lyx_mirror/src/mathed/InsetMathGrid.cpp
Juergen Spitzmueller d1761d7652 Style
2021-12-28 09:42:31 +01:00

1877 lines
46 KiB
C++

/**
* \file InsetMathGrid.cpp
* This file is part of LyX, the document processor.
* Licence details can be found in the file COPYING.
*
* \author André Pönitz
*
* Full author contact details are available in file CREDITS.
*/
#include <config.h>
#include <algorithm>
#include "InsetMathGrid.h"
#include "InsetMathUnknown.h"
#include "MathData.h"
#include "MathParser.h"
#include "MathStream.h"
#include "MetricsInfo.h"
#include "Buffer.h"
#include "BufferParams.h"
#include "BufferView.h"
#include "CoordCache.h"
#include "Cursor.h"
#include "CutAndPaste.h"
#include "FuncRequest.h"
#include "FuncStatus.h"
#include "LaTeXFeatures.h"
#include "TexRow.h"
#include "frontends/Clipboard.h"
#include "frontends/Painter.h"
#include "support/debug.h"
#include "support/docstream.h"
#include "support/gettext.h"
#include "support/lstrings.h"
#include "support/lassert.h"
#include <sstream>
using namespace std;
using namespace lyx::support;
namespace lyx {
static docstring verboseHLine(int n)
{
docstring res;
for (int i = 0; i < n; ++i)
res += "\\hline";
if (n)
res += ' ';
return res;
}
static int extractInt(istream & is)
{
int num = 1;
is >> num;
return (num == 0) ? 1 : num;
}
static void resetGrid(InsetMathGrid & grid)
{
while (grid.ncols() > 1)
grid.delCol(grid.ncols() - 1);
while (grid.nrows() > 1)
grid.delRow(grid.nrows() - 1);
grid.cell(0).erase(0, grid.cell(0).size());
grid.setDefaults();
}
//////////////////////////////////////////////////////////////
int InsetMathGrid::RowInfo::skipPixels(MetricsInfo const & mi) const
{
return mi.base.inPixels(crskip);
}
//////////////////////////////////////////////////////////////
InsetMathGrid::InsetMathGrid(Buffer * buf)
: InsetMathNest(buf, 1),
rowinfo_(1 + 1),
colinfo_(1 + 1),
cellinfo_(1),
v_align_('c')
{
setDefaults();
}
InsetMathGrid::InsetMathGrid(Buffer * buf, col_type m, row_type n)
: InsetMathNest(buf, m * n),
rowinfo_(n + 1),
colinfo_(m + 1),
cellinfo_(m * n),
v_align_('c')
{
setDefaults();
}
InsetMathGrid::InsetMathGrid(Buffer * buf, col_type m, row_type n, char v,
docstring const & h)
: InsetMathNest(buf, m * n),
rowinfo_(n + 1),
colinfo_(m + 1),
cellinfo_(m * n),
v_align_(v)
{
setDefaults();
setVerticalAlignment(v);
setHorizontalAlignments(h);
}
Inset * InsetMathGrid::clone() const
{
return new InsetMathGrid(*this);
}
idx_type InsetMathGrid::index(row_type row, col_type col) const
{
return col + ncols() * row;
}
void InsetMathGrid::setDefaults()
{
if (ncols() <= 0)
lyxerr << "positive number of columns expected" << endl;
//if (nrows() <= 0)
// lyxerr << "positive number of rows expected" << endl;
for (col_type col = 0; col < ncols(); ++col) {
colinfo_[col].align = defaultColAlign(col);
colinfo_[col].skip = defaultColSpace(col);
colinfo_[col].special.clear();
}
for (idx_type idx = 0; idx < nargs(); ++idx)
cellinfo_[idx].multi = CELL_NORMAL;
}
bool InsetMathGrid::interpretString(Cursor & cur, docstring const & str)
{
if (str == "\\hline") {
FuncRequest fr = FuncRequest(LFUN_TABULAR_FEATURE, "add-hline-above");
FuncStatus status;
if (getStatus(cur, fr, status)) {
if (status.enabled()) {
rowinfo_[cur.row()].lines++;
return true;
}
}
}
return InsetMathNest::interpretString(cur, str);
}
void InsetMathGrid::setHorizontalAlignments(docstring const & hh)
{
col_type col = 0;
for (docstring::const_iterator it = hh.begin(); it != hh.end(); ++it) {
char_type c = *it;
if (c == '|') {
colinfo_[col].lines++;
} else if ((c == 'p' || c == 'm' || c == 'b'||
c == '!' || c == '@' || c == '>' || c == '<') &&
