mirror of
https://git.lyx.org/repos/lyx.git
synced 2024-11-06 00:10:59 +00:00
e1644a68eb
git-svn-id: svn://svn.lyx.org/lyx/lyx-devel/trunk@6319 a592a061-630c-0410-9148-cb99ea01b6c8
525 lines
15 KiB
C++
525 lines
15 KiB
C++
// Boost rational.hpp header file ------------------------------------------//
|
|
|
|
// (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
|
|
// distribute this software is granted provided this copyright notice appears
|
|
// in all copies. This software is provided "as is" without express or
|
|
// implied warranty, and with no claim as to its suitability for any purpose.
|
|
|
|
// See http://www.boost.org/libs/rational for documentation.
|
|
|
|
// Credits:
|
|
// Thanks to the boost mailing list in general for useful comments.
|
|
// Particular contributions included:
|
|
// Andrew D Jewell, for reminding me to take care to avoid overflow
|
|
// Ed Brey, for many comments, including picking up on some dreadful typos
|
|
// Stephen Silver contributed the test suite and comments on user-defined
|
|
// IntType
|
|
// Nickolay Mladenov, for the implementation of operator+=
|
|
|
|
// Revision History
|
|
// 28 Sep 02 Use _left versions of operators from operators.hpp
|
|
// 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
|
|
// 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
|
|
// 05 Feb 01 Update operator>> to tighten up input syntax
|
|
// 05 Feb 01 Final tidy up of gcd code prior to the new release
|
|
// 27 Jan 01 Recode abs() without relying on abs(IntType)
|
|
// 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
|
|
// tidy up a number of areas, use newer features of operators.hpp
|
|
// (reduces space overhead to zero), add operator!,
|
|
// introduce explicit mixed-mode arithmetic operations
|
|
// 12 Jan 01 Include fixes to handle a user-defined IntType better
|
|
// 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
|
|
// 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
|
|
// 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
|
|
// affected (Beman Dawes)
|
|
// 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
|
|
// 14 Dec 99 Modifications based on comments from the boost list
|
|
// 09 Dec 99 Initial Version (Paul Moore)
|
|
|
|
#ifndef BOOST_RATIONAL_HPP
|
|
#define BOOST_RATIONAL_HPP
|
|
|
|
#include <iostream> // for std::istream and std::ostream
|
|
#include <iomanip> // for std::noskipws
|
|
#include <stdexcept> // for std::domain_error
|
|
#include <string> // for std::string implicit constructor
|
|
#include <boost/operators.hpp> // for boost::addable etc
|
|
#include <cstdlib> // for std::abs
|
|
#include <boost/call_traits.hpp> // for boost::call_traits
|
|
#include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
|
|
|
|
namespace boost {
|
|
|
|
// Note: We use n and m as temporaries in this function, so there is no value
|
|
// in using const IntType& as we would only need to make a copy anyway...
|
|
template <typename IntType>
|
|
IntType gcd(IntType n, IntType m)
|
|
{
|
|
// Avoid repeated construction
|
|
IntType zero(0);
|
|
|
|
// This is abs() - given the existence of broken compilers with Koenig
|
|
// lookup issues and other problems, I code this explicitly. (Remember,
|
|
// IntType may be a user-defined type).
|
|
if (n < zero)
|
|
n = -n;
|
|
if (m < zero)
|
|
m = -m;
|
|
|
|
// As n and m are now positive, we can be sure that %= returns a
|
|
// positive value (the standard guarantees this for built-in types,
|
|
// and we require it of user-defined types).
