lyx_mirror/src/mathed/InsetMathFrac.cpp
Uwe Stöhr 256638827a InsetMathFrac: add support for \tbinom and \dbinom, fixes bug 4305
git-svn-id: svn://svn.lyx.org/lyx/lyx-devel/trunk@21247 a592a061-630c-0410-9148-cb99ea01b6c8
2007-10-28 21:48:51 +00:00

693 lines
16 KiB
C++

/**
* \file InsetMathFracBase.cpp
* This file is part of LyX, the document processor.
* Licence details can be found in the file COPYING.
*
* \author Alejandro Aguilar Sierra
* \author André Pönitz
*
* Full author contact details are available in file CREDITS.
*/
#include <config.h>
#include "InsetMathFrac.h"
#include "Cursor.h"
#include "LaTeXFeatures.h"
#include "MathData.h"
#include "MathStream.h"
#include "MathSupport.h"
#include "TextPainter.h"
#include "frontends/Painter.h"
namespace lyx {
/////////////////////////////////////////////////////////////////////
//
// InsetMathFracBase
//
/////////////////////////////////////////////////////////////////////
InsetMathFracBase::InsetMathFracBase(idx_type ncells)
: InsetMathNest(ncells)
{}
bool InsetMathFracBase::idxUpDown(Cursor & cur, bool up) const
{
InsetMath::idx_type target = !up; // up ? 0 : 1, since upper cell has idx 0
if (cur.idx() == target)
return false;
cur.idx() = target;
cur.pos() = cell(target).x2pos(cur.x_target());
return true;
}
/////////////////////////////////////////////////////////////////////
//
// InsetMathFrac
//
/////////////////////////////////////////////////////////////////////
InsetMathFrac::InsetMathFrac(Kind kind, InsetMath::idx_type ncells)
: InsetMathFracBase(ncells), kind_(kind)
{}
Inset * InsetMathFrac::clone() const
{
return new InsetMathFrac(*this);
}
InsetMathFrac * InsetMathFrac::asFracInset()
{
return kind_ == ATOP ? 0 : this;
}
InsetMathFrac const * InsetMathFrac::asFracInset() const
{
return kind_ == ATOP ? 0 : this;
}
bool InsetMathFrac::idxRight(Cursor & cur) const
{
InsetMath::idx_type target = 0;
if (kind_ == UNIT || (kind_ == UNITFRAC && nargs() == 3)) {
if (nargs() == 3)
target = 0;
else if (nargs() == 2)
target = 1;
} else
return false;
if (cur.idx() == target)
return false;
cur.idx() = target;
cur.pos() = cell(target).x2pos(cur.x_target());
return true;
}
bool InsetMathFrac::idxLeft(Cursor & cur) const
{
InsetMath::idx_type target = 0;
if (kind_ == UNIT || (kind_ == UNITFRAC && nargs() == 3)) {
if (nargs() == 3)
target = 2;
else if (nargs() == 2)
target = 0;
} else
return false;
if (cur.idx() == target)
return false;
cur.idx() = target;
cur.pos() = cell(target).x2pos(cur.x_target());
return true;
}
void InsetMathFrac::metrics(MetricsInfo & mi, Dimension & dim) const
{
Dimension dim0, dim1, dim2;
if (kind_ == UNIT || (kind_ == UNITFRAC && nargs() == 3)) {
if (nargs() == 1) {
ShapeChanger dummy2(mi.base.font, UP_SHAPE);
cell(0).metrics(mi, dim0);
dim.wid = dim0.width()+ 3;
dim.asc = dim0.asc;
dim.des = dim0.des;
} else if (nargs() == 2) {
cell(0).metrics(mi, dim0);
ShapeChanger dummy2(mi.base.font, UP_SHAPE);
cell(1).metrics(mi, dim1);
dim.wid = dim0.width() + dim1.wid + 5;
dim.asc = std::max(dim0.asc, dim1.asc);
dim.des = std::max(dim0.des, dim1.des);
} else {
cell(2).metrics(mi, dim2);
ShapeChanger dummy2(mi.base.font, UP_SHAPE);
FracChanger dummy(mi.base);
cell(0).metrics(mi, dim0);
cell(1).metrics(mi, dim1);
dim.wid = dim0.width() + dim1.wid + dim2.wid + 10;
dim.asc = std::max(dim2.asc, dim0.height() + 5);
dim.des = std::max(dim2.des, dim1.height() - 5);
}
} else {
FracChanger dummy(mi.base);
cell(0).metrics(mi, dim0);
cell(1).metrics(mi, dim1);
if (nargs() == 3)
cell(2).metrics(mi, dim2);
if (kind_ == NICEFRAC) {
dim.wid = dim0.width() + dim1.wid + 5;
dim.asc = dim0.height() + 5;
dim.des = dim1.height() - 5;
} else if (kind_ == UNITFRAC) {
ShapeChanger dummy2(mi.base.font, UP_SHAPE);
dim.wid = dim0.width() + dim1.wid + 5;
dim.asc = dim0.height() + 5;
dim.des = dim1.height() - 5;
} else {
dim.wid = std::max(dim0.width(), dim1.wid) + 2;
dim.asc = dim0.height() + 2 + 5;
dim.des = dim1.height() + 2 - 5;
}
}
metricsMarkers(dim);
// Cache the inset dimension.