it + 1 != hh.end() && *(it + 1) == '{') {
// @{decl.} and p{width} are standard LaTeX, the
// others are extensions by array.sty
bool const newcolumn = c == 'p' || c == 'm' || c == 'b';
if (newcolumn) {
// this declares a new column
if (col >= ncols())
// Only intercolumn stuff is allowed
// in the last dummy column
break;
colinfo_[col].align = 'l';
} else {
// this is intercolumn stuff
if (colinfo_[col].special.empty())
// Overtake possible lines
colinfo_[col].special = docstring(colinfo_[col].lines, '|');
}
int brace_open = 0;
int brace_close = 0;
while (it != hh.end()) {
c = *it;
colinfo_[col].special += c;
if (c == '{')
++brace_open;
else if (c == '}')
++brace_close;
++it;
if (brace_open > 0 && brace_open == brace_close)
break;
}
--it;
if (newcolumn) {
colinfo_[col].lines = count(
colinfo_[col].special.begin(),
colinfo_[col].special.end(), '|');
LYXERR(Debug::MATHED, "special column separator: `"
<< to_utf8(colinfo_[col].special) << '\'');
++col;
colinfo_[col].lines = 0;
colinfo_[col].special.clear();
}
} else if (col >= ncols()) {
// Only intercolumn stuff is allowed in the last
// dummy column
break;
} else if (c == 'c' || c == 'l' || c == 'r') {
colinfo_[col].align = static_cast<char>(c);
if (!colinfo_[col].special.empty()) {
colinfo_[col].special += c;
colinfo_[col].lines = count(
colinfo_[col].special.begin(),
colinfo_[col].special.end(), '|');
LYXERR(Debug::MATHED, "special column separator: `"
<< to_utf8(colinfo_[col].special) << '\'');
}
++col;
colinfo_[col].lines = 0;
colinfo_[col].special.clear();
} else {
lyxerr << "unknown column separator: '" << c << "'" << endl;
}
}
/*
col_type n = hh.size();
if (n > ncols())
n = ncols();
for (col_type col = 0; col < n; ++col)
colinfo_[col].align = hh[col];
*/
}
col_type InsetMathGrid::guessColumns(docstring const & hh)
{
col_type col = 0;
for (char_type const c : hh)
if (c == 'c' || c == 'l' || c == 'r'||
c == 'p' || c == 'm' || c == 'b')
++col;
// let's have at least one column, even if we did not recognize its
// alignment
if (col == 0)
col = 1;
return col;
}
void InsetMathGrid::setHorizontalAlignment(char h, col_type col)
{
colinfo_[col].align = h;
if (!colinfo_[col].special.empty()) {
char_type & c = colinfo_[col].special[colinfo_[col].special.size() - 1];
if (c == 'l' || c == 'c' || c == 'r')
c = h;
}
// FIXME: Change alignment of p, m and b columns, too
}
char InsetMathGrid::horizontalAlignment(col_type col) const
{
return colinfo_[col].align;
}
docstring InsetMathGrid::horizontalAlignments() const
{
docstring res;
for (col_type col = 0; col < ncols(); ++col) {
if (colinfo_[col].special.empty()) {
res += docstring(colinfo_[col].lines, '|');
res += colinfo_[col].align;
} else
res += colinfo_[col].special;
}
if (colinfo_[ncols()].special.empty())
return res + docstring(colinfo_[ncols()].lines, '|');
return res + colinfo_[ncols()].special;
}
void InsetMathGrid::setVerticalAlignment(char c)
{
v_align_ = c;
}
char InsetMathGrid::verticalAlignment() const
{
return v_align_;
}
col_type InsetMathGrid::ncols() const
{
return colinfo_.size() - 1;
}
row_type InsetMathGrid::nrows() const
{
return rowinfo_.size() - 1;
}
col_type InsetMathGrid::col(idx_type idx) const
{
return idx % ncols();
}
row_type InsetMathGrid::row(idx_type idx) const
{
return idx / ncols();
}
col_type InsetMathGrid::ncellcols(idx_type idx) const
{
col_type cols = 1;
if (cellinfo_[idx].multi == CELL_NORMAL)
return cols;
// If the cell at idx is already CELL_PART_OF_MULTICOLUMN we return
// the number of remaining columns, not the ones of the complete
// multicolumn cell. This makes it possible to always go to the next
// cell with idx + ncellcols(idx) - 1.
