lyx_mirror/src/Encoding.cpp
Scott Kostyshak 10403b7959 Amend 04bfbc0f
Patch from Udi.
2023-09-30 20:20:03 -04:00

985 lines
28 KiB
C++

/**
* \file Encoding.cpp
* This file is part of LyX, the document processor.
* Licence details can be found in the file COPYING.
*
* \author Lars Gullik Bjønnes
* \author Jean-Marc Lasgouttes
* \author Dekel Tsur
*
* Full author contact details are available in file CREDITS.
*/
#include <config.h>
#include "Encoding.h"
#include "Lexer.h"
#include "support/debug.h"
#include "support/docstring.h"
#include "support/gettext.h"
#include "support/lstrings.h"
#include "support/mutex.h"
#include "support/textutils.h"
#include "support/unicode.h"
#include <algorithm>
#include <cstdint>
#include <iterator>
#include <sstream>
using namespace std;
using namespace lyx::support;
namespace lyx {
int const Encoding::any = -1;
Encodings encodings;
Encodings::MathCommandSet Encodings::mathcmd;
Encodings::TextCommandSet Encodings::textcmd;
Encodings::MathSymbolSet Encodings::mathsym;
namespace {
typedef map<char_type, CharInfo> CharInfoMap;
CharInfoMap unicodesymbols;
typedef set<char_type> CharSet;
typedef map<string, CharSet> CharSetMap;
CharSet forced;
CharSetMap forcedSelected;
typedef set<char_type> MathAlphaSet;
MathAlphaSet mathalpha;
/// The highest code point in UCS4 encoding (1<<20 + 1<<16)
char_type const max_ucs4 = 0x110000;
} // namespace
EncodingException::EncodingException(char_type c)
: failed_char(c), par_id(0), pos(0)
{
}
const char * EncodingException::what() const noexcept
{
return "Could not find LaTeX command for a character";
}
CharInfo::CharInfo(
docstring const & text_command, docstring const & math_command,
std::string const & text_preamble, std::string const & math_preamble,
std::string const & tipa_shortcut, unsigned int flags)
: text_commands_({text_command}), math_commands_({math_command}),
text_preamble_(text_preamble), math_preamble_(math_preamble),
tipa_shortcut_(tipa_shortcut), flags_(flags)
{
}
CharInfo::CharInfo(
std::vector<docstring> const & text_commands, std::vector<docstring> const & math_commands,
std::string const & text_preamble, std::string const & math_preamble,
std::string const & tipa_shortcut, unsigned int flags)
: text_commands_(text_commands), math_commands_(math_commands),
text_preamble_(text_preamble), math_preamble_(math_preamble),
tipa_shortcut_(tipa_shortcut), flags_(flags)
{
}
Encoding::Encoding(string const & n, string const & l, string const & g,
string const & i, bool f, bool u, Encoding::Package p)
: name_(n), latexName_(l), guiName_(g), iconvName_(i), fixedwidth_(f),
unsafe_(u), forced_(&forcedSelected[n]), package_(p)
{
if (n == "ascii") {
// ASCII can encode 128 code points and nothing else
start_encodable_ = 128;
complete_ = true;
} else if (i == "UTF-8") {
// UTF8 can encode all UCS4 code points
start_encodable_ = max_ucs4;
complete_ = true;
} else {
start_encodable_ = 0;
complete_ = false;
}
}
void Encoding::init() const
{
// Since the the constructor is the only method which sets complete_
// to false the test for complete_ is thread-safe without mutex.
if (complete_)
return;
static Mutex mutex;
Mutex::Locker lock(&mutex);
// We need to test again for complete_, since another thread could
// have set it to true while we were waiting for the lock and we must
// not modify an encoding which is already complete.
if (complete_)
return;
// We do not make any member mutable so that it can be easily verified
// that all const methods are thread-safe: init() is the only const
// method which changes complete_, encodable_ and start_encodable_, and
// it uses a mutex to ensure thread-safety.