|
|
for(;;) {
|
|
if(m == zero)
|
|
return n;
|
|
n %= m;
|
|
if(n == zero)
|
|
return m;
|
|
m %= n;
|
|
}
|
|
}
|
|
|
|
template <typename IntType>
|
|
IntType lcm(IntType n, IntType m)
|
|
{
|
|
// Avoid repeated construction
|
|
IntType zero(0);
|
|
|
|
if (n == zero || m == zero)
|
|
return zero;
|
|
|
|
n /= gcd(n, m);
|
|
n *= m;
|
|
|
|
if (n < zero)
|
|
n = -n;
|
|
return n;
|
|
}
|
|
|
|
class bad_rational : public std::domain_error
|
|
{
|
|
public:
|
|
explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
|
|
};
|
|
|
|
template <typename IntType>
|
|
class rational;
|
|
|
|
template <typename IntType>
|
|
rational<IntType> abs(const rational<IntType>& r);
|
|
|
|
template <typename IntType>
|
|
class rational :
|
|
less_than_comparable < rational<IntType>,
|
|
equality_comparable < rational<IntType>,
|
|
less_than_comparable2 < rational<IntType>, IntType,
|
|
equality_comparable2 < rational<IntType>, IntType,
|
|
addable < rational<IntType>,
|
|
subtractable < rational<IntType>,
|
|
multipliable < rational<IntType>,
|
|
dividable < rational<IntType>,
|
|
addable2 < rational<IntType>, IntType,
|
|
subtractable2 < rational<IntType>, IntType,
|
|
subtractable2_left < rational<IntType>, IntType,
|
|
multipliable2 < rational<IntType>, IntType,
|
|
dividable2 < rational<IntType>, IntType,
|
|
dividable2_left < rational<IntType>, IntType,
|
|
incrementable < rational<IntType>,
|
|
decrementable < rational<IntType>
|
|
> > > > > > > > > > > > > > > >
|
|
{
|
|
typedef IntType int_type;
|
|
typedef typename boost::call_traits<IntType>::param_type param_type;
|
|
|
|
public:
|
|
rational() : num(0), den(1) {}
|
|
rational(param_type n) : num(n), den(1) {}
|
|
rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
|
|
|
|
// Default copy constructor and assignment are fine
|
|
|
|
// Add assignment from IntType
|
|
rational& operator=(param_type n) { return assign(n, 1); }
|
|
|
|
// Assign in place
|
|
rational& assign(param_type n, param_type d);
|
|
|
|
// Access to representation
|
|
IntType numerator() const { return num; }
|
|
IntType denominator() const { return den; }
|
|
|
|
// Arithmetic assignment operators
|
|
rational& operator+= (const rational& r);
|
|
rational& operator-= (const rational& r);
|
|
rational& operator*= (const rational& r);
|
|
rational& operator/= (const rational& r);
|
|
|
|
rational& operator+= (param_type i);
|
|
rational& operator-= (param_type i);
|
|
rational& operator*= (param_type i);
|
|
rational& operator/= (param_type i);
|
|
|
|
// Increment and decrement
|
|
const rational& operator++();
|
|
const rational& operator--();
|
|
|
|
// Operator not
|
|
bool operator!() const { return !num; }
|
|
|
|
// Comparison operators
|
|
bool operator< (const rational& r) const;
|
|
bool operator== (const rational& r) const;
|
|
|
|
bool operator< (param_type i) const;
|
|
bool operator> (param_type i) const;
|
|
bool operator== (param_type i) const;
|
|
|
|
private:
|
|
// Implementation - numerator and denominator (normalized).
|
|
// Other possibilities - separate whole-part, or sign, fields?
|
|
IntType num;
|
|
IntType den;
|
|
|
|
// Representation note: Fractions are kept in normalized form at all
|
|
// times. normalized form is defined as gcd(num,den) == 1 and den > 0.
|
|
// In particular, note that the implementation of abs() below relies
|
|
// on den always being positive.
|
|
void normalize();
|
|
};
|
|
|
|
// Assign in place
|
|
template <typename IntType>
|
|
inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
|
|
{
|
|
num = n;
|
|
den = d;
|
|
normalize();
|
|
return *this;
|
|
}
|
|
|
|
// Unary plus and minus
|
|
template <typename IntType>
|
|
inline rational<IntType> operator+ (const rational<IntType>& r)
|
|
{
|
|
return r;
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline rational<IntType> operator- (const rational<IntType>& r)
|
|
{
|
|
return rational<IntType>(-r.numerator(), r.denominator());
|
|
}
|
|
|
|
// Arithmetic assignment operators
|
|
template <typename IntType>
|
|
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
|
|
{
|
|
// This calculation avoids overflow, and minimises the number of expensive
|
|
// calculations. Thanks to Nickolay Mladenov for this algorithm.
|
|
//
|
|
// Proof:
|
|
// We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
|
|
// Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
|
|
//
|
|
// The result is (a*d1 + c*b1) / (b1*d1*g).
|
|
// Now we have to normalize this ratio.
|
|
// Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
|
|
// If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
|
|
// But since gcd(a,b1)=1 we have h=1.
|
|
// Similarly h|d1 leads to h=1.