setDimCache(mi, dim);
}
void InsetMathFrac::draw(PainterInfo & pi, int x, int y) const
{
setPosCache(pi, x, y);
Dimension const dim = dimension(*pi.base.bv);
Dimension const dim0 = cell(0).dimension(*pi.base.bv);
int m = x + dim.wid / 2;
if (kind_ == UNIT || (kind_ == UNITFRAC && nargs() == 3)) {
if (nargs() == 1) {
ShapeChanger dummy2(pi.base.font, UP_SHAPE);
cell(0).draw(pi, x + 1, y);
} else if (nargs() == 2) {
cell(0).draw(pi, x + 1, y);
ShapeChanger dummy2(pi.base.font, UP_SHAPE);
cell(1).draw(pi, x + dim0.width() + 5, y);
} else {
cell(2).draw(pi, x + 1, y);
ShapeChanger dummy2(pi.base.font, UP_SHAPE);
FracChanger dummy(pi.base);
Dimension const dim1 = cell(1).dimension(*pi.base.bv);
Dimension const dim2 = cell(2).dimension(*pi.base.bv);
int xx = x + dim2.wid + 5;
cell(0).draw(pi, xx + 2,
y - dim0.des - 5);
cell(1).draw(pi, xx + dim0.width() + 5,
y + dim1.asc / 2);
}
} else {
FracChanger dummy(pi.base);
Dimension const dim1 = cell(1).dimension(*pi.base.bv);
if (kind_ == NICEFRAC) {
cell(0).draw(pi, x + 2,
y - dim0.des - 5);
cell(1).draw(pi, x + dim0.width() + 5,
y + dim1.asc / 2);
} else if (kind_ == UNITFRAC) {
ShapeChanger dummy2(pi.base.font, UP_SHAPE);
cell(0).draw(pi, x + 2,
y - dim0.des - 5);
cell(1).draw(pi, x + dim0.width() + 5,
y + dim1.asc / 2);
} else {
// Classical fraction
cell(0).draw(pi, m - dim0.width() / 2,
y - dim0.des - 2 - 5);
cell(1).draw(pi, m - dim1.wid / 2,
y + dim1.asc + 2 - 5);
}
}
if (kind_ == NICEFRAC || kind_ == UNITFRAC) {
// Diag line:
int xx = x;
if (nargs() == 3)
xx += cell(2).dimension(*pi.base.bv).wid + 5;
pi.pain.line(xx + dim0.wid,
y + dim.des - 2,
xx + dim0.wid + 5,
y - dim.asc + 2, Color_math);
}
if (kind_ == FRAC || kind_ == OVER)
pi.pain.line(x + 1, y - 5,
x + dim.wid - 2, y - 5, Color_math);
drawMarkers(pi, x, y);
}
void InsetMathFrac::metricsT(TextMetricsInfo const & mi, Dimension & dim) const
{
Dimension dim0, dim1;
cell(0).metricsT(mi, dim0);
cell(1).metricsT(mi, dim1);
dim.wid = std::max(dim0.width(), dim1.wid);
dim.asc = dim0.height() + 1;
dim.des = dim1.height();
}
void InsetMathFrac::drawT(TextPainter & pain, int x, int y) const
{
// FIXME: BROKEN!