CharSet & encodable = const_cast<Encoding *>(this)->encodable_;
char_type & start_encodable = const_cast<Encoding *>(this)->start_encodable_;
start_encodable = 0;
// temporarily switch off lyxerr, since we will generate iconv errors
lyxerr.disable();
if (fixedwidth_) {
// We do not need to check all UCS4 code points, it is enough
// if we check all 256 code points of this encoding.
for (unsigned short j = 0; j < 256; ++j) {
char const c = char(j);
vector<char_type> const ucs4 = eightbit_to_ucs4(&c, 1, iconvName_);
if (ucs4.size() != 1)
continue;
char_type const uc = ucs4[0];
CharInfoMap::const_iterator const it = unicodesymbols.find(uc);
if (it == unicodesymbols.end())
encodable.insert(uc);
else if (!it->second.force()) {
if (forced_->empty() || forced_->find(uc) == forced_->end())
encodable.insert(uc);
}
}
} else {
// We do not know how many code points this encoding has, and
// they do not have a direct representation as a single byte,
// therefore we need to check all UCS4 code points.
// This is expensive!
for (char_type c = 0; c < max_ucs4; ++c) {
vector<char> const eightbit = ucs4_to_eightbit(&c, 1, iconvName_);
if (!eightbit.empty()) {
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it == unicodesymbols.end())
encodable.insert(c);
else if (!it->second.force()) {
if (forced_->empty() || forced_->find(c) == forced_->end())
encodable.insert(c);
}
}
}
}
lyxerr.enable();
CharSet::iterator it = encodable.find(start_encodable);
while (it != encodable.end()) {
encodable.erase(it);
++start_encodable;
it = encodable.find(start_encodable);
}
const_cast<Encoding *>(this)->complete_ = true;
}
bool Encoding::isForced(char_type c) const
{
if (!forced.empty() && forced.find(c) != forced.end())
return true;
return !forced_->empty() && forced_->find(c) != forced_->end();
}
bool Encoding::encodable(char_type c) const
{
// assure the used encoding is properly initialized
init();
if (iconvName_ == "UTF-8" && package_ == none)
return true;
// platex does not load inputenc: force conversion of supported characters
if (package_ == Encoding::japanese
&& ((0xb7 <= c && c <= 0x05ff) // Latin-1 Supplement ... Hebrew
|| (0x1d00 <= c && c <= 0x218f) // Phonetic Extensions ... Number Forms
|| (0x2193 <= c && c <= 0x2aff) // Arrows ... Supplemental Mathematical Operators
|| (0xfb00 <= c && c <= 0xfb4f) // Alphabetic Presentation Forms
|| (0x1d400 <= c && c <= 0x1d7ff))) // Mathematical Alphanumeric Symbols
return false;
if (c < start_encodable_ && !isForced(c))
return true;
if (encodable_.find(c) != encodable_.end())
return true;
return false;
}
pair<docstring, bool> Encoding::latexChar(char_type c) const
{
if (encodable(c))
return make_pair(docstring(1, c), false);
// c cannot (or should not) be encoded in this encoding
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it == unicodesymbols.end())
throw EncodingException(c);
// at least one of mathCommand and textCommand is nonempty
if (it->second.textCommand().empty())
return make_pair(
"\\ensuremath{" + it->second.mathCommand() + '}', false);
return make_pair(it->second.textCommand(), !it->second.textNoTermination());
}
pair<docstring, docstring> Encoding::latexString(docstring const & input, bool dryrun) const
{
docstring result;
docstring uncodable;
bool terminate = false;
for (char_type const c : input) {
try {
pair<docstring, bool> latex_char = latexChar(c);
docstring const latex = latex_char.first;
if (terminate && !prefixIs(latex, '\\')
&& !prefixIs(latex, '{')
&& !prefixIs(latex, '}')) {
// Prevent eating of a following
// space or command corruption by
// following characters
if (latex == " ")
result += "{}";
else
result += " ";
}
result += latex;
terminate = latex_char.second;
} catch (EncodingException & /* e */) {
LYXERR0("Uncodable character <" << docstring(1, c)
<< "> in latexString!");
if (dryrun) {
result += "<" + _("LyX Warning: ")
+ _("uncodable character") + " '";
result += docstring(1, c);
result += "'>";
} else
uncodable += c;
