/** * \file InsetMathFracBase.cpp * This file is part of LyX, the document processor. * Licence details can be found in the file COPYING. * * \author Alejandro Aguilar Sierra * \author André Pönitz * \author Uwe Stöhr * * Full author contact details are available in file CREDITS. */ #include #include "InsetMathFrac.h" #include "Cursor.h" #include "LaTeXFeatures.h" #include "MathData.h" #include "MathStream.h" #include "MathSupport.h" #include "MetricsInfo.h" #include "TextPainter.h" #include "frontends/Painter.h" using namespace std; namespace lyx { ///////////////////////////////////////////////////////////////////// // // InsetMathFracBase // ///////////////////////////////////////////////////////////////////// InsetMathFracBase::InsetMathFracBase(idx_type ncells) : InsetMathNest(ncells) {} bool InsetMathFracBase::idxUpDown(Cursor & cur, bool up) const { InsetMath::idx_type target = !up; // up ? 0 : 1, since upper cell has idx 0 if (cur.idx() == target) return false; cur.idx() = target; cur.pos() = cell(target).x2pos(&cur.bv(), cur.x_target()); return true; } ///////////////////////////////////////////////////////////////////// // // InsetMathFrac // ///////////////////////////////////////////////////////////////////// InsetMathFrac::InsetMathFrac(Kind kind, InsetMath::idx_type ncells) : InsetMathFracBase(ncells), kind_(kind) {} Inset * InsetMathFrac::clone() const { return new InsetMathFrac(*this); } InsetMathFrac * InsetMathFrac::asFracInset() { return kind_ == ATOP ? 0 : this; } InsetMathFrac const * InsetMathFrac::asFracInset() const { return kind_ == ATOP ? 0 : this; } bool InsetMathFrac::idxForward(Cursor & cur) const { InsetMath::idx_type target = 0; if (kind_ == UNIT || (kind_ == UNITFRAC && nargs() == 3)) { if (nargs() == 3) target = 0; else if (nargs() == 2) target = 1; } else return false; if (cur.idx() == target) return false; cur.idx() = target; cur.pos() = cell(target).x2pos(&cur.bv(), cur.x_target()); return true; } bool InsetMathFrac::idxBackward(Cursor & cur) const { InsetMath::idx_type target = 0; if (kind_ == UNIT || (kind_ == UNITFRAC && nargs() == 3)) { if (nargs() == 3) target = 2; else if (nargs() == 2) target = 0; } else return false; if (cur.idx() == target) return false; cur.idx() = target; cur.pos() = cell(target).x2pos(&cur.bv(), cur.x_target()); return true; } void InsetMathFrac::metrics(MetricsInfo & mi, Dimension & dim) const { Dimension dim0, dim1, dim2; if (kind_ == UNIT || (kind_ == UNITFRAC && nargs() == 3)) { if (nargs() == 1) { ShapeChanger dummy2(mi.base.font, UP_SHAPE); cell(0).metrics(mi, dim0); dim.wid = dim0.width()+ 3; dim.asc = dim0.asc; dim.des = dim0.des; } else if (nargs() == 2) { cell(0).metrics(mi, dim0); ShapeChanger dummy2(mi.base.font, UP_SHAPE); cell(1).metrics(mi, dim1); dim.wid = dim0.width() + dim1.wid + 5; dim.asc = max(dim0.asc, dim1.asc); dim.des = max(dim0.des, dim1.des); } else { cell(2).metrics(mi, dim2); ShapeChanger dummy2(mi.base.font, UP_SHAPE); FracChanger dummy(mi.base); cell(0).metrics(mi, dim0); cell(1).metrics(mi, dim1); dim.wid = dim0.width() + dim1.wid + dim2.wid + 10; dim.asc = max(dim2.asc, dim0.height() + 5); dim.des = max(dim2.des, dim1.height() - 5); } } else { // general cell metrics used for \frac FracChanger dummy(mi.base); cell(0).metrics(mi, dim0); cell(1).metrics(mi, dim1); if (nargs() == 3) cell(2).metrics(mi, dim2); // metrics for special fraction types if (kind_ == NICEFRAC) { dim.wid = dim0.width() + dim1.wid + 5; dim.asc = dim0.height() + 5; dim.des = dim1.height() - 5; } else if (kind_ == UNITFRAC) { ShapeChanger dummy2(mi.base.font, UP_SHAPE); dim.wid = dim0.width() + dim1.wid + 5; dim.asc = dim0.height() + 5; dim.des = dim1.height() - 5; } else { if (kind_ == CFRAC || kind_ == CFRACLEFT || kind_ == CFRACRIGHT || kind_ == DFRAC) { // \cfrac and \dfrac are always in display size StyleChanger dummy2(mi.base, LM_ST_DISPLAY); cell(0).metrics(mi, dim0); cell(1).metrics(mi, dim1); } else if (kind_ == TFRAC) { // tfrac is in always in text size StyleChanger dummy2(mi.base, LM_ST_SCRIPT); cell(0).metrics(mi, dim0); cell(1).metrics(mi, dim1); } dim.wid = max(dim0.wid, dim1.wid) + 2; dim.asc = dim0.height() + 2 + 5; dim.des = dim1.height() + 2 - 5; } } metricsMarkers(dim); } void InsetMathFrac::draw(PainterInfo & pi, int x, int y) const { setPosCache(pi, x, y); Dimension const dim = dimension(*pi.base.bv); Dimension const dim0 = cell(0).dimension(*pi.base.bv); if (kind_ == UNIT || (kind_ == UNITFRAC && nargs() == 3)) { if (nargs() == 1) { ShapeChanger dummy2(pi.base.font, UP_SHAPE); cell(0).draw(pi, x + 1, y); } else if (nargs() == 2) { cell(0).draw(pi, x + 1, y); ShapeChanger dummy2(pi.base.font, UP_SHAPE); cell(1).draw(pi, x + dim0.width() + 5, y); } else { cell(2).draw(pi, x + 1, y); ShapeChanger dummy2(pi.base.font, UP_SHAPE); FracChanger dummy(pi.base); Dimension const dim1 = cell(1).dimension(*pi.base.bv); Dimension const dim2 = cell(2).dimension(*pi.base.bv); int xx = x + dim2.wid + 5; cell(0).draw(pi, xx + 2, y - dim0.des - 5); cell(1).draw(pi, xx + dim0.width() + 5, y + dim1.asc / 2); } } else { FracChanger dummy(pi.base); Dimension const dim1 = cell(1).dimension(*pi.base.bv); int m = x + dim.wid / 2; if (kind_ == NICEFRAC) { cell(0).draw(pi, x + 2, y - dim0.des - 5); cell(1).draw(pi, x + dim0.width() + 5, y + dim1.asc / 2); } else if (kind_ == UNITFRAC) { ShapeChanger dummy2(pi.base.font, UP_SHAPE); cell(0).draw(pi, x + 2, y - dim0.des - 5); cell(1).draw(pi, x + dim0.width() + 5, y + dim1.asc / 2); } else if (kind_ == FRAC || kind_ == ATOP || kind_ == OVER) { cell(0).draw(pi, m - dim0.wid / 2, y - dim0.des - 2 - 5); cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 2 - 5); } else if (kind_ == TFRAC) { // tfrac is in always in text size StyleChanger dummy2(pi.base, LM_ST_SCRIPT); cell(0).draw(pi, m - dim0.wid / 2, y - dim0.des - 2 - 5); cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 2 - 5); } else { // \cfrac and \dfrac are always in display size StyleChanger dummy2(pi.base, LM_ST_DISPLAY); if (kind_ == CFRAC || kind_ == DFRAC) cell(0).draw(pi, m - dim0.wid / 2, y - dim0.des - 2 - 5); else if (kind_ == CFRACLEFT) cell(0).draw(pi, x + 2, y - dim0.des - 2 - 5); else if (kind_ == CFRACRIGHT) cell(0).draw(pi, x + dim.wid - dim0.wid - 2, y - dim0.des - 2 - 5); cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 2 - 5); } } if (kind_ == NICEFRAC || kind_ == UNITFRAC) { // Diag line: int xx = x; if (nargs() == 3) xx += cell(2).dimension(*pi.base.bv).wid + 5; pi.pain.line(xx + dim0.wid, y + dim.des - 2, xx + dim0.wid + 5, y - dim.asc + 2, Color_math); } if (kind_ == FRAC || kind_ == CFRAC || kind_ == CFRACLEFT || kind_ == CFRACRIGHT || kind_ == DFRAC || kind_ == TFRAC || kind_ == OVER) pi.pain.line(x + 1, y - 5, x + dim.wid - 2, y - 5, Color_math); drawMarkers(pi, x, y); } void InsetMathFrac::metricsT(TextMetricsInfo const & mi, Dimension & dim) const { Dimension