lyx_mirror/src/Encoding.cpp
Georg Baum 97bc443584 Fix regression of f2d2b7c
Thanks Scott for finding the relevant change set!
2013-02-28 22:23:23 +01:00

1195 lines
34 KiB
C++

/**
* \file Encoding.cpp
* This file is part of LyX, the document processor.
* Licence details can be found in the file COPYING.
*
* \author Lars Gullik Bjønnes
* \author Jean-Marc Lasgouttes
* \author Dekel Tsur
*
* Full author contact details are available in file CREDITS.
*/
#include <config.h>
#include "Encoding.h"
#include "Buffer.h"
#include "BufferList.h"
#include "InsetIterator.h"
#include "LaTeXFeatures.h"
#include "Lexer.h"
#include "LyXRC.h"
#include "support/debug.h"
#include "support/gettext.h"
#include "support/FileName.h"
#include "support/lstrings.h"
#include "support/textutils.h"
#include "support/unicode.h"
#include <boost/cstdint.hpp>
#include <sstream>
using namespace std;
using namespace lyx::support;
namespace lyx {
int const Encoding::any = -1;
Encodings encodings;
Encodings::MathCommandSet Encodings::mathcmd;
Encodings::TextCommandSet Encodings::textcmd;
Encodings::MathSymbolSet Encodings::mathsym;
namespace {
char_type arabic_table[172][4] = {
{0xfe80, 0xfe80, 0xfe80, 0xfe80}, // 0x0621 = hamza
{0xfe81, 0xfe82, 0xfe81, 0xfe82}, // 0x0622 = ligature madda on alef
{0xfe83, 0xfe84, 0xfe83, 0xfe84}, // 0x0623 = ligature hamza on alef
{0xfe85, 0xfe86, 0xfe85, 0xfe86}, // 0x0624 = ligature hamza on waw
{0xfe87, 0xfe88, 0xfe87, 0xfe88}, // 0x0625 = ligature hamza under alef
{0xfe89, 0xfe8a, 0xfe8b, 0xfe8c}, // 0x0626 = ligature hamza on ya
{0xfe8d, 0xfe8e, 0xfe8d, 0xfe8e}, // 0x0627 = alef
{0xfe8f, 0xfe90, 0xfe91, 0xfe92}, // 0x0628 = baa
{0xfe93, 0xfe94, 0xfe93, 0xfe94}, // 0x0629 = taa marbuta
{0xfe95, 0xfe96, 0xfe97, 0xfe98}, // 0x062a = taa
{0xfe99, 0xfe9a, 0xfe9b, 0xfe9c}, // 0x062b = thaa
{0xfe9d, 0xfe9e, 0xfe9f, 0xfea0}, // 0x062c = jeem
{0xfea1, 0xfea2, 0xfea3, 0xfea4}, // 0x062d = haa
{0xfea5, 0xfea6, 0xfea7, 0xfea8}, // 0x062e = khaa
{0xfea9, 0xfeaa, 0xfea9, 0xfeaa}, // 0x062f = dal
{0xfeab, 0xfeac, 0xfeab, 0xfeac}, // 0x0630 = thal
{0xfead, 0xfeae, 0xfead, 0xfeae}, // 0x0631 = ra
{0xfeaf, 0xfeb0, 0xfeaf, 0xfeb0}, // 0x0632 = zain
{0xfeb1, 0xfeb2, 0xfeb3, 0xfeb4}, // 0x0633 = seen
{0xfeb5, 0xfeb6, 0xfeb7, 0xfeb8}, // 0x0634 = sheen
{0xfeb9, 0xfeba, 0xfebb, 0xfebc}, // 0x0635 = sad
{0xfebd, 0xfebe, 0xfebf, 0xfec0}, // 0x0636 = dad
{0xfec1, 0xfec2, 0xfec3, 0xfec4}, // 0x0637 = tah
{0xfec5, 0xfec6, 0xfec7, 0xfec8}, // 0x0638 = zah
{0xfec9, 0xfeca, 0xfecb, 0xfecc}, // 0x0639 = ain
{0xfecd, 0xfece, 0xfecf, 0xfed0}, // 0x063a = ghain
{0, 0, 0, 0}, // 0x063b
{0, 0, 0, 0}, // 0x063c
{0, 0, 0, 0}, // 0x063d
{0, 0, 0, 0}, // 0x063e
{0, 0, 0, 0}, // 0x063f
{0, 0, 0, 0}, // 0x0640
{0xfed1, 0xfed2, 0xfed3, 0xfed4}, // 0x0641 = fa
{0xfed5, 0xfed6, 0xfed7, 0xfed8}, // 0x0642 = qaf
{0xfed9, 0xfeda, 0xfedb, 0xfedc}, // 0x0643 = kaf
{0xfedd, 0xfede, 0xfedf, 0xfee0}, // 0x0644 = lam
{0xfee1, 0xfee2, 0xfee3, 0xfee4}, // 0x0645 = meem
{0xfee5, 0xfee6, 0xfee7, 0xfee8}, // 0x0646 = noon
{0xfee9, 0xfeea, 0xfeeb, 0xfeec}, // 0x0647 = ha
{0xfeed, 0xfeee, 0xfeed, 0xfeee}, // 0x0648 = waw
{0xfeef, 0xfef0, 0xfeef, 0xfef0}, // 0x0649 = alef maksura
{0xfef1, 0xfef2, 0xfef3, 0xfef4}, // 0x064a = ya
{0x065b, 0x065b, 0x065b, 0x065b}, // 0x064b = fathatan
{0x065c, 0x065c, 0x065c, 0x065c}, // 0x064c = dammatan