}
}
return make_pair(result, uncodable);
}
vector<char_type> Encoding::symbolsList() const
{
// assure the used encoding is properly initialized
init();
// first all those below start_encodable_
vector<char_type> symbols;
for (char_type c = 0; c < start_encodable_; ++c)
symbols.push_back(c);
// add all encodable characters
copy(encodable_.begin(), encodable_.end(), back_inserter(symbols));
// now the ones from the unicodesymbols file that are not already there
for (auto const & elem : unicodesymbols) {
if (find(symbols.begin(), symbols.end(), elem.first) == symbols.end())
symbols.push_back(elem.first);
}
// finally, sort the vector
sort(symbols.begin(), symbols.end());
return symbols;
}
bool Encodings::latexMathChar(char_type c, bool mathmode,
Encoding const * encoding, docstring & command,
bool & needsTermination)
{
command = empty_docstring();
if (encoding)
if (encoding->encodable(c))
command = docstring(1, c);
needsTermination = false;
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it == unicodesymbols.end()) {
if (!encoding || command.empty())
throw EncodingException(c);
if (mathmode)
addMathSym(c);
return false;
}
// at least one of mathCommand and textCommand is nonempty
bool use_math = (mathmode && !it->second.mathCommand().empty()) ||
(!mathmode && it->second.textCommand().empty());
if (use_math) {
command = it->second.mathCommand();
needsTermination = !it->second.mathNoTermination();
addMathCmd(c);
} else {
if (!encoding || command.empty()) {
command = it->second.textCommand();
needsTermination = !it->second.textNoTermination();
}
if (mathmode)
addMathSym(c);
else
addTextCmd(c);
}
return use_math;
}
char_type Encodings::fromLaTeXCommand(docstring const & cmd, int cmdtype,
bool & combining, bool & needsTermination, set<string> * req)
{
CharInfoMap::const_iterator const end = unicodesymbols.end();
CharInfoMap::const_iterator it = unicodesymbols.begin();
for (combining = false; it != end; ++it) {
if (it->second.deprecated())
continue;
if (cmdtype & MATH_CMD) {
for (const docstring& math : it->second.mathCommands()) {
if ((cmdtype & MATH_CMD) && math == cmd) {
combining = it->second.combining();
needsTermination = !it->second.mathNoTermination();
if (req && it->second.mathFeature() &&
!it->second.mathPreamble().empty())
req->insert(it->second.mathPreamble());
return it->first;
}
}
}
if (cmdtype & TEXT_CMD) {
for (const docstring& text : it->second.textCommands()) {
if (text == cmd) {
combining = it->second.combining();
needsTermination = !it->second.textNoTermination();
if (req && it->second.textFeature() &&
!it->second.textPreamble().empty())
req->insert(it->second.textPreamble());
return it->first;
}
}
}
}
needsTermination = false;
return 0;
}
docstring Encodings::fromLaTeXCommand(docstring const & cmd, int cmdtype,
bool & needsTermination, docstring & rem, set<string> * req)
{
needsTermination = false;
rem = empty_docstring();
bool const mathmode = cmdtype & MATH_CMD;
bool const textmode = cmdtype & TEXT_CMD;
// Easy case: the command is a complete entry of unicodesymbols.
for (const auto & unicodeSymbol : unicodesymbols) {
if (mathmode) {
for (const auto & command : unicodeSymbol.second.mathCommands()) {
if (command == cmd) {
docstring value;
value += unicodeSymbol.first;
needsTermination = !unicodeSymbol.second.mathNoTermination();
if (req && unicodeSymbol.second.mathFeature()
&& !unicodeSymbol.second.mathPreamble().empty())
req->insert(unicodeSymbol.second.mathPreamble());
return value;
}
}
}
if (textmode) {
for (const auto & command : unicodeSymbol.second.textCommands()) {
if (command == cmd) {
docstring value;
value += unicodeSymbol.first;
needsTermination = !unicodeSymbol.second.textNoTermination();
if (req && unicodeSymbol.second.textFeature()
&& !unicodeSymbol.second.textPreamble().empty())
req->insert(unicodeSymbol.second.textPreamble());
return value;
}
}
}
}
// Otherwise, try to map as many commands as possible, matching prefixes of the command.