dim0, dim1; cell(0).metricsT(mi, dim0); cell(1).metricsT(mi, dim1); dim.wid = max(dim0.width(), dim1.wid); dim.asc = dim0.height() + 1; dim.des = dim1.height(); } void InsetMathFrac::drawT(TextPainter & /*pain*/, int /*x*/, int /*y*/) const { // FIXME: BROKEN! /* Dimension dim; int m = x + dim.width() / 2; cell(0).drawT(pain, m - dim0.width() / 2, y - dim0.des - 1); cell(1).drawT(pain, m - dim1.wid / 2, y + dim1.asc); // ASCII art: ignore niceties if (kind_ == FRAC || kind_ == OVER || kind_ == NICEFRAC || kind_ == UNITFRAC) pain.horizontalLine(x, y, dim.width()); */ } void InsetMathFrac::write(WriteStream & os) const { MathEnsurer ensurer(os); switch (kind_) { case ATOP: // \\atop is only for compatibility, \\binom is the // LaTeX2e successor os << '{' << cell(0) << "\\atop " << cell(1) << '}'; break; case OVER: // \\over is only for compatibility, normalize this to \\frac os << "\\frac{" << cell(0) << "}{" << cell(1) << '}'; break; case FRAC: case DFRAC: case TFRAC: case NICEFRAC: case CFRAC: case UNITFRAC: if (nargs() == 2) InsetMathNest::write(os); else os << "\\unitfrac[" << cell(2) << "]{" << cell(0) << "}{" << cell(1) << '}'; break; case UNIT: if (nargs() == 2) os << "\\unit[" << cell(0) << "]{" << cell(1) << '}'; else os << "\\unit{" << cell(0) << '}'; break; case CFRACLEFT: os << "\\cfrac[l]{" << cell(0) << "}{" << cell(1) << '}'; break; case CFRACRIGHT: os << "\\cfrac[r]{" << cell(0) << "}{" << cell(1) << '}'; break; } } docstring InsetMathFrac::name() const { switch (kind_) { case FRAC: return from_ascii("frac"); case CFRAC: case CFRACLEFT: case CFRACRIGHT: return from_ascii("cfrac"); case DFRAC: return from_ascii("dfrac"); case TFRAC: return from_ascii("tfrac"); case OVER: return from_ascii("over"); case NICEFRAC: return from_ascii("nicefrac"); case UNITFRAC: return from_ascii("unitfrac"); case UNIT: return from_ascii("unit"); case ATOP: return from_ascii("atop"); } // shut up stupid compiler return docstring(); } bool InsetMathFrac::extraBraces() const { return kind_ == ATOP || kind_ == OVER; } void InsetMathFrac::maple(MapleStream & os) const { os << '(' << cell(0) << ")/(" << cell(1) << ')'; } void InsetMathFrac::mathematica(MathematicaStream & os) const { os << '(' << cell(0) << ")/(" << cell(1) << ')'; } void InsetMathFrac::octave(OctaveStream & os) const { os << '(' << cell(0) << ")/(" << cell(1) << ')'; } void InsetMathFrac::mathmlize(MathStream & os) const { switch (kind_) { case DFRAC: os << MTag("mdfrac") << cell(0) << cell(1) << ETag("mdfrac"); break; case TFRAC: os << MTag("mtfrac") << cell(0) << cell(1) << ETag("mtfrac"); break; case FRAC: default: os << MTag("mfrac") << cell(0) << cell(1) << ETag("mfrac"); break; } } void InsetMathFrac::validate(LaTeXFeatures & features) const { if (kind_ == NICEFRAC || kind_ == UNITFRAC || kind_ == UNIT) features.require("units"); if (kind_ == CFRAC || kind_ == CFRACLEFT || kind_ == CFRACRIGHT || kind_ == DFRAC || kind_ == TFRAC) features.require("amsmath"); InsetMathNest::validate(features); } ///////////////////////////////////////////////////////////////////// // // InsetMathBinom // ///////////////////////////////////////////////////////////////////// InsetMathBinom::InsetMathBinom(Kind kind) : kind_(kind) {} Inset * InsetMathBinom::clone() const { return new InsetMathBinom(*this); } int InsetMathBinom::dw(int height) const { int w = height / 5; if (w > 15) w = 15; if (w < 6) w = 6; return w; } void InsetMathBinom::metrics(MetricsInfo & mi, Dimension & dim) const { Dimension dim0, dim1; // FIXME: for an unknown reason the cells must be set directly // after the StyleChanger and cannot be set after the if case if (kind_ == DBINOM) { StyleChanger dummy(mi.base, LM_ST_DISPLAY); cell(0).metrics(mi, dim0); cell(1).metrics(mi, dim1); } else if (kind_ == TBINOM) { StyleChanger dummy(mi.base, LM_ST_SCRIPT); cell(0).metrics(mi, dim0); cell(1).metrics(mi, dim1); } else { FracChanger dummy(mi.base); cell(0).metrics(mi, dim0); cell(1).metrics(mi, dim1); } dim.asc = dim0.height() + 4 + 5; dim.des = dim1.height() + 4 - 5; dim.wid = max(dim0.wid, dim1.wid) + 2 * dw(dim.height()) + 4; metricsMarkers2(dim); } void InsetMathBinom::draw(PainterInfo & pi, int x, int y) const { Dimension const dim = dimension(*pi.base.bv); Dimension const & dim0 = cell(0).dimension(*pi.base.bv); Dimension const & dim1 = cell(1).dimension(*pi.base.bv); // define the binom brackets docstring const bra = kind_ == BRACE ? from_ascii("{") : kind_ == BRACK ? from_ascii("[") : from_ascii("("); docstring const ket = kind_ == BRACE ? from_ascii("}") : kind_ == BRACK ? from_ascii("]") : from_ascii(")"); int m = x + dim.width() / 2; // FIXME: for an unknown reason the cells must be drawn directly // after the StyleChanger and cannot be drawn after the if case if (kind_ == DBINOM) { StyleChanger dummy(pi.base, LM_ST_DISPLAY); cell(0).draw(pi, m - dim0.wid / 2, y - dim0.des - 3 - 5); cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 3 - 5); } else if (kind_ == TBINOM) { StyleChanger dummy(pi.base, LM_ST_SCRIPT); cell(0).draw(pi, m - dim0.wid / 2, y - dim0.des - 3 - 5); cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 3 - 5); } else { FracChanger dummy2(pi.base); cell(0).draw(pi, m - dim0.wid / 2, y - dim0.des - 3 - 5); cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 3 - 5); } // draw the brackets and the marker mathed_draw_deco(pi, x, y - dim.ascent(), dw(dim.height()), dim.height(), bra); mathed_draw_deco(pi, x + dim.width() - dw(dim.height()), y - dim.ascent(), dw(dim.height()), dim.height(), ket); drawMarkers2(pi, x, y); } bool InsetMathBinom::extraBraces() const { return kind_ == CHOOSE || kind_ == BRACE || kind_ == BRACK; } void InsetMathBinom::write(WriteStream & os) const { MathEnsurer ensurer(os); switch (kind_) { case BINOM: os << "\\binom{" << cell(0) << "}{" << cell(1) << '}'; break; case DBINOM: os << "\\dbinom{" << cell(0) << "}{" << cell(1) << '}'; break; case TBINOM: os << "\\tbinom{" << cell(0) << "}{" << cell(1) << '}'; break; case CHOOSE: os << '{' << cell(0) << " \\choose " << cell(1) << '}'; break; case BRACE: os << '{' << cell(0) << " \\brace " << cell(1) << '}'; break; case BRACK: os << '{' << cell(0) << " \\brack " << cell(1) << '}'; break; } } void InsetMathBinom::normalize(NormalStream & os) const { os << "[binom " << cell(0) << ' ' << cell(1) << ']'; } void InsetMathBinom::mathmlize(MathStream & os) const { switch (kind_) { case BINOM: os << MTag("mbinom") << cell(0) << cell(1) << ETag("mbinom"); break; case TBINOM: os << MTag("mtbinom") << cell(0) << cell(1) << ETag("mtbinom"); break; case DBINOM: default: os << MTag("mdbinom") << cell(0) << cell(1) << ETag("mdbinom"); break; } } void InsetMathBinom::validate(LaTeXFeatures & features) const { if (kind_ == BINOM) features.require("binom"); if (kind_ == DBINOM || kind_ == TBINOM) features.require("amsmath"); InsetMathNest::validate(features); } } // namespace lyx