/** * \file Graph.cpp * This file is part of LyX, the document processor. * Licence details can be found in the file COPYING. * * \author Dekel Tsur (original code) * \author Richard Heck (re-implementation) * * Full author contact details are available in file CREDITS. */ #include #include "Graph.h" #include "Format.h" #include "support/debug.h" #include "support/lassert.h" #include using namespace std; namespace lyx { bool Graph::bfs_init(int s, bool clear_visited, queue & Q) { if (s < 0) return false; if (!Q.empty()) Q = queue(); if (clear_visited) { vector::iterator it = vertices_.begin(); vector::iterator en = vertices_.end(); for (; it != en; ++it) it->visited = false; } if (!vertices_[s].visited) { Q.push(s); vertices_[s].visited = true; } return true; } Graph::EdgePath const Graph::getReachableTo(int target, bool clear_visited) { EdgePath result; queue Q; if (!bfs_init(target, clear_visited, Q)) return result; // Here's the logic, which is shared by the other routines. // Q holds a list of nodes we have been able to reach (in this // case, reach backwards). It is initialized to the current node // by bfs_init, and then we recurse, adding the nodes we can reach // from the current node as we go. That makes it a breadth-first // search. while (!Q.empty()) { int const current = Q.front(); Q.pop(); if (current != target || formats.get(target).name() != "lyx") result.push_back(current); vector::iterator it = vertices_[current].in_arrows.begin(); vector::iterator const end = vertices_[current].in_arrows.end(); for (; it != end; ++it) { const int cv = (*it)->from; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q.push(cv); } } } return result; } Graph::EdgePath const Graph::getReachable(int from, bool only_viewable, bool clear_visited, set excludes) { EdgePath result; queue Q; if (!bfs_init(from, clear_visited, Q)) return result; while (!Q.empty()) { int const current = Q.front(); Q.pop(); Format const & format = formats.get(current); if (!only_viewable || !format.viewer().empty()) result.push_back(current); else if (format.isChildFormat()) { Format const * const parent = formats.getFormat(format.parentFormat()); if (parent && !parent->viewer().empty()) result.push_back(current); } vector::const_iterator cit = vertices_[current].out_arrows.begin(); vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = (*cit)->to; if (!vertices_[cv].visited) { vertices_[cv].visited = true; if (excludes.find(cv) == excludes.end()) Q.push(cv); } } } return result; } bool Graph::isReachable(int from, int to) { if (from == to) return true; queue Q; if (to < 0 || !bfs_init(from, true, Q)) return false; while (!Q.empty()) { int const current = Q.front(); Q.pop(); if (current == to) return true; vector::const_iterator cit = vertices_[current].out_arrows.begin(); vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = (*cit)->to; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q.push(cv); } } } return false; } Graph::EdgePath const Graph::getPath(int from, int to) { if (from == to) return EdgePath(); queue Q; if (to < 0 || !bfs_init(from, true, Q)) return EdgePath(); vector pathes; pathes.resize(vertices_.size()); while (!Q.empty()) { int const current = Q.front(); Q.pop(); vector::const_iterator cit = vertices_[current].out_arrows.begin(); vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = (*cit)->to; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q.push(cv); // NOTE If we wanted to collect all the paths, then // we just need to collect them here and not worry // about "visited". EdgePath lastpath = pathes[(*cit)->from]; lastpath.push_back((*cit)->id); pathes[cv] = lastpath; } if (cv == to) { return pathes[cv]; } } } // failure return EdgePath(); } void Graph::init(int size) { vertices_ = vector(size); arrows_.clear(); numedges_ = 0; } void Graph::addEdge(int from, int to) { arrows_.push_back(Arrow(from, to, numedges_)); numedges_++; Arrow * ar = &(arrows_.back()); vertices_[to].in_arrows.push_back(ar); vertices_[from].out_arrows.push_back(ar); } // At present, we do not need this debugging code, but // I am going to leave it here in case we need it again. #if 0 void Graph::dumpGraph() const { vector::const_iterator it = vertices_.begin(); vector::const_iterator en = vertices_.end(); for (; it != en; ++it) { LYXERR0("Next vertex..."); LYXERR0("In arrows..."); std::vector::const_iterator iit = it->in_arrows.begin(); std::vector::const_iterator ien = it->in_arrows.end(); for (; iit != ien; ++iit) LYXERR0("From " << (*iit)->from << " to " << (*iit)->to); LYXERR0("Out arrows..."); iit = it->out_arrows.begin(); ien = it->out_arrows.end(); for (; iit != ien; ++iit) LYXERR0("From " << (*iit)->from << " to " << (*iit)->to); } } #endif } // namespace lyx