docstring symbols;
size_t const cmdend = cmd.size();
size_t prefix = 0;
CharInfoMap::const_iterator const uniend = unicodesymbols.end();
for (size_t i = 0, j = 0; j < cmdend; ++j) {
// Also get the char after a backslash
if (j + 1 < cmdend && cmd[j] == '\\') {
++j;
prefix = 1;
// Detect things like \=*{e} as well
if (j + 3 < cmdend && cmd[j+1] == '*' &&
cmd[j+2] == '{') {
++j;
prefix = 2;
}
}
// position of the last character before a possible macro
// argument
size_t m = j;
// If a macro argument follows, get it, too
// Do it here only for single character commands. Other
// combining commands need this too, but they are handled in
// the loop below for performance reasons.
if (j + 1 < cmdend && cmd[j + 1] == '{') {
size_t k = j + 1;
int count = 1;
while (k < cmdend && count) {
k = cmd.find_first_of(from_ascii("{}"), k + 1);
// braces may not be balanced
if (k == docstring::npos)
break;
if (cmd[k] == '{')
++count;
else
--count;
}
if (k != docstring::npos)
j = k;
} else if (m + 1 < cmdend && isAlphaASCII(cmd[m])) {
while (m + 2 < cmdend && isAlphaASCII(cmd[m+1]))
m++;
}
// Start with this substring and try augmenting it when it is
// the prefix of some command in the unicodesymbols file
docstring subcmd = cmd.substr(i, j - i + 1);
// First part of subcmd which might be a combining character
docstring combcmd = (m == j) ? docstring() : cmd.substr(i, m - i + 1);
// The combining character of combcmd if it exists
size_t unicmd_size = 0;
char_type c = 0;
CharInfoMap::const_iterator it = unicodesymbols.begin();
CharInfoMap::const_iterator combining = uniend;
for (; it != uniend; ++it) {
if (it->second.deprecated())
continue;
docstring const math = mathmode ? it->second.mathCommand()
: docstring();
docstring const text = textmode ? it->second.textCommand()
: docstring();
if (!combcmd.empty() && it->second.combining() &&
(math == combcmd || text == combcmd))
combining = it;
size_t cur_size = max(math.size(), text.size());
// The current math or text unicode command cannot
// match, or we already matched a longer one
if (cur_size < subcmd.size() || cur_size <= unicmd_size)
continue;
docstring tmp = subcmd;
size_t k = j;
while (prefixIs(math, tmp) || prefixIs(text, tmp)) {
++k;
if (k >= cmdend || cur_size <= tmp.size())
break;
tmp += cmd[k];
}
// No match
if (k == j)
continue;
// The last added char caused a mismatch, because
// we didn't exhaust the chars in cmd and didn't
// exceed the maximum size of the current unicmd
if (k < cmdend && cur_size > tmp.size())
tmp.resize(tmp.size() - 1);
// If this is an exact match, we found a (longer)
// matching entry in the unicodesymbols file.
if (math != tmp && text != tmp)
continue;
// If we found a combining command, we need to append
// the macro argument if this has not been done above.
if (tmp == combcmd && combining != uniend &&
k < cmdend && cmd[k] == '{') {
size_t l = k;
int count = 1;
while (l < cmdend && count) {
l = cmd.find_first_of(from_ascii("{}"), l + 1);
// braces may not be balanced
if (l == docstring::npos)
break;
if (cmd[l] == '{')
++count;
else
--count;
}
if (l != docstring::npos) {
j = l;
subcmd = cmd.substr(i, j - i + 1);
}
}
// If the entry doesn't start with '\', we take note
// of the match and continue (this is not a ultimate
// acceptance, as some other entry may match a longer
// portion of the cmd string). However, if the entry
// does start with '\', we accept the match only if
// this is a valid macro, i.e., either it is a single
// (nonletter) char macro, or nothing else follows,
// or what follows is a nonletter char, or the last
// character is a }.
