/** The math parser \author André Pönitz (2001) */ /* If someone desperately needs partial "structures" (such as a few cells of an array inset or similar) (s)he could uses the following hack as starting point to write some macros: \newif\ifcomment \commentfalse \ifcomment \def\makeamptab{\catcode`\&=4\relax} \def\makeampletter{\catcode`\&=11\relax} \def\b{\makeampletter\expandafter\makeamptab\bi} \long\def\bi#1\e{} \else \def\b{}\def\e{} \fi ... \[\begin{array}{ccc} 1 & 2\b & 3^2\\ 4 & 5\e & 6\\ 7 & 8 & 9 \end{array}\] */ #include #ifdef __GNUG__ #pragma implementation #endif #include "math_parser.h" #include "math_inset.h" #include "math_arrayinset.h" #include "math_braceinset.h" #include "math_boxinset.h" #include "math_charinset.h" #include "math_deliminset.h" #include "math_extern.h" #include "math_factory.h" #include "math_kerninset.h" #include "math_macro.h" #include "math_macrotable.h" #include "math_macrotemplate.h" #include "math_hullinset.h" #include "math_rootinset.h" #include "math_sizeinset.h" #include "math_sqrtinset.h" #include "math_scriptinset.h" #include "math_sqrtinset.h" #include "math_support.h" #include "math_xyarrowinset.h" #include "ref_inset.h" #include "lyxlex.h" #include "debug.h" #include "support/LAssert.h" #include "support/lstrings.h" #include #include #include using std::istream; using std::ostream; using std::ios; using std::endl; using std::stack; using std::fill; using std::vector; using std::atoi; //#define FILEDEBUG namespace { bool stared(string const & s) { string::size_type const n = s.size(); return n && s[n - 1] == '*'; } // These are TeX's catcodes enum CatCode { catEscape, // 0 backslash catBegin, // 1 { catEnd, // 2 } catMath, // 3 $ catAlign, // 4 & catNewline, // 5 ^^M catParameter, // 6 # catSuper, // 7 ^ catSub, // 8 _ catIgnore, // 9 catSpace, // 10 space catLetter, // 11 a-zA-Z catOther, // 12 none of the above catActive, // 13 ~ catComment, // 14 % catInvalid // 15 }; CatCode theCatcode[256]; inline CatCode catcode(unsigned char c) { return theCatcode[c]; } enum { FLAG_BRACE_LAST = 1 << 1, // last closing brace ends the parsing FLAG_RIGHT = 1 << 2, // next \\right ends the parsing process FLAG_END = 1 << 3, // next \\end ends the parsing process FLAG_BRACK_END = 1 << 4, // next closing bracket ends the parsing FLAG_TEXTMODE = 1 << 5, // we are in a box FLAG_ITEM = 1 << 6, // read a (possibly braced token) FLAG_LEAVE = 1 << 7, // leave the loop at the end FLAG_SIMPLE = 1 << 8, // next $ leaves the loop FLAG_EQUATION = 1 << 9, // next \] leaves the loop FLAG_SIMPLE2 = 1 << 10 // next \) leaves the loop }; void catInit() { fill(theCatcode, theCatcode + 256, catOther); fill(theCatcode + 'a', theCatcode + 'z' + 1, catLetter); fill(theCatcode + 'A', theCatcode + 'Z' + 1, catLetter); theCatcode['\\'] = catEscape; theCatcode['{'] = catBegin; theCatcode['}'] = catEnd; theCatcode['$'] = catMath; theCatcode['&'] = catAlign; theCatcode['\n'] = catNewline; theCatcode['#'] = catParameter; theCatcode['^'] = catSuper; theCatcode['_'] = catSub; theCatcode[''] = catIgnore; theCatcode[' '] = catSpace; theCatcode['\t'] = catSpace; theCatcode['\r'] = catSpace; theCatcode['~'] = catActive; theCatcode['%'] = catComment; } // // Helper class for parsing // class Token { public: /// Token() : cs_(), char_(0), cat_(catIgnore) {} /// Token(char c, CatCode cat) : cs_(), char_(c), cat_(cat) {} /// Token(string const & cs) : cs_(cs), char_(0), cat_(catIgnore) {} /// string const & cs() const { return cs_; } /// CatCode cat() const { return cat_; } /// char character() const { return char_; } /// string asString() const; /// bool isCR() const; private: /// string cs_; /// char char_; /// CatCode cat_; }; bool Token::isCR() const { return cs_ == "\\" || cs_ == "cr" || cs_ == "crcr"; } string