row_type const r = row(idx);
while (idx+cols < nargs() && row(idx+cols) == r &&
cellinfo_[idx+cols].multi == CELL_PART_OF_MULTICOLUMN)
cols++;
return cols;
}
void InsetMathGrid::vcrskip(Length const & crskip, row_type row)
{
rowinfo_[row].crskip = crskip;
}
Length InsetMathGrid::vcrskip(row_type row) const
{
return rowinfo_[row].crskip;
}
void InsetMathGrid::metrics(MetricsInfo & mi, Dimension & dim) const
{
// let the cells adjust themselves
for (idx_type i = 0; i < nargs(); ++i) {
if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) {
Dimension dimc;
// the 'false' is to make sure that the cell is tall enough
cell(i).metrics(mi, dimc, false);
}
}
BufferView & bv = *mi.base.bv;
// compute absolute sizes of vertical structure
for (row_type row = 0; row < nrows(); ++row) {
int asc = 0;
int desc = 0;
for (col_type col = 0; col < ncols(); ++col) {
idx_type const i = index(row, col);
if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) {
Dimension const & dimc = cell(i).dimension(bv);
asc = max(asc, dimc.asc);
desc = max(desc, dimc.des);
}
}
rowinfo_[row].ascent = asc;
rowinfo_[row].descent = desc;
}
rowinfo_[nrows()].ascent = 0;
rowinfo_[nrows()].descent = 0;
// compute vertical offsets
rowinfo_[0].offset[&bv] = 0;
for (row_type row = 1; row <= nrows(); ++row) {
rowinfo_[row].offset[&bv] =
rowinfo_[row - 1].offset[&bv] +
rowinfo_[row - 1].descent +
rowinfo_[row - 1].skipPixels(mi) +
rowsep() +
rowinfo_[row].lines * hlinesep() +
rowinfo_[row].ascent;
}
// adjust vertical offset
int h = 0;
switch (v_align_) {
case 't':
h = 0;
break;
case 'b':
h = rowinfo_[nrows() - 1].offset[&bv];
break;
default:
h = rowinfo_[nrows() - 1].offset[&bv] / 2;
}
for (row_type row = 0; row <= nrows(); ++row)
rowinfo_[row].offset[&bv] -= h;
// multicolumn cell widths, as a map from first column to width in a
// vector of last columns.
// This is only used if the grid has more than one row, since for
// one-row grids multicolumn cells do not need special handling
vector<map<col_type, int> > mcolwidths(ncols());
// compute absolute sizes of horizontal structure
for (col_type col = 0; col < ncols(); ++col) {
int wid = 0;
for (row_type row = 0; row < nrows(); ++row) {
idx_type const i = index(row, col);
if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) {
int const w = cell(i).dimension(bv).wid;
col_type const cols = ncellcols(i);
if (cols > 1 && nrows() > 1) {
col_type last = col+cols-1;
LASSERT(last < ncols(), last = ncols()-1);
map<col_type, int>::iterator it =
mcolwidths[last].find(col);
if (it == mcolwidths[last].end())
mcolwidths[last][col] = w;
else
it->second = max(it->second, w);
} else
wid = max(wid, w);
}
}
colinfo_[col].width = wid;
}
colinfo_[ncols()].width = 0;
// compute horizontal offsets
colinfo_[0].offset = border() + colinfo_[0].lines * vlinesep();
for (col_type col = 1; col <= ncols(); ++col) {
colinfo_[col].offset =
colinfo_[col - 1].offset +
colinfo_[col - 1].width +
displayColSpace(col - 1) +
colsep() +
colinfo_[col].lines * vlinesep();
}
// increase column widths for multicolumn cells if needed
// FIXME: multicolumn lines are not yet considered
for (col_type last = 0; last < ncols(); ++last) {
map<col_type, int> const & widths = mcolwidths[last];
// We increase the width of the last column of the multicol
// cell (some sort of left alignment). Since we iterate through
// the last and the first columns from left to right, we ensure
// that increased widths of previous columns are correctly
// taken into account for later columns, thus preventing
// unneeded width increasing.