else if (tmp[0] != '\\'
|| (tmp.size() == prefix + 1 &&
!isAlphaASCII(tmp[1]) &&
(prefix == 1 || !isAlphaASCII(tmp[2])))
|| k == cmdend
|| !isAlphaASCII(cmd[k])
|| tmp[tmp.size() - 1] == '}'
) {
c = it->first;
j = k - 1;
i = j + 1;
unicmd_size = cur_size;
if (math == tmp)
needsTermination = !it->second.mathNoTermination();
else
needsTermination = !it->second.textNoTermination();
if (req) {
if (math == tmp && it->second.mathFeature() &&
!it->second.mathPreamble().empty())
req->insert(it->second.mathPreamble());
if (text == tmp && it->second.textFeature() &&
!it->second.textPreamble().empty())
req->insert(it->second.textPreamble());
}
}
}
if (unicmd_size)
symbols += c;
else if (combining != uniend &&
prefixIs(subcmd, combcmd + '{')) {
// We know that subcmd starts with combcmd and
// contains an argument in braces.
docstring const arg = subcmd.substr(
combcmd.length() + 1,
subcmd.length() - combcmd.length() - 2);
// If arg is a single character we can construct a
// combining sequence.
char_type a;
bool argcomb = false;
if (arg.size() == 1 && isAlnumASCII(arg[0]))
a = arg[0];
else {
// Use the version of fromLaTeXCommand() that
// parses only one command, since we cannot
// use more than one character.
bool dummy = false;
set<string> r;
a = fromLaTeXCommand(arg, cmdtype, argcomb,
dummy, &r);
if (a && req && !argcomb)
req->insert(r.begin(), r.end());
}
if (a && !argcomb) {
// In unicode the combining character comes
// after its base
symbols += a;
symbols += combining->first;
i = j + 1;
unicmd_size = 2;
}
}
if (j + 1 == cmdend && !unicmd_size) {
// No luck. Return what remains
rem = cmd.substr(i);
if (needsTermination && !rem.empty()) {
if (rem.substr(0, 2) == "{}") {
rem = rem.substr(2);
needsTermination = false;
} else if (rem[0] == ' ') {
needsTermination = false;
// LaTeX would swallow all spaces
rem = ltrim(rem);
}
}
}
}
return symbols;
}
CharInfo const & Encodings::unicodeCharInfo(char_type c)
{
static CharInfo empty;
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
return it != unicodesymbols.end() ? it->second : empty;
}
bool Encodings::isCombiningChar(char_type c)
{
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it != unicodesymbols.end())
return it->second.combining();
return false;
}
string const Encodings::TIPAShortcut(char_type c)
{
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it != unicodesymbols.end())
return it->second.tipaShortcut();
return string();
}
string const Encodings::isKnownScriptChar(char_type const c)
{
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it == unicodesymbols.end())
return string();
// FIXME: parse complex textPreamble (may be list or alternatives,
// e.g., "subscript,textgreek" or "textcomp|textgreek")
if (it->second.textPreamble() == "textgreek"
|| it->second.textPreamble() == "textcyrillic")
return it->second.textPreamble();
return string();
}
bool Encodings::fontencSupportsScript(string const & fontenc, string const & script)
{
if (script == "textgreek")
return (fontenc == "LGR" || fontenc == "TU");
if (script == "textcyrillic")
return (fontenc == "T2A" || fontenc == "T2B" || fontenc == "T2C"
|| fontenc == "X2" || fontenc == "TU");
return false;
}
bool Encodings::isMathAlpha(char_type c)
{
return mathalpha.count(c);
}
bool Encodings::isUnicodeTextOnly(char_type c)
{
if (isASCII(c) || isMathAlpha(c))
return false;
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
return it == unicodesymbols.end() || it->second.mathCommand().empty();
}
Encoding const *
Encodings::fromLyXName(string const & name, bool allowUnsafe) const
{
EncodingList::const_iterator const it = encodinglist.find(name);
if (it == encodinglist.end())
return nullptr;
if (!allowUnsafe && it->second.unsafe())
return nullptr;
return &it->second;
}
Encoding const *
Encodings::fromLaTeXName(string const & n, int p, bool allowUnsafe) const
{
string name = n;
// FIXME: if we have to test for too many of these synonyms,
// we should instead extend the format of lib/encodings
if (n == "ansinew")
name = "cp1252";
// We don't use find_if because it makes copies of the pairs in
// the map.