/*
Dimension dim;
int m = x + dim.width() / 2;
cell(0).drawT(pain, m - dim0.width() / 2, y - dim0.des - 1);
cell(1).drawT(pain, m - dim1.wid / 2, y + dim1.asc);
// ASCII art: ignore niceties
if (kind_ == FRAC || kind_ == OVER || kind_ == NICEFRAC || kind_ == UNITFRAC)
pain.horizontalLine(x, y, dim.width());
*/
}
void InsetMathFrac::write(WriteStream & os) const
{
switch (kind_) {
case ATOP:
os << '{' << cell(0) << "\\atop " << cell(1) << '}';
break;
case OVER:
// \\over is only for compatibility, normalize this to \\frac
os << "\\frac{" << cell(0) << "}{" << cell(1) << '}';
break;
case FRAC:
case NICEFRAC:
case UNITFRAC:
if (nargs() == 2)
InsetMathNest::write(os);
else
os << "\\unitfrac[" << cell(2) << "]{" << cell(0) << "}{" << cell(1) << '}';
break;
case UNIT:
if (nargs() == 2)
os << "\\unit[" << cell(0) << "]{" << cell(1) << '}';
else
os << "\\unit{" << cell(0) << '}';
break;
}
}
docstring InsetMathFrac::name() const
{
switch (kind_) {
case FRAC:
return from_ascii("frac");
case OVER:
return from_ascii("over");
case NICEFRAC:
return from_ascii("nicefrac");
case UNITFRAC:
return from_ascii("unitfrac");
case UNIT:
return from_ascii("unit");
case ATOP:
return from_ascii("atop");
}
// shut up stupid compiler
return docstring();
}
bool InsetMathFrac::extraBraces() const
{
return kind_ == ATOP || kind_ == OVER;
}
void InsetMathFrac::maple(MapleStream & os) const
{
os << '(' << cell(0) << ")/(" << cell(1) << ')';
}
void InsetMathFrac::mathematica(MathematicaStream & os) const
{
os << '(' << cell(0) << ")/(" << cell(1) << ')';
}
void InsetMathFrac::octave(OctaveStream & os) const
{
os << '(' << cell(0) << ")/(" << cell(1) << ')';
}
void InsetMathFrac::mathmlize(MathStream & os) const
{
os << MTag("mfrac") << cell(0) << cell(1) << ETag("mfrac");
}
void InsetMathFrac::validate(LaTeXFeatures & features) const
{
if (kind_ == NICEFRAC || kind_ == UNITFRAC || kind_ == UNIT)
features.require("units");
InsetMathNest::validate(features);
}
/////////////////////////////////////////////////////////////////////
//
// InsetMathDFrac
//
/////////////////////////////////////////////////////////////////////
Inset * InsetMathDFrac::clone() const
{
return new InsetMathDFrac(*this);
}
void InsetMathDFrac::metrics(MetricsInfo & mi, Dimension & dim) const
{
Dimension dim0, dim1;
cell(0).metrics(mi, dim0);
cell(1).metrics(mi, dim1);
dim.wid = std::max(dim0.wid, dim1.wid) + 2;
dim.asc = dim0.height() + 2 + 5;
dim.des = dim1.height() + 2 - 5;
// Cache the inset dimension.
setDimCache(mi, dim);
}
void InsetMathDFrac::draw(PainterInfo & pi, int x, int y) const
{
Dimension const dim = dimension(*pi.base.bv);
Dimension const & dim0 = cell(0).dimension(*pi.base.bv);
Dimension const & dim1 = cell(1).dimension(*pi.base.bv);
int m = x + dim.wid / 2;
cell(0).draw(pi, m - dim0.wid / 2, y - dim0.des - 2 - 5);
cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 2 - 5);
pi.pain.line(x + 1, y - 5, x + dim.wid - 2, y - 5, Color_math);
setPosCache(pi, x, y);
}
docstring InsetMathDFrac::name() const
{
return from_ascii("dfrac");
}
void InsetMathDFrac::mathmlize(MathStream & os) const
{
os << MTag("mdfrac") << cell(0) << cell(1) << ETag("mdfrac");
}
void InsetMathDFrac::validate(LaTeXFeatures & features) const
{
features.require("amsmath");
InsetMathNest::validate(features);
}
/////////////////////////////////////////////////////////////////////
//
// InsetMathTFrac
//
/////////////////////////////////////////////////////////////////////
Inset * InsetMathTFrac::clone() const
{
return new InsetMathTFrac(*this);
}
void InsetMathTFrac::metrics(MetricsInfo & mi, Dimension & dim) const
{
StyleChanger dummy(mi.base, LM_ST_SCRIPT);
Dimension dim0;
cell(0).metrics(mi, dim0);
Dimension dim1;
cell(1).metrics(mi, dim1);
dim.wid = std::max(dim0.width(), dim1.width()) + 2;
dim.asc = dim0.height() + 2 + 5;
dim.des = dim1.height() + 2 - 5;
// Cache the inset dimension.