for (map<col_type, int>::const_iterator it = widths.begin();
it != widths.end(); ++it) {
int const wid = it->second;
col_type const first = it->first;
int const nextoffset =
colinfo_[first].offset +
wid +
displayColSpace(last) +
colsep() +
colinfo_[last+1].lines * vlinesep();
int const dx = nextoffset - colinfo_[last+1].offset;
if (dx > 0) {
colinfo_[last].width += dx;
for (col_type col = last + 1; col <= ncols(); ++col)
colinfo_[col].offset += dx;
}
}
}
dim.wid = colinfo_[ncols() - 1].offset
+ colinfo_[ncols() - 1].width
+ vlinesep() * colinfo_[ncols()].lines
+ border();
dim.asc = - rowinfo_[0].offset[&bv]
+ rowinfo_[0].ascent
+ hlinesep() * rowinfo_[0].lines
+ border();
dim.des = rowinfo_[nrows() - 1].offset[&bv]
+ rowinfo_[nrows() - 1].descent
+ hlinesep() * rowinfo_[nrows()].lines
+ border() + 1;
/*
// Increase ws_[i] for 'R' columns (except the first one)
for (int i = 1; i < nc_; ++i)
if (align[i] == 'R')
ws_[i] += 10 * df_width;
// Increase ws_[i] for 'C' column
if (align[0] == 'C')
if (ws_[0] < 7 * workwidth / 8)
ws_[0] = 7 * workwidth / 8;
// Adjust local tabs
width = colsep();
for (cxrow = row_.begin(); cxrow; ++cxrow) {
int rg = COLSEP;
int lf = 0;
for (int i = 0; i < nc_; ++i) {
bool isvoid = false;
if (cxrow->getTab(i) <= 0) {
cxrow->setTab(i, df_width);
isvoid = true;
}
switch (align[i]) {
case 'l':
lf = 0;
break;
case 'c':
lf = (ws_[i] - cxrow->getTab(i))/2;
break;
case 'r':
case 'R':
lf = ws_[i] - cxrow->getTab(i);
break;
case 'C':
if (cxrow == row_.begin())
lf = 0;
else if (cxrow.is_last())
lf = ws_[i] - cxrow->getTab(i);
else
lf = (ws_[i] - cxrow->getTab(i))/2;
break;
}
int const ww = (isvoid) ? lf : lf + cxrow->getTab(i);
cxrow->setTab(i, lf + rg);
rg = ws_[i] - ww + colsep();
if (cxrow == row_.begin())
width += ws_[i] + colsep();
}
cxrow->setBaseline(cxrow->getBaseline() - ascent);
}
*/
dim.wid += leftMargin() + rightMargin();
}
int InsetMathGrid::vLineHOffset(col_type col, unsigned int line) const
{
if (col < ncols())
return leftMargin() + colinfo_[col].offset
- (colinfo_[col].lines - line - 1) * vlinesep()
- vlinesep()/2 - colsep()/2;
else {
LASSERT(col == ncols(), return 0);
return leftMargin() + colinfo_[col-1].offset + colinfo_[col-1].width
+ line * vlinesep()
+ vlinesep()/2 + colsep()/2;
}
}
int InsetMathGrid::hLineVOffset(BufferView const & bv, row_type row,
unsigned int line) const
{
return rowinfo_[row].offset[&bv]
- rowinfo_[row].ascent
- line * hlinesep()
- hlinesep()/2 - rowsep()/2;
}
void InsetMathGrid::draw(PainterInfo & pi, int x, int y) const
{
BufferView const & bv = *pi.base.bv;
for (idx_type idx = 0; idx < nargs(); ++idx) {
if (cellinfo_[idx].multi != CELL_PART_OF_MULTICOLUMN) {
cell(idx).draw(pi,
x + leftMargin() + cellXOffset(bv, idx),
y + cellYOffset(bv, idx));
row_type r = row(idx);
int const yy1 = y + hLineVOffset(bv, r, 0);
int const yy2 = y + hLineVOffset(bv, r + 1, rowinfo_[r + 1].lines - 1);
auto draw_left_borders = [&](col_type c) {
for (unsigned int i = 0; i < colinfo_[c].lines; ++i) {
int const xx = x + vLineHOffset(c, i);
pi.pain.line(xx, yy1, xx, yy2, Color_foreground);
}
};
col_type c = col(idx);
// Draw inner left borders cell-by-cell because of multicolumns
draw_left_borders(c);
// Draw the right border (only once)
if (c == 0)
draw_left_borders(ncols());
}
}
// Draw horizontal borders
for (row_type r = 0; r <= nrows(); ++r) {
int const xx1 = x + vLineHOffset(0, 0);
int const xx2 = x + vLineHOffset(ncols(), colinfo_[ncols()].lines - 1);
for (unsigned int i = 0; i < rowinfo_[r].lines; ++i) {
int const yy = y + hLineVOffset(bv, r, i);
pi.pain.line(xx1, yy, xx2, yy, Color_foreground);
}
}
}
void InsetMathGrid::metricsT(TextMetricsInfo const & /*mi*/, Dimension & /*dim*/) const
{
// FIXME: this does not compile anymore with offset being a map
// It is not worth fixing it at this point since the code is basically dead.