// This linear search is OK since we don't have many encodings.
// Users could even optimize it by putting the encodings they use
// most at the top of lib/encodings.
EncodingList::const_iterator const end = encodinglist.end();
for (EncodingList::const_iterator it = encodinglist.begin(); it != end; ++it)
if ((it->second.latexName() == name) && (it->second.package() & p)
&& (!it->second.unsafe() || allowUnsafe))
return &it->second;
return nullptr;
}
Encoding const *
Encodings::fromIconvName(string const & n, int p, bool allowUnsafe) const
{
EncodingList::const_iterator const end = encodinglist.end();
for (EncodingList::const_iterator it = encodinglist.begin(); it != end; ++it)
if ((it->second.iconvName() == n) && (it->second.package() & p)
&& (!it->second.unsafe() || allowUnsafe))
return &it->second;
return nullptr;
}
Encodings::Encodings()
{}
void Encodings::read(FileName const & encfile, FileName const & symbolsfile)
{
// We must read the symbolsfile first, because the Encoding
// constructor depends on it.
CharSetMap forcedNotSelected;
Lexer symbolsLex;
symbolsLex.setFile(symbolsfile);
bool getNextToken = true;
while (symbolsLex.isOK()) {
char_type symbol;
if (getNextToken) {
if (!symbolsLex.next(true))
break;
} else
getNextToken = true;
istringstream is(symbolsLex.getString());
// reading symbol directly does not work if
// char_type == wchar_t.
uint32_t tmp;
if(!(is >> hex >> tmp))
break;
symbol = tmp;
// Special case: more than one entry for one character (to add other LaTeX commands).
if (unicodesymbols.find(symbol) != unicodesymbols.end()) {
if (!symbolsLex.next(true))
break;
docstring textCommand = symbolsLex.getDocString();
if (!symbolsLex.next(true))
break;
string mathCommand = symbolsLex.getString();
if (!textCommand.empty())
unicodesymbols.at(symbol).addTextCommand(textCommand);
if (!mathCommand.empty())
unicodesymbols.at(symbol).addMathCommand(textCommand);
continue;
}
// If the symbol is not the same as the previous entry, consider it is a totally new symbol.
if (!symbolsLex.next(true))
break;
docstring textCommand = symbolsLex.getDocString();
if (!symbolsLex.next(true))
break;
string textPreamble = symbolsLex.getString();
if (!symbolsLex.next(true))
break;
string sflags = symbolsLex.getString();
string tipaShortcut;
int flags = 0;
if (suffixIs(textCommand, '}'))
flags |= CharInfoTextNoTermination;
while (!sflags.empty()) {
string flag;
sflags = split(sflags, flag, ',');
if (flag == "combining") {
flags |= CharInfoCombining;
} else if (flag == "force") {
flags |= CharInfoForce;
forced.insert(symbol);
} else if (prefixIs(flag, "force=")) {
vector<string> encs =
getVectorFromString(flag.substr(6), ";");
for (auto const & enc : encs)
forcedSelected[enc].insert(symbol);
flags |= CharInfoForceSelected;
} else if (prefixIs(flag, "force!=")) {
vector<string> encs =
getVectorFromString(flag.substr(7), ";");
for (auto const & enc : encs)
forcedNotSelected[enc].insert(symbol);
flags |= CharInfoForceSelected;
} else if (flag == "mathalpha") {
mathalpha.insert(symbol);
} else if (flag == "notermination=text") {
flags |= CharInfoTextNoTermination;
} else if (flag == "notermination=math") {
flags |= CharInfoMathNoTermination;
} else if (flag == "notermination=both") {
flags |= CharInfoTextNoTermination;
flags |= CharInfoMathNoTermination;
} else if (flag == "notermination=none") {
flags &= ~CharInfoTextNoTermination;
flags &= ~CharInfoMathNoTermination;
} else if (contains(flag, "tipashortcut=")) {
tipaShortcut = split(flag, '=');
} else if (flag == "deprecated") {
flags |= CharInfoDeprecated;
} else {
lyxerr << "Ignoring unknown flag `" << flag
<< "' for symbol `0x"
<< hex << symbol << dec
<< "'." << endl;
}
}
// mathCommand and mathPreamble have been added for 1.6.0.