{0x064d, 0x064d, 0x064d, 0x064d}, // 0x064d = kasratan
{0x064e, 0x064e, 0x064e, 0x064e}, // 0x064e = fatha
{0x064f, 0x064f, 0x064f, 0x064f}, // 0x064f = damma
{0x0650, 0x0650, 0x0650, 0x0650}, // 0x0650 = kasra
{0x0651, 0x0651, 0x0651, 0x0651}, // 0x0651 = shadda
{0x0652, 0x0652, 0x0652, 0x0652}, // 0x0652 = sukun
{0, 0, 0, 0}, // 0x0653
{0, 0, 0, 0}, // 0x0654
{0, 0, 0, 0}, // 0x0655
{0, 0, 0, 0}, // 0x0656
{0, 0, 0, 0}, // 0x0657
{0, 0, 0, 0}, // 0x0658
{0, 0, 0, 0}, // 0x0659
{0, 0, 0, 0}, // 0x065a
{0, 0, 0, 0}, // 0x065b
{0, 0, 0, 0}, // 0x065c
{0, 0, 0, 0}, // 0x065d
{0, 0, 0, 0}, // 0x065e
{0, 0, 0, 0}, // 0x065f
{0, 0, 0, 0}, // 0x0660
{0, 0, 0, 0}, // 0x0661
{0, 0, 0, 0}, // 0x0662
{0, 0, 0, 0}, // 0x0663
{0, 0, 0, 0}, // 0x0664
{0, 0, 0, 0}, // 0x0665
{0, 0, 0, 0}, // 0x0666
{0, 0, 0, 0}, // 0x0667
{0, 0, 0, 0}, // 0x0668
{0, 0, 0, 0}, // 0x0669
{0, 0, 0, 0}, // 0x066a
{0, 0, 0, 0}, // 0x066b
{0, 0, 0, 0}, // 0x066c
{0, 0, 0, 0}, // 0x066d
{0, 0, 0, 0}, // 0x066e
{0, 0, 0, 0}, // 0x066f
{0, 0, 0, 0}, // 0x0670
{0, 0, 0, 0}, // 0x0671
{0, 0, 0, 0}, // 0x0672
{0, 0, 0, 0}, // 0x0673
{0, 0, 0, 0}, // 0x0674
{0, 0, 0, 0}, // 0x0675
{0, 0, 0, 0}, // 0x0676
{0, 0, 0, 0}, // 0x0677
{0, 0, 0, 0}, // 0x0678
{0, 0, 0, 0}, // 0x0679
{0, 0, 0, 0}, // 0x067a
{0, 0, 0, 0}, // 0x067b
{0, 0, 0, 0}, // 0x067c
{0, 0, 0, 0}, // 0x067d
{0xfb56, 0xfb57, 0xfb58, 0xfb59}, // 0x067e = peh
{0, 0, 0, 0}, // 0x067f
{0, 0, 0, 0}, // 0x0680
{0, 0, 0, 0}, // 0x0681
{0, 0, 0, 0}, // 0x0682
{0, 0, 0, 0}, // 0x0683
{0, 0, 0, 0}, // 0x0684
{0, 0, 0, 0}, // 0x0685
{0xfb7a, 0xfb7b, 0xfb7c, 0xfb7d}, // 0x0686 = tcheh
{0, 0, 0, 0}, // 0x0687
{0, 0, 0, 0}, // 0x0688
{0, 0, 0, 0}, // 0x0689
{0, 0, 0, 0}, // 0x068a
{0, 0, 0, 0}, // 0x068b
{0, 0, 0, 0}, // 0x068c
{0, 0, 0, 0}, // 0x068d
{0, 0, 0, 0}, // 0x068e
{0, 0, 0, 0}, // 0x068f
{0, 0, 0, 0}, // 0x0690
{0, 0, 0, 0}, // 0x0691
{0, 0, 0, 0}, // 0x0692
{0, 0, 0, 0}, // 0x0693
{0, 0, 0, 0}, // 0x0694
{0, 0, 0, 0}, // 0x0695
{0, 0, 0, 0}, // 0x0696
{0, 0, 0, 0}, // 0x0697
{0xfb8a, 0xfb8b, 0xfb8a, 0xfb8b}, // 0x0698 = jeh
{0, 0, 0, 0}, // 0x0699
{0, 0, 0, 0}, // 0x069a
{0, 0, 0, 0}, // 0x069b
{0, 0, 0, 0}, // 0x069c
{0, 0, 0, 0}, // 0x069d
{0, 0, 0, 0}, // 0x069e
{0, 0, 0, 0}, // 0x069f
{0, 0, 0, 0}, // 0x06a0
{0, 0, 0, 0}, // 0x06a1
{0, 0, 0, 0}, // 0x06a2
{0, 0, 0, 0}, // 0x06a3
{0, 0, 0, 0}, // 0x06a4
{0, 0, 0, 0}, // 0x06a5
{0, 0, 0, 0}, // 0x06a6
{0, 0, 0, 0}, // 0x06a7
{0, 0, 0, 0}, // 0x06a8
{0xfb8e, 0xfb8f, 0xfb90, 0xfb91}, // 0x06a9 = farsi kaf
{0, 0, 0, 0}, // 0x06aa
{0, 0, 0, 0}, // 0x06ab
{0, 0, 0, 0}, // 0x06ac
{0, 0, 0, 0}, // 0x06ad
{0, 0, 0, 0}, // 0x06ae
{0xfb92, 0xfb93, 0xfb94, 0xfb95}, // 0x06af = gaf
{0, 0, 0, 0}, // 0x06b0
{0, 0, 0, 0}, // 0x06b1
{0, 0, 0, 0}, // 0x06b2
{0, 0, 0, 0}, // 0x06b3
{0, 0, 0, 0}, // 0x06b4
{0, 0, 0, 0}, // 0x06b5
{0, 0, 0, 0}, // 0x06b6
{0, 0, 0, 0}, // 0x06b7
{0, 0, 0, 0}, // 0x06b8
{0, 0, 0, 0}, // 0x06b9
{0, 0, 0, 0}, // 0x06ba
{0, 0, 0, 0}, // 0x06bb
{0, 0, 0, 0}, // 0x06bc
{0, 0, 0, 0}, // 0x06bd
{0, 0, 0, 0}, // 0x06be
{0, 0, 0, 0}, // 0x06bf
{0, 0, 0, 0}, // 0x06c0
{0, 0, 0, 0}, // 0x06c1
{0, 0, 0, 0}, // 0x06c2
{0, 0, 0, 0}, // 0x06c3
{0, 0, 0, 0}, // 0x06c4
{0, 0, 0, 0}, // 0x06c5
{0, 0, 0, 0}, // 0x06c6
{0, 0, 0, 0}, // 0x06c7
{0, 0, 0, 0}, // 0x06c8
