lyx_mirror/boost/boost/array.hpp
Lars Gullik Bjønnes 59b6a4701a major boost update
git-svn-id: svn://svn.lyx.org/lyx/lyx-devel/trunk@4179 a592a061-630c-0410-9148-cb99ea01b6c8
2002-05-21 23:39:58 +00:00

164 lines
5.5 KiB
C++

/* The following code declares class array,
* an STL container (as wrapper) for arrays of constant size.
*
* See
* http://www.josuttis.com/cppcode
* for details and the latest version.
*
* (C) Copyright Nicolai M. Josuttis 2001.
* Permission to copy, use, modify, sell and distribute this software
* is granted provided this copyright notice appears in all copies.
* This software is provided "as is" without express or implied
* warranty, and with no claim as to its suitability for any purpose.
*
* 05 Aug 2001 - minor update (Nico Josuttis)
* 20 Jan 2001 - STLport fix (Beman Dawes)
* 29 Sep 2000 - Initial Revision (Nico Josuttis)
*/
#ifndef BOOST_ARRAY_HPP
#define BOOST_ARRAY_HPP
#include <cstddef>
#include <stdexcept>
#include <iterator>
#include <algorithm>
// FIXES for broken compilers
#include <boost/config.hpp>
namespace boost {
template<class T, std::size_t N>
class array {
public:
T elems[N]; // fixed-size array of elements of type T
public:
// type definitions
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// iterator support
iterator begin() { return elems; }
const_iterator begin() const { return elems; }
iterator end() { return elems+N; }
const_iterator end() const { return elems+N; }
// reverse iterator support
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) && !defined(BOOST_MSVC_STD_ITERATOR)
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
#elif defined(BOOST_MSVC) && (BOOST_MSVC == 1300)
// workaround for broken reverse_iterator in VC7
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, iterator,
reference, iterator, reference> > reverse_iterator;
typedef std::reverse_iterator<std::_Ptrit<value_type, difference_type, const_iterator,
const_reference, iterator, reference> > const_reverse_iterator;
#else
// workaround for broken reverse_iterator implementations
typedef std::reverse_iterator<iterator,T> reverse_iterator;
typedef std::reverse_iterator<const_iterator,T> const_reverse_iterator;
#endif
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// operator[]
reference operator[](size_type i) { return elems[i]; }
const_reference operator[](size_type i) const { return elems[i]; }
// at() with range check
reference at(size_type i) { rangecheck(i); return elems[i]; }
const_reference at(size_type i) const { rangecheck(i); return elems[i]; }
// front() and back()
reference front() { return elems[0]; }
const_reference front() const { return elems[0]; }
reference back() { return elems[N-1]; }
const_reference back() const { return elems[N-1]; }
// size is constant
static size_type size() { return N; }
static bool empty() { return false; }
static size_type max_size() { return N; }
enum { static_size = N };
// swap (note: linear complexity)
void swap (array<T,N>& y) {
std::swap_ranges(begin(),end(),y.begin());
}
// direct access to data
const T* data() const { return elems; }
// assignment with type conversion
template <typename T2>
array<T,N>& operator= (const array<T2,N>& rhs) {
std::copy(rhs.begin(),rhs.end(), begin());
return *this;
}
// assign one value to all elements
void assign (const T& value)
{
std::fill_n(begin(),size(),value);
}
#ifndef BOOST_NO_PRIVATE_IN_AGGREGATE
private:
#endif
// check range (may be private because it is static)
static void rangecheck (size_type i) {
if (i >= size()) { throw std::range_error("array"); }
}
};
// comparisons
template<class T, std::size_t N>
bool operator== (const array<T,N>& x, const array<T,N>& y) {
return std::equal(x.begin(), x.end(), y.begin());
}
template<class T, std::size_t N>
bool operator< (const array<T,N>& x, const array<T,N>& y) {
return std::lexicographical_compare(x.begin(),x.end(),y.begin(),y.end());
}
template<class T, std::size_t N>
bool operator!= (const array<T,N>& x, const array<T,N>& y) {
return !(x==y);
}
template<class T, std::size_t N>
bool operator> (const array<T,N>& x, const array<T,N>& y) {
return y<x;
}
template<class T, std::size_t N>
bool operator<= (const array<T,N>& x, const array<T,N>& y) {
return !(y<x);
}
template<class T, std::size_t N>
bool operator>= (const array<T,N>& x, const array<T,N>& y) {
return !(x<y);
}
// global swap()
template<class T, std::size_t N>
inline void swap (array<T,N>& x, array<T,N>& y) {
x.swap(y);
}
} /* namespace boost */
#endif /*BOOST_ARRAY_HPP*/