// make them optional so that old files still work.
int const lineNo = symbolsLex.lineNumber();
bool breakout = false;
docstring mathCommand;
string mathPreamble;
if (symbolsLex.next(true)) {
if (symbolsLex.lineNumber() != lineNo) {
// line in old format without mathCommand and mathPreamble
getNextToken = false;
} else {
mathCommand = symbolsLex.getDocString();
if (suffixIs(mathCommand, '}'))
flags |= CharInfoMathNoTermination;
if (symbolsLex.next(true)) {
if (symbolsLex.lineNumber() != lineNo) {
// line in new format with mathCommand only
getNextToken = false;
} else {
// line in new format with mathCommand and mathPreamble
mathPreamble = symbolsLex.getString();
}
} else
breakout = true;
}
} else {
breakout = true;
}
// backward compatibility
if (mathPreamble == "esintoramsmath")
mathPreamble = "esint|amsmath";
if (!textPreamble.empty())
if (textPreamble[0] != '\\')
flags |= CharInfoTextFeature;
if (!mathPreamble.empty())
if (mathPreamble[0] != '\\')
flags |= CharInfoMathFeature;
CharInfo info = CharInfo(
textCommand, mathCommand,
textPreamble, mathPreamble,
tipaShortcut, flags);
LYXERR(Debug::INFO, "Read unicode symbol " << symbol << " '"
<< to_utf8(info.textCommand()) << "' '" << info.textPreamble()
<< " '" << info.textFeature() << ' ' << info.textNoTermination()
<< ' ' << to_utf8(info.mathCommand()) << "' '" << info.mathPreamble()
<< "' " << info.mathFeature() << ' ' << info.mathNoTermination()
<< ' ' << info.combining() << ' ' << info.force()
<< ' ' << info.forceSelected());
// we assume that at least one command is nonempty when using unicodesymbols
if (info.isUnicodeSymbol()) {
unicodesymbols[symbol] = info;
}
if (breakout)
break;
}
// Now read the encodings
enum {
et_encoding = 1,
et_end
};
LexerKeyword encodingTags[] = {
{ "encoding", et_encoding },
{ "end", et_end }
};
Lexer lex(encodingTags);
lex.setFile(encfile);
lex.setContext("Encodings::read");
while (lex.isOK()) {
switch (lex.lex()) {
case et_encoding:
{
lex.next();
string const name = lex.getString();
lex.next();
string const latexName = lex.getString();
lex.next();
string const guiName = lex.getString();
lex.next();
string const iconvName = lex.getString();
lex.next();
string const width = lex.getString();
bool fixedWidth = false;
bool unsafe = false;
if (width == "fixed")
fixedWidth = true;
else if (width == "variable")
fixedWidth = false;
else if (width == "variableunsafe") {
fixedWidth = false;
unsafe = true;
}
else
lex.printError("Unknown width");
lex.next();
string const p = lex.getString();
Encoding::Package package = Encoding::none;
if (p == "none")
package = Encoding::none;
else if (p == "inputenc")
package = Encoding::inputenc;
else if (p == "CJK")
package = Encoding::CJK;
else if (p == "japanese")
package = Encoding::japanese;
else
lex.printError("Unknown package");
LYXERR(Debug::INFO, "Reading encoding " << name);
encodinglist[name] = Encoding(name, latexName,
guiName, iconvName, fixedWidth, unsafe,
package);
if (lex.lex() != et_end)
lex.printError("Missing end");
break;
}
case et_end:
lex.printError("Misplaced end");
break;
case Lexer::LEX_FEOF:
break;
default:
lex.printError("Unknown tag");
break;
}
}
// Move all information from forcedNotSelected to forcedSelected
for (CharSetMap::const_iterator it1 = forcedNotSelected.begin(); it1 != forcedNotSelected.end(); ++it1) {
for (CharSetMap::iterator it2 = forcedSelected.begin(); it2 != forcedSelected.end(); ++it2) {
if (it2->first != it1->first)
it2->second.insert(it1->second.begin(), it1->second.end());
}
}
}
} // namespace lyx