Token::asString() const { return cs_.size() ? cs_ : string(1, char_); } ostream & operator<<(ostream & os, Token const & t) { if (t.cs().size()) os << "\\" << t.cs(); else os << "[" << t.character() << "," << t.cat() << "]"; return os; } class Parser { public: /// Parser(LyXLex & lex); /// Parser(istream & is); /// bool parse_macro(string & name); /// bool parse_normal(MathAtom & at); /// void parse_into(MathArray & array, unsigned flags, bool mathmode); /// int lineno() const { return lineno_; } /// void putback(); private: /// void parse_into1(MathGridInset & grid, unsigned flags, bool mathmode, bool numbered); /// void parse_into2(MathAtom & at, unsigned flags, bool mathmode, bool numbered); /// get arg delimited by 'left' and 'right' string getArg(char left, char right); /// char getChar(); /// void error(string const & msg); /// dump contents to screen void dump() const; private: /// void tokenize(istream & is); /// void tokenize(string const & s); /// void skipSpaceTokens(istream & is, char c); /// void push_back(Token const & t); /// void pop_back(); /// Token const & prevToken() const; /// Token const & nextToken() const; /// Token const & getToken(); /// skips spaces if any void skipSpaces(); /// void lex(string const & s); /// bool good() const; /// int lineno_; /// vector tokens_; /// unsigned pos_; }; Parser::Parser(LyXLex & lexer) : lineno_(lexer.getLineNo()), pos_(0) { tokenize(lexer.getStream()); lexer.eatLine(); } Parser::Parser(istream & is) : lineno_(0), pos_(0) { tokenize(is); } void Parser::push_back(Token const & t) { tokens_.push_back(t); } void Parser::pop_back() { tokens_.pop_back(); } Token const & Parser::prevToken() const { static const Token dummy; return pos_ > 0 ? tokens_[pos_ - 1] : dummy; } Token const & Parser::nextToken() const { static const Token dummy; return good() ? tokens_[pos_] : dummy; } Token const & Parser::getToken() { static const Token dummy; //lyxerr << "looking at token " << tokens_[pos_] << " pos: " << pos_ << '\n'; return good() ? tokens_[pos_++] : dummy; } void Parser::skipSpaces() { while (nextToken().cat() == catSpace) getToken(); } void Parser::putback() { --pos_; } bool Parser::good() const { return pos_ < tokens_.size(); } char Parser::getChar() { if (!good()) error("The input stream is not well..."); return tokens_[pos_++].character(); } string Parser::getArg(char left, char right) { skipSpaces(); string result; char c = getChar(); if (c != left) putback(); else while ((c = getChar()) != right && good()) result += c; return result; } void Parser::tokenize(istream & is) { // eat everything up to the next \end_inset or end of stream // and store it in s for further tokenization string s; char c; while (is.get(c)) { s += c; if (s.size() >= 10 && s.substr(s.size() - 10) == "\\end_inset") { s = s.substr(0, s.size() - 10); break; } } // tokenize buffer tokenize(s); } void Parser::skipSpaceTokens(istream & is, char c) { // skip trailing spaces while (catcode(c) == catSpace || catcode(c) == catNewline) if (!is.get(c)) break; //lyxerr << "putting back: " << c << "\n"; is.putback(c); } void Parser::tokenize(string const & buffer) { static bool init_done = false; if (!init_done) { catInit(); init_done = true; } istringstream is(buffer.c_str(), ios::in | ios::binary); char c; while (is.get(c)) { //lyxerr << "reading c: " << c << "\n"; switch (catcode(c)) { case catNewline: { ++lineno_; is.get(c); if (catcode(c) == catNewline) ; //push_back(Token("par")); else { push_back(Token(' ', catSpace)); is.putback(c); } break; } case catComment: { while (is.get(c) && catcode(c) != catNewline) ; ++lineno_; break; } case catEscape: { is.get(c); if (!is) { error("unexpected end of input"); } else { string s(1, c); if (catcode(c) == catLetter) { // collect letters while (is.get(c) && catcode(c) == catLetter) s += c; skipSpaceTokens(is, c); } push_back(Token(s)); } break; } case catSuper: case catSub: { push_back(Token(c, catcode(c))); is.get(c); skipSpaceTokens(is, c); break; } case catIgnore: { lyxerr << "ignoring a char: " << int(c) << "\n"; break; } default: push_back(Token(c, catcode(c))); } } #ifdef FILEDEBUG dump(); #endif } void Parser::dump() const { lyxerr << "\nTokens: "; for (unsigned i = 0; i < tokens_.size(); ++i) { if (i == pos_) lyxerr << " <#> "; lyxerr << tokens_[i]; } lyxerr << " pos: " << pos_ << "\n"; } void Parser::error(string const & msg) { lyxerr << "Line ~" << lineno_ << ": Math parse error: " << msg << endl; dump(); //exit(1); } bool Parser::parse_macro(string & name) { int nargs = 0; name = "{error}"; skipSpaces(); if (nextToken().cs() == "def") { getToken(); name = getToken().cs(); string pars; while (good() && nextToken().cat() != catBegin) pars += getToken().cs(); if (!good()) { error("bad stream in parse_macro\n"); return false; } //lyxerr << "read \\def parameter list '" << pars << "'\n"; if (!pars.empty()) { error("can't handle non-empty parameter lists\n"); return false; } } else if (nextToken().cs() == "newcommand") { getToken(); if (getToken().cat() != catBegin) { error("'{' in \\newcommand expected (1) \n"); return false; } name = getToken().cs(); if (getToken().cat() != catEnd) { error("'}' expected\n"); return false; } string arg = getArg('[', ']'); if (!arg.empty()) nargs = atoi(arg.c_str()); } else { lyxerr << "\\newcommand or \\def expected\n"; return false; } if (getToken().cat() != catBegin) { error("'{' in macro definition expected (2)\n"); return false; } MathArray ar1; parse_into(ar1, FLAG_BRACE_LAST, true); // we cannot handle recursive stuff at all MathArray test; test.push_back(createMathInset(name)); if (ar1.contains(test)) { error("we cannot handle recursive macros at all.\n"); return false; } // is a version for display attached? MathArray ar2; parse_into(ar2, FLAG_ITEM, true); MathMacroTable::create(name, nargs, ar1, ar2); return true; } bool Parser::parse_normal(MathAtom & at) { MathArray ar; parse_into(ar, false, false); if (ar.size() != 1) { lyxerr << "Unusual contents found: " << ar << endl; at.reset(new MathParInset); at->cell(0) = ar; return true; } at = ar[0]; return true; } void Parser::parse_into(MathArray & array, unsigned flags, bool mathmode) { MathGridInset grid(1, 1); parse_into1(grid, flags, mathmode, false); array = grid.cell(0); // remove 'unnecessary' braces: //if (array.size() == 1 && array.back()->asBraceInset()) { // lyxerr << "extra braces removed\n"; // array = array.back()->asBraceInset()->cell(0); //} } void Parser::parse_into2(MathAtom & at, unsigned flags, bool mathmode, bool numbered) { parse_into1(*(at->asGridInset()), flags, mathmode, numbered); } void Parser::parse_into1(MathGridInset & grid, unsigned flags, bool mathmode, bool numbered) { int limits = 0; MathGridInset::row_type cellrow = 0; MathGridInset::col_type cellcol = 0; MathArray * cell = &grid.cell(grid.index(cellrow, cellcol)); if (grid.asHullInset()) grid.asHullInset()->numbered(cellrow, numbered); //dump(); //lyxerr << "grid: " << grid << endl; while (good()) { Token const & t = getToken(); #ifdef FILEDEBUG lyxerr << "t: " << t << " flags: " << flags << "\n"; //cell->dump(); lyxerr << "\n"; #endif if (flags & FLAG_ITEM) { if (t.cat() == catSpace) continue; flags &= ~FLAG_ITEM; if (t.cat() == catBegin) { // skip the brace and collect everything to the next matching // closing brace flags |= FLAG_BRACE_LAST; continue; } // handle only this single token, leave the loop if done flags |= FLAG_LEAVE; } // // cat codes // if (t.cat() == catMath) { if (!mathmode) { // we are inside some text mode thingy, so opening new math is allowed Token const & n = getToken(); if (n.cat() == catMath) { // TeX's $$...