{0, 0, 0, 0}, // 0x06c9
{0, 0, 0, 0}, // 0x06ca
{0, 0, 0, 0}, // 0x06cb
{0xfbfc, 0xfbfd, 0xfbfe, 0xfbff} // 0x06cc = farsi yeh
};
char_type const arabic_start = 0x0621;
char_type const arabic_end = 0x06cc;
enum CharInfoFlags {
///
CharInfoCombining = 1,
///
CharInfoTextFeature = 2,
///
CharInfoMathFeature = 4,
///
CharInfoForce = 8,
///
CharInfoTextNoTermination = 16,
///
CharInfoMathNoTermination = 32,
///
CharInfoForceSelected = 64,
};
/// Information about a single UCS4 character
struct CharInfo {
/// LaTeX command (text mode) for this character
docstring textcommand;
/// LaTeX command (math mode) for this character
docstring mathcommand;
/// Needed LaTeX preamble (or feature) for text mode
string textpreamble;
/// Needed LaTeX preamble (or feature) for math mode
string mathpreamble;
/// Is this a combining character?
bool combining() const { return flags & CharInfoCombining ? true : false; }
/// Is \c textpreamble a feature known by LaTeXFeatures, or a raw LaTeX
/// command?
bool textfeature() const { return flags & CharInfoTextFeature ? true : false; }
/// Is \c mathpreamble a feature known by LaTeXFeatures, or a raw LaTeX
/// command?
bool mathfeature() const { return flags & CharInfoMathFeature ? true : false; }
/// Always force the LaTeX command, even if the encoding contains
/// this character?
bool force() const { return flags & CharInfoForce ? true : false; }
/// Force the LaTeX command for some encodings?
bool forceselected() const { return flags & CharInfoForceSelected ? true : false; }
/// TIPA shortcut
string tipashortcut;
/// \c textcommand needs no termination (such as {} or space).
bool textnotermination() const { return flags & CharInfoTextNoTermination ? true : false; }
/// \c mathcommand needs no termination (such as {} or space).
bool mathnotermination() const { return flags & CharInfoMathNoTermination ? true : false; }
///
unsigned int flags;
};
typedef map<char_type, CharInfo> CharInfoMap;
CharInfoMap unicodesymbols;
typedef std::set<char_type> CharSet;
typedef std::map<string, CharSet> CharSetMap;
CharSet forced;
CharSetMap forcedselected;
typedef std::set<char_type> MathAlphaSet;
MathAlphaSet mathalpha;
/// The highest code point in UCS4 encoding (1<<20 + 1<<16)
char_type const max_ucs4 = 0x110000;
} // namespace anon
EncodingException::EncodingException(char_type c)
: failed_char(c), par_id(0), pos(0)
{
}
const char * EncodingException::what() const throw()
{
return "Could not find LaTeX command for a character";
}
Encoding::Encoding(string const & n, string const & l, string const & g,
string const & i, bool f, bool u, Encoding::Package p)
: name_(n), latexName_(l), guiName_(g), iconvName_(i), fixedwidth_(f),
unsafe_(u), forced_(&forcedselected[n]), package_(p)
{
if (n == "ascii") {
// ASCII can encode 128 code points and nothing else
start_encodable_ = 128;
complete_ = true;
} else if (i == "UTF-8") {
// UTF8 can encode all UCS4 code points
start_encodable_ = max_ucs4;
complete_ = true;
} else {
start_encodable_ = 0;
complete_ = false;
}
}
void Encoding::init() const
{
if (complete_)
return;
start_encodable_ = 0;
// temporarily switch off lyxerr, since we will generate iconv errors
lyxerr.disable();
if (fixedwidth_) {
// We do not need to check all UCS4 code points, it is enough
// if we check all 256 code points of this encoding.