setDimCache(mi, dim);
}
void InsetMathTFrac::draw(PainterInfo & pi, int x, int y) const
{
StyleChanger dummy(pi.base, LM_ST_SCRIPT);
Dimension const dim = dimension(*pi.base.bv);
Dimension const & dim0 = cell(0).dimension(*pi.base.bv);
Dimension const & dim1 = cell(1).dimension(*pi.base.bv);
int m = x + dim.wid / 2;
cell(0).draw(pi, m - dim0.width() / 2, y - dim0.descent() - 2 - 5);
cell(1).draw(pi, m - dim1.width() / 2, y + dim1.ascent() + 2 - 5);
pi.pain.line(x + 1, y - 5, x + dim.wid - 2, y - 5, Color_math);
setPosCache(pi, x, y);
}
docstring InsetMathTFrac::name() const
{
return from_ascii("tfrac");
}
void InsetMathTFrac::mathmlize(MathStream & os) const
{
os << MTag("mtfrac") << cell(0) << cell(1) << ETag("mtfrac");
}
void InsetMathTFrac::validate(LaTeXFeatures & features) const
{
features.require("amsmath");
InsetMathNest::validate(features);
}
/////////////////////////////////////////////////////////////////////
//
// InsetMathBinom
//
/////////////////////////////////////////////////////////////////////
InsetMathBinom::InsetMathBinom(bool choose)
: choose_(choose)
{}
Inset * InsetMathBinom::clone() const
{
return new InsetMathBinom(*this);
}
int InsetMathBinom::dw(int height) const
{
int w = height / 5;
if (w > 15)
w = 15;
if (w < 6)
w = 6;
return w;
}
void InsetMathBinom::metrics(MetricsInfo & mi, Dimension & dim) const
{
FracChanger dummy(mi.base);
Dimension dim0, dim1;
cell(0).metrics(mi, dim0);
cell(1).metrics(mi, dim1);
dim.asc = dim0.height() + 4 + 5;
dim.des = dim1.height() + 4 - 5;
dim.wid = std::max(dim0.width(), dim1.wid) + 2 * dw(dim.height()) + 4;
metricsMarkers2(dim);
// Cache the inset dimension.
setDimCache(mi, dim);
}
void InsetMathBinom::draw(PainterInfo & pi, int x, int y) const
{
Dimension const dim = dimension(*pi.base.bv);
Dimension const & dim0 = cell(0).dimension(*pi.base.bv);
Dimension const & dim1 = cell(1).dimension(*pi.base.bv);
int m = x + dim.width() / 2;
FracChanger dummy(pi.base);
cell(0).draw(pi, m - dim0.width() / 2, y - dim0.des - 3 - 5);
cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 3 - 5);
mathed_draw_deco(pi, x, y - dim.ascent(), dw(dim.height()), dim.height(), from_ascii("("));
mathed_draw_deco(pi, x + dim.width() - dw(dim.height()), y - dim.ascent(),
dw(dim.height()), dim.height(), from_ascii(")"));
drawMarkers2(pi, x, y);
}
bool InsetMathBinom::extraBraces() const
{
return choose_;
}
void InsetMathBinom::write(WriteStream & os) const
{
if (choose_)
os << '{' << cell(0) << " \\choose " << cell(1) << '}';
else
os << "\\binom{" << cell(0) << "}{" << cell(1) << '}';
}
void InsetMathBinom::normalize(NormalStream & os) const
{
os << "[binom " << cell(0) << ' ' << cell(1) << ']';
}
/////////////////////////////////////////////////////////////////////
//
// InsetMathDBinom
//
/////////////////////////////////////////////////////////////////////
Inset * InsetMathDBinom::clone() const
{
return new InsetMathDBinom(*this);
}
int InsetMathDBinom::dw(int height) const
{
int w = height / 5;
if (w > 15)
w = 15;
if (w < 6)
w = 6;
return w;
}
void InsetMathDBinom::metrics(MetricsInfo & mi, Dimension & dim) const
{
Dimension dim0, dim1;
cell(0).metrics(mi, dim0);
cell(1).metrics(mi, dim1);
dim.asc = dim0.height() + 4 + 5;
dim.des = dim1.height() + 4 - 5;
dim.wid = std::max(dim0.width(), dim1.wid) + 2 * dw(dim.height()) + 4;
metricsMarkers2(dim);
// Cache the inset dimension.