$$ syntax for displayed math cell->push_back(MathAtom(new MathHullInset(LM_OT_EQUATION))); parse_into2(cell->back(), FLAG_SIMPLE, true, false); getToken(); // skip the second '$' token } else { // simple $...$ stuff putback(); cell->push_back(MathAtom(new MathHullInset(LM_OT_SIMPLE))); parse_into2(cell->back(), FLAG_SIMPLE, true, false); } } else if (flags & FLAG_SIMPLE) { // this is the end of the formula return; } else { error("something strange in the parser\n"); break; } } else if (t.cat() == catLetter) cell->push_back(MathAtom(new MathCharInset(t.character()))); else if (t.cat() == catSpace && !mathmode) cell->push_back(MathAtom(new MathCharInset(t.character()))); else if (t.cat() == catParameter) { Token const & n = getToken(); cell->push_back(MathAtom(new MathMacroArgument(n.character()-'0'))); } else if (t.cat() == catBegin) { MathArray ar; parse_into(ar, FLAG_BRACE_LAST, mathmode); cell->push_back(MathAtom(new MathBraceInset)); cell->back()->cell(0).swap(ar); } else if (t.cat() == catEnd) { if (flags & FLAG_BRACE_LAST) return; error("found '}' unexpectedly"); //lyx::Assert(0); //add(cell, '}', LM_TC_TEX); } else if (t.cat() == catAlign) { ++cellcol; //lyxerr << " column now " << cellcol << " max: " << grid.ncols() << "\n"; if (cellcol == grid.ncols()) { lyxerr << "adding column " << cellcol << "\n"; grid.addCol(cellcol - 1); } cell = &grid.cell(grid.index(cellrow, cellcol)); } else if (t.cat() == catSuper || t.cat() == catSub) { bool up = (t.cat() == catSuper); MathScriptInset * p = 0; if (cell->size()) p = cell->back()->asScriptInset(); if (!p || p->has(up)) { cell->push_back(MathAtom(new MathScriptInset(up))); p = cell->back()->asScriptInset(); } p->ensure(up); parse_into(p->cell(up), FLAG_ITEM, mathmode); p->limits(limits); limits = 0; } else if (t.character() == ']' && (flags & FLAG_BRACK_END)) return; else if (t.cat() == catOther) cell->push_back(MathAtom(new MathCharInset(t.character()))); // // control sequences // else if (t.cs() == "(") { cell->push_back(MathAtom(new MathHullInset(LM_OT_SIMPLE))); parse_into2(cell->back(), FLAG_SIMPLE2, true, false); } else if (t.cs() == "[") { cell->push_back(MathAtom(new MathHullInset(LM_OT_EQUATION))); parse_into2(cell->back(), FLAG_EQUATION, true, false); } else if (t.cs() == "protect") // ignore \\protect, will hopefully be re-added during output ; else if (t.cs() == "end") { if (flags & FLAG_END) { // eat environment name //string const name = getArg('{', '}'); // FIXME: check that we ended the correct environment return; } error("found 'end' unexpectedly"); } else if (t.cs() == ")") { if (flags & FLAG_SIMPLE2) return; error("found '\\)' unexpectedly"); } else if (t.cs() == "]") { if (flags & FLAG_EQUATION) return; error("found '\\]' unexpectedly"); } else if (t.cs() == "\\") { grid.vcrskip(LyXLength(getArg('[', ']')), cellrow); ++cellrow; cellcol = 0; if (cellrow == grid.nrows()) grid.addRow(cellrow - 1); if (grid.asHullInset()) grid.asHullInset()->numbered(cellrow, numbered); cell = &grid.cell(grid.index(cellrow, cellcol)); } #if 1 else if (t.cs() == "multicolumn") { // extract column count and insert dummy cells MathArray count; parse_into(count, FLAG_ITEM, mathmode); int cols = 1; if (!extractNumber(count, cols)) { lyxerr << " can't extract number of cells from " << count << "\n"; } // resize the table if necessary for (int i = 0; i < cols; ++i) { ++cellcol; if (cellcol == grid.ncols()) { lyxerr << "adding column " << cellcol << "\n"; grid.addCol(cellcol - 1); } cell = &grid.cell(grid.index(cellrow, cellcol)); // mark this as dummy grid.cellinfo(grid.index(cellrow, cellcol)).dummy_ = true; } // the last cell is the real thng, not a dummy grid.cellinfo(grid.index(cellrow, cellcol)).dummy_ = false; // read special alignment MathArray