/** * \file Graph.cpp * This file is part of LyX, the document processor. * Licence details can be found in the file COPYING. * * \author Dekel Tsur (original code) * \author Richard Heck (re-implementation) * * Full author contact details are available in file CREDITS. */ #include #include "Graph.h" #include "Format.h" #include "support/debug.h" #include "support/lassert.h" #include using namespace std; namespace lyx { bool Graph::bfs_init(int s, bool clear_visited) { if (s < 0) return false; Q_ = queue(); if (clear_visited) { vector::iterator it = vertices_.begin(); vector::iterator en = vertices_.end(); for (; it != en; ++it) it->visited = false; } if (!vertices_[s].visited) { Q_.push(s); vertices_[s].visited = true; } return true; } void Graph::clearMarks() { Arrows::iterator it = arrows_.begin(); Arrows::iterator const en = arrows_.end(); for (; it != en; ++it) it->marked = false; } vector const Graph::getReachableTo(int target, bool clear_visited) { vector result; if (!bfs_init(target, clear_visited)) return result; // Here's the logic, which is shared by the other routines. // Q_ holds a list of nodes we have been able to reach (in this // case, reach backwards). It is initialized to the current node // by bfs_init, and then we recurse, adding the nodes we can reach // from the current node as we go. That makes it a breadth-first // search. while (!Q_.empty()) { int const current = Q_.front(); Q_.pop(); if (current != target || formats.get(target).name() != "lyx") result.push_back(current); vector::iterator it = vertices_[current].in_arrows.begin(); vector::iterator const end = vertices_[current].in_arrows.end(); for (; it != end; ++it) { const int cv = (*it)->from; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q_.push(cv); } } } return result; } vector const Graph::getReachable(int from, bool only_viewable, bool clear_visited) { vector result; if (!bfs_init(from, clear_visited)) return result; while (!Q_.empty()) { int const current = Q_.front(); Q_.pop(); Format const & format = formats.get(current); if (!only_viewable || !format.viewer().empty()) result.push_back(current); else if (format.isChildFormat()) { Format const * const parent = formats.getFormat(format.parentFormat()); if (parent && !parent->viewer().empty()) result.push_back(current); } vector::const_iterator cit = vertices_[current].out_arrows.begin(); vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = (*cit)->to; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q_.push(cv); } } } return result; } bool Graph::isReachable(int from, int to) { if (from == to) return true; if (to < 0 || !bfs_init(from)) return false; while (!Q_.empty()) { int const current = Q_.front(); Q_.pop(); if (current == to) return true; vector::const_iterator cit = vertices_[current].out_arrows.begin(); vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = (*cit)->to; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q_.push(cv); } } } return false; } Graph::EdgePath const Graph::getPath(int from, int to) { EdgePath path; if (from == to) return path; if (to < 0 || !bfs_init(from)) return path; // In effect, the way this works is that we construct a sub-graph // by starting at "from" and following the arrows outward. Instead // of actually constructing a sub-graph, though, we "mark" the // arrows we traverse as we go. Once we hit "to", we abort the // marking process and then call getMarkedPath() to reconstruct // the marked path. bool found = false; clearMarks(); while (!Q_.empty()) { int const current = Q_.front(); Q_.pop(); vector::const_iterator const beg = vertices_[current].out_arrows.begin(); vector::const_iterator cit = beg; vector::const_iterator end = vertices_[current].out_arrows.end(); for (; cit != end; ++cit) { int const cv = (*cit)->to; if (!vertices_[cv].visited) { vertices_[cv].visited = true; Q_.push(cv); (*cit)->marked = true; } if (cv == to) { found = true; break; } } } if (!found) return path; getMarkedPath(from, to, path); return path; } // We assume we have marked the graph, as in getPath(). We also // assume that we have done so in such a way as to guarantee a // marked path from "from" to "to". // We then start at "to" and find the arrow leading to it that // has been marked. We add that to the path we are constructing, // step back on that arrow, and continue the process (i.e., recurse). void Graph::getMarkedPath(int from, int to, EdgePath & path) { if (from == to) { reverse(path.begin(), path.end()); return; } // find marked in_arrow vector::const_iterator it = vertices_[to].in_arrows.begin(); vector::const_iterator en = vertices_[to].in_arrows.end(); for (; it != en; ++it) if ((*it)->marked) break; if (it == en) { LASSERT(false, /* */); return; } int const newnode = (*it)->from; path.push_back(newnode); getMarkedPath(from, newnode, path); } void Graph::init(int size) { vertices_ = vector(size); arrows_.clear(); numedges_ = 0; } void Graph::addEdge(int from, int to) { arrows_.push_back(Arrow(from, to, numedges_)); numedges_++; Arrow * ar = &(arrows_.back()); vertices_[to].in_arrows.push_back(ar); vertices_[from].out_arrows.push_back(ar); } } // namespace lyx