/** * \file Graph.cpp * This file is part of LyX, the document processor. * Licence details can be found in the file COPYING. * * \author Dekel Tsur * * Full author contact details are available in file CREDITS. */ #include #include "Graph.h" #include "Format.h" #include using namespace std; namespace lyx { bool Graph::bfs_init(int s, bool clear_visited) { if (s < 0) return false; Q_ = queue(); if (clear_visited) { vector::iterator it = vertices_.begin(); vector::iterator en = vertices_.end(); for (; it != en; ++it) it->visited = false; } if (!vertices_[s].visited) { Q_.push(s); vertices_[s].visited = true; } return true; } vector const Graph::getReachableTo(int target, bool clear_visited) { vector result; if (!bfs_init(target, clear_visited)) return result; // Here's the logic, which is shared by the other routines. // Q_ holds a list of nodes we have been able to reach (in this // case, reach backwards). It is initialized to the current node // by bfs_init, and then we recurse, adding the nodes we can reach // from the current node as we go. That makes it a breadth-first // search. while (!Q_.empty()) { int const current = Q_.front(); Q_.pop(); if (current != target || formats.get(target).name() != "lyx") result.push_back(current); vector::iterator it = vertices_[current].in_arrows.begin(); vector::iterator const end = vertices_[current].in_arrows.end(); for (; it != end; ++it) { const int cv = it->vertex; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q_.push(cv); } } } return result; } vector const Graph::getReachable(int from, bool only_viewable, bool clear_visited) { vector result; if (!bfs_init(from, clear_visited)) return result; while (!Q_.empty()) { int const current = Q_.front(); Q_.pop(); Format const & format = formats.get(current); if (!only_viewable || !format.viewer().empty()) result.push_back(current); else if (format.isChildFormat()) { Format const * const parent = formats.getFormat(format.parentFormat()); if (parent && !parent->viewer().empty()) result.push_back(current); } vector::const_iterator cit = vertices_[current].out_arrows.begin(); vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = cit->vertex; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q_.push(cv); } } } return result; } bool Graph::isReachable(int from, int to) { if (from == to) return true; if (to < 0 || !bfs_init(from)) return false; while (!Q_.empty()) { int const current = Q_.front(); Q_.pop(); if (current == to) return true; vector::const_iterator cit = vertices_[current].out_arrows.begin(); vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = cit->vertex; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q_.push(cv); } } } return false; } Graph::EdgePath const Graph::getPath(int from, int to) { EdgePath path; if (from == to) return path; if (to < 0 || !bfs_init(from)) return path; // pair vector > prev(vertices_.size()); bool found = false; while (!Q_.empty()) { int const current = Q_.front(); Q_.pop(); vector::const_iterator const beg = vertices_[current].out_arrows.begin(); vector::const_iterator cit = beg; vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = cit->vertex; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q_.push(cv); // FIXME This will not do for finding multiple paths. // Perhaps we need a vector, or a set. We'll also want // to add this info, even if the node is visited, so // outside this conditional. prev[cv] = pair(current, cit->edge); } if (cv == to) { found = true; break; } } } if (!found) return path; while (to != from) { path.push_back(prev[to].second); to = prev[to].first; } reverse(path.begin(), path.end()); return path; } void Graph::init(int size) { vertices_ = vector(size); numedges_ = 0; } void Graph::addEdge(int from, int to) { vertices_[to].in_arrows.push_back(Arrow(from, numedges_)); vertices_[from].out_arrows.push_back(Arrow(to, numedges_)); ++numedges_; } } // namespace lyx