for (unsigned short j = 0; j < 256; ++j) {
char const c = char(j);
vector<char_type> const ucs4 = eightbit_to_ucs4(&c, 1, iconvName_);
if (ucs4.size() != 1)
continue;
char_type const uc = ucs4[0];
CharInfoMap::const_iterator const it = unicodesymbols.find(uc);
if (it == unicodesymbols.end())
encodable_.insert(uc);
else if (!it->second.force()) {
if (forced_->empty() || forced_->find(uc) == forced_->end())
encodable_.insert(uc);
}
}
} else {
// We do not know how many code points this encoding has, and
// they do not have a direct representation as a single byte,
// therefore we need to check all UCS4 code points.
// This is expensive!
for (char_type c = 0; c < max_ucs4; ++c) {
vector<char> const eightbit = ucs4_to_eightbit(&c, 1, iconvName_);
if (!eightbit.empty()) {
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it == unicodesymbols.end())
encodable_.insert(c);
else if (!it->second.force()) {
if (forced_->empty() || forced_->find(c) == forced_->end())
encodable_.insert(c);
}
}
}
}
lyxerr.enable();
CharSet::iterator it = encodable_.find(start_encodable_);
while (it != encodable_.end()) {
encodable_.erase(it);
++start_encodable_;
it = encodable_.find(start_encodable_);
}
complete_ = true;
}
bool Encoding::isForced(char_type c) const
{
if (!forced.empty() && forced.find(c) != forced.end())
return true;
return !forced_->empty() && forced_->find(c) != forced_->end();
}
bool Encoding::encodable(char_type c) const
{
// assure the used encoding is properly initialized
init();
if (iconvName_ == "UTF-8" && package_ == none)
return true;
if (c < start_encodable_ && !isForced(c))
return true;
if (encodable_.find(c) != encodable_.end())
return true;
return false;
}
pair<docstring, bool> Encoding::latexChar(char_type c) const
{
if (encodable(c))
return make_pair(docstring(1, c), false);
// c cannot (or should not) be encoded in this encoding
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it == unicodesymbols.end())
throw EncodingException(c);
// at least one of mathcommand and textcommand is nonempty
if (it->second.textcommand.empty())
return make_pair(
"\\ensuremath{" + it->second.mathcommand + '}', false);
return make_pair(it->second.textcommand, !it->second.textnotermination());
}
pair<docstring, docstring> Encoding::latexString(docstring const input, bool dryrun) const
{
docstring result;
docstring uncodable;
bool terminate = false;
for (size_t n = 0; n < input.size(); ++n) {
try {
char_type const c = input[n];
pair<docstring, bool> latex_char = latexChar(c);
docstring const latex = latex_char.first;
if (terminate && !prefixIs(latex, '\\')
&& !prefixIs(latex, '{')
&& !prefixIs(latex, '}')) {
// Prevent eating of a following
// space or command corruption by
// following characters
if (latex == " ")
result += "{}";
else
result += " ";
}
result += latex;
terminate = latex_char.second;
} catch (EncodingException & /* e */) {
LYXERR0("Uncodable character in latexString!");
if (dryrun) {
result += "<" + _("LyX Warning: ")
+ _("uncodable character") + " '";
result += docstring(1, input[n]);
result += "'>";
} else
uncodable += input[n];
}
}
return make_pair(result, uncodable);
}
vector<char_type> Encoding::symbolsList() const
{
// assure the used encoding is properly initialized
init();
// first all encodable characters
vector<char_type> symbols(encodable_.begin(), encodable_.end());
// add those below start_encodable_
for (char_type c = 0; c < start_encodable_; ++c)
symbols.push_back(c);
// now the ones from the unicodesymbols file
CharInfoMap::const_iterator const end = unicodesymbols.end();
CharInfoMap::const_iterator it = unicodesymbols.begin();
for (; it != end; ++it)
symbols.push_back(it->first);
return symbols;
}
bool Encodings::latexMathChar(char_type c, bool mathmode,
Encoding const * encoding, docstring & command,
bool & needsTermination)
{
command = empty_docstring();
if (encoding)
if (encoding->encodable(c))
command = docstring(1, c);
needsTermination = false;
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it == unicodesymbols.end()) {
if (!encoding || command.empty())
throw EncodingException(c);
if (mathmode)
addMathSym(c);
return false;
}
// at least one of mathcommand and textcommand is nonempty
bool use_math = (mathmode && !it->second.mathcommand.empty()) ||