align; parse_into(align, FLAG_ITEM, mathmode); //grid.cellinfo(grid.index(cellrow, cellcol)).align_ = extractString(align); // parse the remaining contents into the "real" cell parse_into(*cell, FLAG_ITEM, mathmode); } #endif else if (t.cs() == "limits") limits = 1; else if (t.cs() == "nolimits") limits = -1; else if (t.cs() == "nonumber") { if (grid.asHullInset()) grid.asHullInset()->numbered(cellrow, false); } else if (t.cs() == "number") { if (grid.asHullInset()) grid.asHullInset()->numbered(cellrow, true); } else if (t.cs() == "hline") { if (grid.asHullInset()) grid.asHullInset()->rowinfo(cellrow + 1); } else if (t.cs() == "sqrt") { char c = getChar(); if (c == '[') { cell->push_back(MathAtom(new MathRootInset)); parse_into(cell->back()->cell(0), FLAG_BRACK_END, mathmode); parse_into(cell->back()->cell(1), FLAG_ITEM, mathmode); } else { putback(); cell->push_back(MathAtom(new MathSqrtInset)); parse_into(cell->back()->cell(0), FLAG_ITEM, mathmode); } } else if (t.cs() == "ref") { cell->push_back(MathAtom(new RefInset)); char c = getChar(); if (c == '[') parse_into(cell->back()->cell(1), FLAG_BRACK_END, mathmode); else putback(); parse_into(cell->back()->cell(0), FLAG_ITEM, mathmode); } else if (t.cs() == "left") { string l = getToken().asString(); MathArray ar; parse_into(ar, FLAG_RIGHT, mathmode); string r = getToken().asString(); cell->push_back(MathAtom(new MathDelimInset(l, r, ar))); } else if (t.cs() == "right") { if (flags & FLAG_RIGHT) return; //lyxerr << "got so far: '" << cell << "'\n"; error("Unmatched right delimiter"); return; } else if (t.cs() == "begin") { string const name = getArg('{', '}'); if (name == "array" || name == "subarray") { string const valign = getArg('[', ']') + 'c'; string const halign = getArg('{', '}'); cell->push_back(MathAtom(new MathArrayInset(name, valign[0], halign))); parse_into2(cell->back(), FLAG_END, mathmode, false); } else if (name == "split" || name == "cases" || name == "gathered" || name == "aligned") { cell->push_back(createMathInset(name)); parse_into2(cell->back(), FLAG_END, mathmode, false); } else if (name == "math") { cell->push_back(MathAtom(new MathHullInset(LM_OT_SIMPLE))); parse_into2(cell->back(), FLAG_SIMPLE, true, true); } else if (name == "equation" || name == "equation*" || name == "displaymath") { cell->push_back(MathAtom(new MathHullInset(LM_OT_EQUATION))); parse_into2(cell->back(), FLAG_END, true, (name == "equation")); } else if (name == "eqnarray" || name == "eqnarray*") { cell->push_back(MathAtom(new MathHullInset(LM_OT_EQNARRAY))); parse_into2(cell->back(), FLAG_END, true, !stared(name)); } else if (name == "align" || name == "align*") { cell->push_back(MathAtom(new MathHullInset(LM_OT_ALIGN))); parse_into2(cell->back(), FLAG_END, true, !stared(name)); } else if (name == "alignat" || name == "alignat*") { // ignore this for a while getArg('{', '}'); cell->push_back(MathAtom(new MathHullInset(LM_OT_ALIGNAT))); parse_into2(cell->back(), FLAG_END, true, !stared(name)); } else if (name == "xalignat" || name == "xalignat*") { // ignore this for a while getArg('{', '}'); cell->push_back(MathAtom(new MathHullInset(LM_OT_XALIGNAT))); parse_into2(cell->back(), FLAG_END, true, !stared(name)); } else if (name == "xxalignat") { // ignore this for a while getArg('{', '}'); cell->push_back(MathAtom(new MathHullInset(LM_OT_XXALIGNAT))); parse_into2(cell->back(), FLAG_END, true, !stared(name)); } else if (name == "multline" || name == "multline*") { cell->push_back(MathAtom(new MathHullInset(LM_OT_MULTLINE))); parse_into2(cell->back(), FLAG_END, true, !stared(name)); } else if (name == "gather" || name == "gather*") { cell->push_back(MathAtom(new MathHullInset(LM_OT_GATHER))); parse_into2(cell->back(), FLAG_END, true, !stared(name)); } else { latexkeys const * l = in_word_set(name); if (l) { if (l->inset == "matrix") { cell->push_back(createMathInset(name)); parse_into2(cell->back(), FLAG_END, mathmode, false); } } else { lyxerr << "unknow math inset begin '" << name << "'\n"; } } } else if (t.cs() == "kern") { #ifdef WITH_WARNINGS #warning A hack... #endif string s; while (1) { Token const & t = getToken(); if (!good()) { putback(); break; } s += t.character(); if (isValidLength(s)) break; } cell->push_back(MathAtom(new MathKernInset(s))); } else if (t.cs() == "label") { if (grid.asHullInset()) grid.asHullInset()->label(cellrow, getArg('{', '}')); } else if (t.cs() == "choose" || t.cs() == "over" || t.cs() == "atop") { MathAtom p = createMathInset(t.cs()); cell->swap(p->cell(0)); parse_into(p->cell(1), flags, mathmode); cell->push_back(p); return; } else if (t.cs() == "substack") { cell->push_back(createMathInset(t.cs())); parse_into2(cell->back(), FLAG_ITEM, mathmode, false); } else if (t.cs() == "xymatrix") { cell->push_back(createMathInset(t.cs())); parse_into2(cell->back(), FLAG_ITEM, mathmode, false); } #if 0 // Disabled else if (1 && t.cs() == "ar") { MathXYArrowInset * p = new MathXYArrowInset; // try to read target char c = getChar(); if (c == '[') { parse_into(p->cell(0), FLAG_BRACK_END, mathmode); //lyxerr << "read target: " << p->cell(0) << "\n"; } else { putback(); } // try to read label if (nextToken().cat() == catSuper || nextToken().cat() == catSub) { p->up_ = nextToken().cat() == catSuper; getToken(); parse_into(p->cell(1), FLAG_ITEM, mathmode); //lyxerr << "read label: " << p->cell(1) << "\n"; } cell->push_back(MathAtom(p)); //lyxerr << "read cell: " << cell << "\n"; } #endif else if (t.cs().size()) { latexkeys const * l = in_word_set(t.cs()); if (l) { if (l->inset == "font") { lyxerr << "starting font " << t.cs() << "\n"; MathAtom p = createMathInset(t.cs()); bool textmode = (t.cs()[0] == 't'); parse_into(p->cell(0), FLAG_ITEM, !textmode); cell->push_back(p); //lyxerr << "ending font\n"; } else if (l->inset == "oldfont") { cell->push_back(createMathInset(t.cs())); parse_into(cell->back()->cell(0), flags, l->extra == "mathmode"); return; } else if (l->inset == "box") { // switch to text mode cell->push_back(createMathInset(t.cs())); parse_into(cell->back()->cell(0), FLAG_ITEM, mathmode); } else if (l->inset == "style") { cell->push_back(createMathInset(t.cs())); parse_into(cell->back()->cell(0), flags, mathmode); return; } else { MathAtom p = createMathInset(t.cs()); for (MathInset::idx_type i = 0; i < p->nargs(); ++i) parse_into(p->cell(i), FLAG_ITEM, l->extra == "mathmode"); cell->push_back(p); } } else { MathAtom p = createMathInset(t.cs()); for (MathInset::idx_type i = 0; i < p->nargs(); ++i) parse_into(p->cell(i), FLAG_ITEM, mathmode); cell->push_back(p); } } if (flags & FLAG_LEAVE) { flags &= ~FLAG_LEAVE; break; } } } } // anonymous namespace void mathed_parse_cell(MathArray & ar, string const & str) { istringstream is(str.c_str()); mathed_parse_cell(ar, is); } void mathed_parse_cell(MathArray & ar, istream & is) { Parser(is).parse_into(ar, 0, true); } bool mathed_parse_macro(string & name, string const & str) { istringstream is(str.c_str()); Parser parser(is); return parser.parse_macro(name); } bool mathed_parse_macro(string & name, istream & is) { Parser parser(is); return parser.parse_macro(name); } bool mathed_parse_macro(string & name, LyXLex & lex) { Parser parser(lex); return parser.parse_macro(name); } bool mathed_parse_normal(MathAtom & t, string const & str) { istringstream is(str.c_str()); Parser parser(is); return parser.parse_normal(t); } bool mathed_parse_normal(MathAtom & t, istream & is) { Parser parser(is); return parser.parse_normal(t); } bool mathed_parse_normal(MathAtom & t, LyXLex & lex) { Parser parser(lex); return parser.parse_normal(t); }