setDimCache(mi, dim);
}
void InsetMathDBinom::draw(PainterInfo & pi, int x, int y) const
{
Dimension const dim = dimension(*pi.base.bv);
Dimension const & dim0 = cell(0).dimension(*pi.base.bv);
Dimension const & dim1 = cell(1).dimension(*pi.base.bv);
int m = x + dim.width() / 2;
cell(0).draw(pi, m - dim0.width() / 2, y - dim0.des - 3 - 5);
cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 3 - 5);
mathed_draw_deco(pi, x, y - dim.ascent(), dw(dim.height()), dim.height(), from_ascii("("));
mathed_draw_deco(pi, x + dim.width() - dw(dim.height()), y - dim.ascent(),
dw(dim.height()), dim.height(), from_ascii(")"));
drawMarkers2(pi, x, y);
}
docstring InsetMathDBinom::name() const
{
return from_ascii("dbinom");
}
void InsetMathDBinom::mathmlize(MathStream & os) const
{
os << MTag("mdbinom") << cell(0) << cell(1) << ETag("mdbinom");
}
void InsetMathDBinom::validate(LaTeXFeatures & features) const
{
features.require("amsmath");
InsetMathNest::validate(features);
}
/////////////////////////////////////////////////////////////////////
//
// InsetMathTBinom
//
/////////////////////////////////////////////////////////////////////
Inset * InsetMathTBinom::clone() const
{
return new InsetMathTBinom(*this);
}
int InsetMathTBinom::dw(int height) const
{
int w = height / 5;
if (w > 15)
w = 15;
if (w < 6)
w = 6;
return w;
}
void InsetMathTBinom::metrics(MetricsInfo & mi, Dimension & dim) const
{
StyleChanger dummy(mi.base, LM_ST_SCRIPT);
Dimension dim0, dim1;
cell(0).metrics(mi, dim0);
cell(1).metrics(mi, dim1);
dim.asc = dim0.height() + 4 + 5;
dim.des = dim1.height() + 4 - 5;
dim.wid = std::max(dim0.width(), dim1.wid) + 2 * dw(dim.height()) + 4;
metricsMarkers2(dim);
// Cache the inset dimension.
setDimCache(mi, dim);
}
void InsetMathTBinom::draw(PainterInfo & pi, int x, int y) const
{
StyleChanger dummy(pi.base, LM_ST_SCRIPT);
Dimension const dim = dimension(*pi.base.bv);
Dimension const & dim0 = cell(0).dimension(*pi.base.bv);
Dimension const & dim1 = cell(1).dimension(*pi.base.bv);
int m = x + dim.width() / 2;
cell(0).draw(pi, m - dim0.width() / 2, y - dim0.des - 3 - 5);
cell(1).draw(pi, m - dim1.wid / 2, y + dim1.asc + 3 - 5);
mathed_draw_deco(pi, x, y - dim.ascent(), dw(dim.height()), dim.height(), from_ascii("("));
mathed_draw_deco(pi, x + dim.width() - dw(dim.height()), y - dim.ascent(),
dw(dim.height()), dim.height(), from_ascii(")"));
drawMarkers2(pi, x, y);
}
docstring InsetMathTBinom::name() const
{
return from_ascii("tbinom");
}
void InsetMathTBinom::mathmlize(MathStream & os) const
{
os << MTag("mtbinom") << cell(0) << cell(1) << ETag("mtbinom");
}
void InsetMathTBinom::validate(LaTeXFeatures & features) const
{
features.require("amsmath");
InsetMathNest::validate(features);
}
} // namespace lyx