ncols() - oldncols); // append rows for the left over vertical cells idx_type i = nargs() - 1; for (row_type r = numrows; r < grid.nrows(); ++r) { row_type crow = startrow + r; addRow(crow - 1); for (col_type c = 0; c < grid.ncols(); ++c) cell(index(crow, c + startcol)).append(grid.cell(grid.index(r, c))); if (hline_enabled) rowinfo_[crow].lines += grid.rowinfo_[r].lines; else { for (unsigned int l = 0; l < grid.rowinfo_[r].lines; ++l) { cell(i).insert(0, MathAtom(new InsetMathUnknown(from_ascii("\\hline")))); } } } } cur.clearSelection(); // bug 393 // FIXME audit setBuffer calls cur.inset().setBuffer(*buffer_); cur.forceBufferUpdate(); cur.finishUndo(); break; } case LFUN_LINE_BEGIN: cur.screenUpdateFlags(Update::Decoration | Update::FitCursor); // fall through case LFUN_LINE_BEGIN_SELECT: cur.selHandle(act == LFUN_WORD_BACKWARD_SELECT || act == LFUN_WORD_LEFT_SELECT || act == LFUN_LINE_BEGIN_SELECT); cur.macroModeClose(); if (cur.pos() != 0) { cur.pos() = 0; } else if (cur.idx() % cur.ncols() != 0) { cur.idx() -= cur.idx() % cur.ncols(); cur.pos() = 0; } else if (cur.idx() != 0) { cur.idx() = 0; cur.pos() = 0; } else { cmd = FuncRequest(LFUN_FINISHED_BACKWARD); cur.undispatched(); } break; case LFUN_LINE_END: cur.screenUpdateFlags(Update::Decoration | Update::FitCursor); // fall through case LFUN_LINE_END_SELECT: cur.selHandle(act == LFUN_WORD_FORWARD_SELECT || act == LFUN_WORD_RIGHT_SELECT || act == LFUN_LINE_END_SELECT); cur.macroModeClose(); cur.clearTargetX(); if (cur.pos() != cur.lastpos()) { cur.pos() = cur.lastpos(); } else if ((cur.idx() + 1) % cur.ncols() != 0) { cur.idx() += cur.ncols() - 1 - cur.idx() % cur.ncols(); cur.pos() = cur.lastpos(); } else if (cur.idx() != cur.lastidx()) { cur.idx() = cur.lastidx(); cur.pos() = cur.lastpos(); } else { cmd = FuncRequest(LFUN_FINISHED_FORWARD); cur.undispatched(); } break; default: InsetMathNest::doDispatch(cur, cmd); } } bool InsetMathGrid::getStatus(Cursor & cur, FuncRequest const & cmd, FuncStatus & status) const { switch (cmd.action()) { case LFUN_TABULAR_FEATURE: { string s = cmd.getArg(0); if (&cur.inset() != this) { // Table actions requires that the cursor is _inside_ the // table. status.setEnabled(false); status.message(from_utf8(N_("Cursor not in table"))); return true; } if (nrows() <= 1 && (s == "delete-row" || s == "swap-row")) { status.setEnabled(false); status.message(from_utf8(N_("Only one row"))); return true; } if (ncols() <= 1 && (s == "delete-column" || s == "swap-column")) { status.setEnabled(false); status.message(from_utf8(N_("Only one column"))); return true; } if ((rowinfo_[cur.row()].lines == 0 && s == "delete-hline-above") || (rowinfo_[cur.row() + 1].lines == 0 && s == "delete-hline-below")) { status.setEnabled(false); status.message(from_utf8(N_("No hline to delete"))); return true; } if ((colinfo_[cur.col()].lines == 0 && s == "delete-vline-left") || (colinfo_[cur.col() + 1].lines == 0 && s == "delete-vline-right")) { status.setEnabled(false); status.message(from_utf8(N_("No vline to delete"))); return true; } if (s == "valign-top" || s == "valign-middle" || s == "valign-bottom" || s == "align-left" || s == "align-right" || s == "align-center") { status.setEnabled(true); char const ha = horizontalAlignment(cur.col()); char const va = verticalAlignment(); status.setOnOff((s == "align-left" && ha == 'l') || (s == "align-right" && ha == 'r') || (s == "align-center" && ha == 'c') || (s == "valign-top" && va == 't') || (s == "valign-bottom" && va == 'b') || (s == "valign-middle" && va == 'c')); return true; } if (s == "append-row" || s == "delete-row" || s == "copy-row" || s == "swap-row" || s == "add-hline-above" || s == "add-hline-below" || s == "delete-hline-above" || s == "delete-hline-below" || s == "append-column" || s == "delete-column" || s == "copy-column" || s == "swap-column" || s == "add-vline-left" || s == "add-vline-right" || s == "delete-vline-left" || s == "delete-vline-right") { status.setEnabled(true); } else { status.setEnabled(false); status.message(bformat( from_utf8(N_("Unknown tabular feature '%1$s'")), from_utf8(s))); } return true; } case LFUN_CELL_SPLIT: status.setEnabled(cur.idx() != cur.lastidx()); return true; case LFUN_CELL_BACKWARD: case LFUN_CELL_FORWARD: status.setEnabled(true); return true; default: break; } return InsetMathNest::getStatus(cur, cmd, status); } char InsetMathGrid::colAlign(HullType type, col_type col) const { switch (type) { case hullEqnArray: return "rcl"[col % 3]; case hullMultline: return 'c'; case hullGather: LASSERT(isBufferValid(), LYXERR0("Buffer not set correctly. Please report!"); return 'c';); if (buffer().params().is_math_indent) return 'l'; else return 'c'; case hullAlign: case hullAlignAt: case hullXAlignAt: case hullXXAlignAt: case hullFlAlign: return "rl"[col & 1]; case hullUnknown: case hullNone: case hullSimple: case hullEquation: case hullRegexp: return 'c'; } // avoid warning return 'c'; } //static int InsetMathGrid::colSpace(HullType type, col_type col) { int alignInterSpace = 0; switch (type) { case hullUnknown: case hullNone: case hullSimple: case hullEquation: case hullMultline: case hullGather: case hullRegexp: return 0; case hullEqnArray: return 5; case hullAlign: alignInterSpace = 20; break; case hullAlignAt: alignInterSpace = 0; break; case hullXAlignAt: alignInterSpace = 40; break; case hullXXAlignAt: case hullFlAlign: alignInterSpace = 60; break; } return (col % 2) ? alignInterSpace : 0; } } // namespace lyx