|
|
// So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
|
|
// Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
|
|
// Which proves that instead of normalizing the result, it is better to
|
|
// divide num and den by gcd((a*d1 + c*b1), g)
|
|
|
|
// Protect against self-modification
|
|
IntType r_num = r.num;
|
|
IntType r_den = r.den;
|
|
|
|
IntType g = gcd(den, r_den);
|
|
den /= g; // = b1 from the calculations above
|
|
num = num * (r_den / g) + r_num * den;
|
|
g = gcd(num, g);
|
|
num /= g;
|
|
den *= r_den/g;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <typename IntType>
|
|
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
|
|
{
|
|
// Protect against self-modification
|
|
IntType r_num = r.num;
|
|
IntType r_den = r.den;
|
|
|
|
// This calculation avoids overflow, and minimises the number of expensive
|
|
// calculations. It corresponds exactly to the += case above
|
|
IntType g = gcd(den, r_den);
|
|
den /= g;
|
|
num = num * (r_den / g) - r_num * den;
|
|
g = gcd(num, g);
|
|
num /= g;
|
|
den *= r_den/g;
|
|
|
|
return *this;
|
|
}
|
|
|
|
template <typename IntType>
|
|
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
|
|
{
|
|
// Protect against self-modification
|
|
IntType r_num = r.num;
|
|
IntType r_den = r.den;
|
|
|
|
// Avoid overflow and preserve normalization
|
|
IntType gcd1 = gcd<IntType>(num, r_den);
|
|
IntType gcd2 = gcd<IntType>(r_num, den);
|
|
num = (num/gcd1) * (r_num/gcd2);
|
|
den = (den/gcd2) * (r_den/gcd1);
|
|
return *this;
|
|
}
|
|
|
|
template <typename IntType>
|
|
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
|
|
{
|
|
// Protect against self-modification
|
|
IntType r_num = r.num;
|
|
IntType r_den = r.den;
|
|
|
|
// Avoid repeated construction
|
|
IntType zero(0);
|
|
|
|
// Trap division by zero
|
|
if (r_num == zero)
|
|
throw bad_rational();
|
|
if (num == zero)
|
|
return *this;
|
|
|
|
// Avoid overflow and preserve normalization
|
|
IntType gcd1 = gcd<IntType>(num, r_num);
|
|
IntType gcd2 = gcd<IntType>(r_den, den);
|
|
num = (num/gcd1) * (r_den/gcd2);
|
|
den = (den/gcd2) * (r_num/gcd1);
|
|
|
|
if (den < zero) {
|
|
num = -num;
|
|
den = -den;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Mixed-mode operators
|
|
template <typename IntType>
|
|
inline rational<IntType>&
|
|
rational<IntType>::operator+= (param_type i)
|
|
{
|
|
return operator+= (rational<IntType>(i));
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline rational<IntType>&
|
|
rational<IntType>::operator-= (param_type i)
|
|
{
|
|
return operator-= (rational<IntType>(i));
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline rational<IntType>&
|
|
rational<IntType>::operator*= (param_type i)
|
|
{
|
|
return operator*= (rational<IntType>(i));
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline rational<IntType>&
|
|
rational<IntType>::operator/= (param_type i)
|
|
{
|
|
return operator/= (rational<IntType>(i));
|
|
}
|
|
|
|
// Increment and decrement
|
|
template <typename IntType>
|
|
inline const rational<IntType>& rational<IntType>::operator++()
|
|
{
|
|
// This can never denormalise the fraction
|
|
num += den;
|
|
return *this;
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline const rational<IntType>& rational<IntType>::operator--()
|
|
{
|
|
// This can never denormalise the fraction
|
|
num -= den;
|
|
return *this;
|
|
}
|
|
|
|
// Comparison operators
|
|
template <typename IntType>
|
|
bool rational<IntType>::operator< (const rational<IntType>& r) const
|
|
{
|
|
// Avoid repeated construction
|
|
IntType zero(0);
|
|
|
|
// If the two values have different signs, we don't need to do the
|
|
// expensive calculations below. We take advantage here of the fact
|
|
// that the denominator is always positive.