(!mathmode && it->second.textcommand.empty());
if (use_math) {
command = it->second.mathcommand;
needsTermination = !it->second.mathnotermination();
addMathCmd(c);
} else {
if (!encoding || command.empty()) {
command = it->second.textcommand;
needsTermination = !it->second.textnotermination();
addTextCmd(c);
}
if (mathmode)
addMathSym(c);
}
return use_math;
}
char_type Encodings::fromLaTeXCommand(docstring const & cmd, int cmdtype,
bool & combining, bool & needsTermination, set<string> * req)
{
CharInfoMap::const_iterator const end = unicodesymbols.end();
CharInfoMap::const_iterator it = unicodesymbols.begin();
for (combining = false; it != end; ++it) {
docstring const math = it->second.mathcommand;
docstring const text = it->second.textcommand;
if ((cmdtype & MATH_CMD) && math == cmd) {
combining = it->second.combining();
needsTermination = !it->second.mathnotermination();
if (req && it->second.mathfeature() &&
!it->second.mathpreamble.empty())
req->insert(it->second.mathpreamble);
return it->first;
}
if ((cmdtype & TEXT_CMD) && text == cmd) {
combining = it->second.combining();
needsTermination = !it->second.textnotermination();
if (req && it->second.textfeature() &&
!it->second.textpreamble.empty())
req->insert(it->second.textpreamble);
return it->first;
}
}
needsTermination = false;
return 0;
}
docstring Encodings::fromLaTeXCommand(docstring const & cmd, int cmdtype,
bool & needsTermination, docstring & rem, set<string> * req)
{
needsTermination = false;
rem = empty_docstring();
bool const mathmode = cmdtype & MATH_CMD;
bool const textmode = cmdtype & TEXT_CMD;
docstring symbols;
size_t const cmdend = cmd.size();
size_t prefix = 0;
CharInfoMap::const_iterator const uniend = unicodesymbols.end();
for (size_t i = 0, j = 0; j < cmdend; ++j) {
// Also get the char after a backslash
if (j + 1 < cmdend && cmd[j] == '\\') {
++j;
prefix = 1;
// Detect things like \=*{e} as well
if (j + 3 < cmdend && cmd[j+1] == '*' &&
cmd[j+2] == '{') {
++j;
prefix = 2;
}
}
// position of the last character before a possible macro
// argument
size_t m = j;
// If a macro argument follows, get it, too
// Do it here only for single character commands. Other
// combining commands need this too, but they are handled in
// the loop below for performance reasons.
if (j + 1 < cmdend && cmd[j + 1] == '{') {
size_t k = j + 1;
int count = 1;
while (k < cmdend && count && k != docstring::npos) {
k = cmd.find_first_of(from_ascii("{}"), k + 1);
if (cmd[k] == '{')
++count;
else
--count;
}
if (k != docstring::npos)
j = k;
} else if (m + 1 < cmdend && isAlphaASCII(cmd[m])) {
while (m + 2 < cmdend && isAlphaASCII(cmd[m+1]))
m++;
}
// Start with this substring and try augmenting it when it is
// the prefix of some command in the unicodesymbols file
docstring subcmd = cmd.substr(i, j - i + 1);
CharInfoMap::const_iterator it = unicodesymbols.begin();
// First part of subcmd which might be a combining character
docstring combcmd = (m == j) ? docstring() : cmd.substr(i, m - i + 1);
// The combining character of combcmd if it exists
CharInfoMap::const_iterator combining = uniend;
size_t unicmd_size = 0;
char_type c = 0;
for (; it != uniend; ++it) {
docstring const math = mathmode ? it->second.mathcommand
: docstring();
docstring const text = textmode ? it->second.textcommand
: docstring();
if (!combcmd.empty() && it->second.combining() &&
(math == combcmd || text == combcmd))
combining = it;
size_t cur_size = max(math.size(), text.size());
// The current math or text unicode command cannot
// match, or we already matched a longer one
if (cur_size < subcmd.size() || cur_size <= unicmd_size)
continue;
docstring tmp = subcmd;
size_t k = j;
while (prefixIs(math, tmp) || prefixIs(text, tmp)) {
++k;
if (k >= cmdend || cur_size <= tmp.size())
break;
tmp += cmd[k];
}
// No match
if (k == j)
continue;
// The last added char caused a mismatch, because
// we didn't exhaust the chars in cmd and didn't
// exceed the maximum size of the current unicmd
if (k < cmdend && cur_size > tmp.size())
tmp.resize(tmp.size() - 1);
// If this is an exact match, we found a (longer)
// matching entry in the unicodesymbols file.
if (math != tmp && text != tmp)
continue;
// If we found a combining command, we need to append
// the macro argument if this has not been done above.