|
|
if (num < zero && r.num >= zero) // -ve < +ve
|
|
return true;
|
|
if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero
|
|
return false;
|
|
|
|
// Avoid overflow
|
|
IntType gcd1 = gcd<IntType>(num, r.num);
|
|
IntType gcd2 = gcd<IntType>(r.den, den);
|
|
return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1);
|
|
}
|
|
|
|
template <typename IntType>
|
|
bool rational<IntType>::operator< (param_type i) const
|
|
{
|
|
// Avoid repeated construction
|
|
IntType zero(0);
|
|
|
|
// If the two values have different signs, we don't need to do the
|
|
// expensive calculations below. We take advantage here of the fact
|
|
// that the denominator is always positive.
|
|
if (num < zero && i >= zero) // -ve < +ve
|
|
return true;
|
|
if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero
|
|
return false;
|
|
|
|
// Now, use the fact that n/d truncates towards zero as long as n and d
|
|
// are both positive.
|
|
// Divide instead of multiplying to avoid overflow issues. Of course,
|
|
// division may be slower, but accuracy is more important than speed...
|
|
if (num > zero)
|
|
return (num/den) < i;
|
|
else
|
|
return -i < (-num/den);
|
|
}
|
|
|
|
template <typename IntType>
|
|
bool rational<IntType>::operator> (param_type i) const
|
|
{
|
|
// Trap equality first
|
|
if (num == i && den == IntType(1))
|
|
return false;
|
|
|
|
// Otherwise, we can use operator<
|
|
return !operator<(i);
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
|
|
{
|
|
return ((num == r.num) && (den == r.den));
|
|
}
|
|
|
|
template <typename IntType>
|
|
inline bool rational<IntType>::operator== (param_type i) const
|
|
{
|
|
return ((den == IntType(1)) && (num == i));
|
|
}
|
|
|
|
// Normalisation
|
|
template <typename IntType>
|
|
void rational<IntType>::normalize()
|
|
{
|
|
// Avoid repeated construction
|
|
IntType zero(0);
|
|
|
|
if (den == zero)
|
|
throw bad_rational();
|
|
|
|
// Handle the case of zero separately, to avoid division by zero
|
|
if (num == zero) {
|
|
den = IntType(1);
|
|
return;
|
|
}
|
|
|
|
IntType g = gcd<IntType>(num, den);
|
|
|
|
num /= g;
|
|
den /= g;
|
|
|
|
// Ensure that the denominator is positive
|
|
if (den < zero) {
|
|
num = -num;
|
|
den = -den;
|
|
}
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
// A utility class to reset the format flags for an istream at end
|
|
// of scope, even in case of exceptions
|
|
struct resetter {
|
|
resetter(std::istream& is) : is_(is), f_(is.flags()) {}
|
|
~resetter() { is_.flags(f_); }
|
|
std::istream& is_;
|
|
std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
|
|
};
|
|
|
|
}
|
|
|
|
// Input and output
|
|
template <typename IntType>
|
|
std::istream& operator>> (std::istream& is, rational<IntType>& r)
|
|
{
|
|
IntType n = IntType(0), d = IntType(1);
|
|
char c = 0;
|
|
detail::resetter sentry(is);
|
|
|
|
is >> n;
|
|
c = is.get();
|
|
|
|
if (c != '/')
|
|
is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base
|
|
|
|
#if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
|
|
is >> std::noskipws;
|
|
#else
|
|
is.unsetf(ios::skipws); // compiles, but seems to have no effect.
|
|
#endif
|
|
is >> d;
|
|
|
|
if (is)
|
|
r.assign(n, d);
|
|
|
|
return is;
|
|
}
|
|
|
|
// Add manipulators for output format?
|
|
template <typename IntType>
|
|
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
|
|
{
|
|
os << r.numerator() << '/' << r.denominator();
|
|
return os;
|
|
}
|
|
|
|
// Type conversion
|
|
template <typename T, typename IntType>
|
|
inline T rational_cast(const rational<IntType>& src)
|
|
{
|
|
return static_cast<T>(src.numerator())/src.denominator();
|
|
}
|
|
|
|
// Do not use any abs() defined on IntType - it isn't worth it, given the
|
|
// difficulties involved (Koenig lookup required, there may not *be* an abs()
|
|
// defined, etc etc).
|
|
template <typename IntType>
|
|
inline rational<IntType> abs(const rational<IntType>& r)
|
|
{
|
|
if (r.numerator() >= IntType(0))
|
|
return r;
|
|
|
|
return rational<IntType>(-r.numerator(), r.denominator());
|
|
}
|
|
|
|
} // namespace boost
|
|
|
|
#endif // BOOST_RATIONAL_HPP
|
|
|