if (tmp == combcmd && combining != uniend &&
k < cmdend && cmd[k] == '{') {
size_t l = k;
int count = 1;
while (l < cmdend && count && l != docstring::npos) {
l = cmd.find_first_of(from_ascii("{}"), l + 1);
if (cmd[l] == '{')
++count;
else
--count;
}
if (l != docstring::npos) {
j = l;
subcmd = cmd.substr(i, j - i + 1);
}
}
// If the entry doesn't start with '\', we take note
// of the match and continue (this is not a ultimate
// acceptance, as some other entry may match a longer
// portion of the cmd string). However, if the entry
// does start with '\', we accept the match only if
// this is a valid macro, i.e., either it is a single
// (nonletter) char macro, or nothing else follows,
// or what follows is a nonletter char, or the last
// character is a }.
else if (tmp[0] != '\\'
|| (tmp.size() == prefix + 1 &&
!isAlphaASCII(tmp[1]) &&
(prefix == 1 || !isAlphaASCII(tmp[2])))
|| k == cmdend
|| !isAlphaASCII(cmd[k])
|| tmp[tmp.size() - 1] == '}'
) {
c = it->first;
j = k - 1;
i = j + 1;
unicmd_size = cur_size;
if (math == tmp)
needsTermination = !it->second.mathnotermination();
else
needsTermination = !it->second.textnotermination();
if (req) {
if (math == tmp && it->second.mathfeature() &&
!it->second.mathpreamble.empty())
req->insert(it->second.mathpreamble);
if (text == tmp && it->second.textfeature() &&
!it->second.textpreamble.empty())
req->insert(it->second.textpreamble);
}
}
}
if (unicmd_size)
symbols += c;
else if (combining != uniend &&
prefixIs(subcmd, combcmd + '{')) {
// We know that subcmd starts with combcmd and
// contains an argument in braces.
docstring const arg = subcmd.substr(
combcmd.length() + 1,
subcmd.length() - combcmd.length() - 2);
// If arg is a single character we can construct a
// combining sequence.
char_type a;
bool argcomb = false;
if (arg.size() == 1 && isAlnumASCII(arg[0]))
a = arg[0];
else {
// Use the version of fromLaTeXCommand() that
// parses only one command, since we cannot
// use more than one character.
bool dummy = false;
set<string> r;
a = fromLaTeXCommand(arg, cmdtype, argcomb,
dummy, &r);
if (a && req && !argcomb)
req->insert(r.begin(), r.end());
}
if (a && !argcomb) {
// In unicode the combining character comes
// after its base
symbols += a;
symbols += combining->first;
i = j + 1;
unicmd_size = 2;
}
}
if (j + 1 == cmdend && !unicmd_size) {
// No luck. Return what remains
rem = cmd.substr(i);
if (needsTermination && !rem.empty()) {
if (rem.substr(0, 2) == "{}") {
rem = rem.substr(2);
needsTermination = false;
} else if (rem[0] == ' ') {
needsTermination = false;
// LaTeX would swallow all spaces
rem = ltrim(rem);
}
}
}
}
return symbols;
}
void Encodings::initUnicodeMath(Buffer const & buffer, bool for_master)
{
#ifdef TEX2LYX
// The code below is not needed in tex2lyx and requires additional stuff
(void)buffer;
(void)for_master;
#else
if (for_master) {
mathcmd.clear();
textcmd.clear();
mathsym.clear();
}
// Check this buffer
Inset & inset = buffer.inset();
InsetIterator it = inset_iterator_begin(inset);
InsetIterator const end = inset_iterator_end(inset);
for (; it != end; ++it)
it->initUnicodeMath();
if (!for_master)
return;
// Check children
ListOfBuffers blist = buffer.getDescendents();
ListOfBuffers::const_iterator bit = blist.begin();
ListOfBuffers::const_iterator const bend = blist.end();
for (; bit != bend; ++bit)
initUnicodeMath(**bit, false);
#endif
}
void Encodings::validate(char_type c, LaTeXFeatures & features, bool for_mathed)
{
#ifdef TEX2LYX
// The code below is not needed in tex2lyx and requires additional stuff
(void)c;
(void)features;
(void)for_mathed;
#else
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it != unicodesymbols.end()) {
// In mathed, c could be used both in textmode and mathmode
bool const math_mode = for_mathed && isMathCmd(c);
bool const use_math = math_mode ||
(!for_mathed && it->second.textcommand.empty());
bool const use_text = (for_mathed && isTextCmd(c)) ||
(!for_mathed && !it->second.textcommand.empty());
bool const plain_utf8 = (features.runparams().encoding->name() == "utf8-plain");
bool const unicode_math = (features.isRequired("unicode-math")
&& features.isAvailable("unicode-math"));
// with utf8-plain, we only load packages when in mathed (see #7766)
// and if we do not use unicode-math
if ((math_mode && !unicode_math)
|| (use_math && !plain_utf8)) {
if (!it->second.mathpreamble.empty()) {
if (it->second.mathfeature()) {
string feats = it->second.mathpreamble;
while (!feats.empty()) {
string feat;
feats = split(feats, feat, ',');
features.require(feat);
}
} else
features.addPreambleSnippet(it->second.mathpreamble);
}
}
// with utf8-plain, we do not load packages (see #7766)
if (use_text && !plain_utf8) {
if (!it->second.textpreamble.empty()) {
if (it->second.textfeature()) {
string feats = it->second.textpreamble;
while (!feats.empty()) {
string feat;
feats = split(feats, feat, ',');
features.require(feat);
}
} else
features.addPreambleSnippet(it->second.textpreamble);
}
}
}
if (for_mathed && isMathSym(c)) {
features.require("amstext");
features.require("lyxmathsym");
}
#endif
}
bool Encodings::isHebrewComposeChar(char_type c)
{
return c <= 0x05c2 && c >= 0x05b0 && c != 0x05be && c != 0x05c0;
}
// Special Arabic letters are ones that do not get connected from left
// they are hamza, alef_madda, alef_hamza, waw_hamza, alef_hamza_under,
// alef, tah_marbota, dal, thal, rah, zai, wow, alef_maksoura
bool Encodings::isArabicSpecialChar(char_type c)
{
return (c >= 0x0621 && c <= 0x0625) || (c >= 0x0630 && c <= 0x0632)
|| c == 0x0627 || c == 0x0629 || c == 0x062f || c == 0x0648
|| c == 0x0649 || c == 0x0698;
}
bool Encodings::isArabicComposeChar(char_type c)
{
return c >= 0x064b && c <= 0x0652;
}
bool Encodings::isArabicChar(char_type c)
{
return c >= arabic_start && c <= arabic_end
&& arabic_table[c-arabic_start][0];
}
char_type Encodings::transformChar(char_type c, Encodings::LetterForm form)
{
return isArabicChar(c) ? arabic_table[c-arabic_start][form] : c;
}
bool Encodings::isCombiningChar(char_type c)
{
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it != unicodesymbols.end())
return it->second.combining();
return false;
}
string const Encodings::TIPAShortcut(char_type c)
{
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it != unicodesymbols.end())
return it->second.tipashortcut;
return string();
}
bool Encodings::isKnownScriptChar(char_type const c, string & preamble)
{
CharInfoMap::const_iterator const it = unicodesymbols.find(c);
if (it == unicodesymbols.end())
return false;
if (it->second.textpreamble != "textgreek" && it->second.textpreamble != "textcyr")
return false;
if (preamble.empty()) {
preamble = it->second.textpreamble;
return true;
}
return it->second.textpreamble == preamble;
}
bool Encodings::isMathAlpha(char_type c)
{
return mathalpha.count(c);
}
Encoding const *
Encodings::fromLyXName(string const & name, bool allowUnsafe) const
{
EncodingList::const_iterator const it = encodinglist.find(name);
if (!allowUnsafe && it->second.unsafe())
return 0;
return it != encodinglist.end() ? &it->second : 0;
}
Encoding const *
Encodings::fromLaTeXName(string const & n, int const & p, bool allowUnsafe) const
{
string name = n;
// FIXME: if we have to test for too many of these synonyms,
// we should instead extend the format of lib/encodings
if (n == "ansinew")
name = "cp1252";
// We don't use find_if because it makes copies of the pairs in
// the map.
// This linear search is OK since we don't have many encodings.
// Users could even optimize it by putting the encodings they use
// most at the top of lib/encodings.
EncodingList::const_iterator const end = encodinglist.end();
for (EncodingList::const_iterator it = encodinglist.begin(); it != end; ++it)
if ((it->second.latexName() == name) && (it->second.package() & p)
&& (!it->second.unsafe() || allowUnsafe))
return &it->second;
return 0;
}
Encoding const *
Encodings::fromIconvName(string const & n, int const & p, bool allowUnsafe) const
{
EncodingList::const_iterator const end = encodinglist.end();
for (EncodingList::const_iterator it = encodinglist.begin(); it != end; ++it)
if ((it->second.iconvName() == n) && (it->second.package() & p)
&& (!it->second.unsafe() || allowUnsafe))
return &it->second;
return 0;
}
Encodings::Encodings()
{}
void Encodings::read(FileName const & encfile, FileName const & symbolsfile)
{
// We must read the symbolsfile first, because the Encoding
// constructor depends on it.
CharSetMap forcednotselected;
Lexer symbolslex;
symbolslex.setFile(symbolsfile);
bool getNextToken = true;
while (symbolslex.isOK()) {
char_type symbol;
CharInfo info;
string flags;
if (getNextToken) {
if (!symbolslex.next(true))
break;
} else
getNextToken = true;
istringstream is(symbolslex.getString());
// reading symbol directly does not work if
// char_type == wchar_t.
boost::uint32_t tmp;
if(!(is >> hex >> tmp))
break;
symbol = tmp;
if (!symbolslex.next(true))
break;
info.textcommand = symbolslex.getDocString();
if (!symbolslex.next(true))
break;
info.textpreamble = symbolslex.getString();
if (!symbolslex.next(true))
break;
flags = symbolslex.getString();
info.flags = 0;
if (suffixIs(info.textcommand, '}'))
info.flags |= CharInfoTextNoTermination;
if (suffixIs(info.mathcommand, '}'))
info.flags |= CharInfoMathNoTermination;
while (!flags.empty()) {
string flag;
flags = split(flags, flag, ',');
if (flag == "combining") {
info.flags |= CharInfoCombining;
} else if (flag == "force") {
info.flags |= CharInfoForce;
forced.insert(symbol);
} else if (prefixIs(flag, "force=")) {
vector<string> encodings =
getVectorFromString(flag.substr(6), ";");
for (size_t i = 0; i < encodings.size(); ++i)
forcedselected[encodings[i]].insert(symbol);
info.flags |= CharInfoForceSelected;
} else if (prefixIs(flag, "force!=")) {
vector<string> encodings =
getVectorFromString(flag.substr(7), ";");
for (size_t i = 0; i < encodings.size(); ++i)
forcednotselected[encodings[i]].insert(symbol);
info.flags |= CharInfoForceSelected;
} else if (flag == "mathalpha") {
mathalpha.insert(symbol);
} else if (flag == "notermination=text") {
info.flags |= CharInfoTextNoTermination;
} else if (flag == "notermination=math") {
info.flags |= CharInfoMathNoTermination;
} else if (flag == "notermination=both") {
info.flags |= CharInfoTextNoTermination;
info.flags |= CharInfoMathNoTermination;
} else if (flag == "notermination=none") {
info.flags &= ~CharInfoTextNoTermination;
info.flags &= ~CharInfoMathNoTermination;
} else if (contains(flag, "tipashortcut=")) {
info.tipashortcut = split(flag, '=');
} else {
lyxerr << "Ignoring unknown flag `" << flag
<< "' for symbol `0x"
<< hex << symbol << dec
<< "'." << endl;
}
}
// mathcommand and mathpreamble have been added for 1.6.0.
// make them optional so that old files still work.
int const lineno = symbolslex.lineNumber();
bool breakout = false;
if (symbolslex.next(true)) {
if (symbolslex.lineNumber() != lineno) {
// line in old format without mathcommand and mathpreamble
getNextToken = false;
} else {
info.mathcommand = symbolslex.getDocString();
if (symbolslex.next(true)) {
if (symbolslex.lineNumber() != lineno) {
// line in new format with mathcommand only
getNextToken = false;
} else {
// line in new format with mathcommand and mathpreamble
info.mathpreamble = symbolslex.getString();
}
} else
breakout = true;
}
} else {
breakout = true;
}
// backward compatibility
if (info.mathpreamble == "esintoramsmath")
info.mathpreamble = "esint|amsmath";
if (!info.textpreamble.empty())
if (info.textpreamble[0] != '\\')
info.flags |= CharInfoTextFeature;
if (!info.mathpreamble.empty())
if (info.mathpreamble[0] != '\\')
info.flags |= CharInfoMathFeature;
LYXERR(Debug::INFO, "Read unicode symbol " << symbol << " '"
<< to_utf8(info.textcommand) << "' '" << info.textpreamble
<< " '" << info.textfeature() << ' ' << info.textnotermination()
<< ' ' << to_utf8(info.mathcommand) << "' '" << info.mathpreamble
<< "' " << info.mathfeature() << ' ' << info.mathnotermination()
<< ' ' << info.combining() << ' ' << info.force()
<< ' ' << info.forceselected());
// we assume that at least one command is nonempty when using unicodesymbols
if (!info.textcommand.empty() || !info.mathcommand.empty())
unicodesymbols[symbol] = info;
if (breakout)
break;
}
// Now read the encodings
enum {
et_encoding = 1,
et_end
};
LexerKeyword encodingtags[] = {
{ "encoding", et_encoding },
{ "end", et_end }
};
Lexer lex(encodingtags);
lex.setFile(encfile);
lex.setContext("Encodings::read");
while (lex.isOK()) {
switch (lex.lex()) {
case et_encoding:
{
lex.next();
string const name = lex.getString();
lex.next();
string const latexname = lex.getString();
lex.next();
string const guiname = lex.getString();
lex.next();
string const iconvname = lex.getString();
lex.next();
string const width = lex.getString();
bool fixedwidth = false;
bool unsafe = false;
if (width == "fixed")
fixedwidth = true;
else if (width == "variable")
fixedwidth = false;
else if (width == "variableunsafe") {
fixedwidth = false;
unsafe = true;
}
else
lex.printError("Unknown width");
lex.next();
string const p = lex.getString();
Encoding::Package package = Encoding::none;
if (p == "none")
package = Encoding::none;
else if (p == "inputenc")
package = Encoding::inputenc;
else if (p == "CJK")
package = Encoding::CJK;
else if (p == "japanese")
package = Encoding::japanese;
else
lex.printError("Unknown package");
LYXERR(Debug::INFO, "Reading encoding " << name);
encodinglist[name] = Encoding(name, latexname,
guiname, iconvname, fixedwidth, unsafe,
package);
if (lex.lex() != et_end)
lex.printError("Missing end");
break;
}
case et_end:
lex.printError("Misplaced end");
break;
case Lexer::LEX_FEOF:
break;
default:
lex.printError("Unknown tag");
break;
}
}
// Move all information from forcednotselected to forcedselected
for (CharSetMap::const_iterator it1 = forcednotselected.begin(); it1 != forcednotselected.end(); ++it1) {
for (CharSetMap::iterator it2 = forcedselected.begin(); it2 != forcedselected.end(); ++it2) {
if (it2->first != it1->first)
it2->second.insert(it1->second.begin(), it1->second.end());
}
}
}
} // namespace lyx