#if 0
// let the cells adjust themselves
for (idx_type i = 0; i < nargs(); ++i)
if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN)
cell(i).metricsT(mi, dim);
// compute absolute sizes of vertical structure
for (row_type row = 0; row < nrows(); ++row) {
int asc = 0;
int desc = 0;
for (col_type col = 0; col < ncols(); ++col) {
idx_type const i = index(row, col);
if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) {
//MathData const & c = cell(i);
// FIXME: BROKEN!
Dimension dimc;
asc = max(asc, dimc.ascent());
desc = max(desc, dimc.descent());
}
}
rowinfo_[row].ascent = asc;
rowinfo_[row].descent = desc;
}
rowinfo_[nrows()].ascent = 0;
rowinfo_[nrows()].descent = 0;
// compute vertical offsets
rowinfo_[0].offset[&bv] = 0;
for (row_type row = 1; row <= nrows(); ++row) {
rowinfo_[row].offset[&bv] =
rowinfo_[row - 1].offset +
rowinfo_[row - 1].descent +
//rowinfo_[row - 1].skipPixels(mi) +
1 + //rowsep() +
//rowinfo_[row].lines * hlinesep() +
rowinfo_[row].ascent;
}
// adjust vertical offset
int h = 0;
switch (v_align_) {
case 't':
h = 0;
break;
case 'b':
h = rowinfo_[nrows() - 1].offset;
break;
default:
h = rowinfo_[nrows() - 1].offset / 2;
}
for (row_type row = 0; row <= nrows(); ++row)
rowinfo_[row].offset -= h;
// compute absolute sizes of horizontal structure
for (col_type col = 0; col < ncols(); ++col) {
int wid = 0;
for (row_type row = 0; row < nrows(); ++row) {
// FIXME: BROKEN!
//idx_type const i = index(row, col);
//if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN)
// wid = max(wid, cell(i).width());
}
colinfo_[col].width = wid;
}
colinfo_[ncols()].width = 0;
// compute horizontal offsets
colinfo_[0].offset = border();
for (col_type col = 1; col <= ncols(); ++col) {
colinfo_[col].offset =
colinfo_[col - 1].offset +
colinfo_[col - 1].width +
displayColSpace(col - 1) +
1 ; //colsep() +
//colinfo_[col].lines * vlinesep();
}
dim.wid = colinfo_[ncols() - 1].offset
+ colinfo_[ncols() - 1].width
//+ vlinesep() * colinfo_[ncols()].lines
+ 2;
dim.asc = -rowinfo_[0].offset
+ rowinfo_[0].ascent
//+ hlinesep() * rowinfo_[0].lines
+ 1;
dim.des = rowinfo_[nrows() - 1].offset
+ rowinfo_[nrows() - 1].descent
//+ hlinesep() * rowinfo_[nrows()].lines
+ 1;
#endif
}
void InsetMathGrid::drawT(TextPainter & /*pain*/, int /*x*/, int /*y*/) const
{
// for (idx_type idx = 0; idx < nargs(); ++idx)
// if (cellinfo_[idx].multi != CELL_PART_OF_MULTICOLUMN)
// cell(idx).drawT(pain, x + cellXOffset(idx), y + cellYOffset(idx));
}
void InsetMathGrid::updateBuffer(ParIterator const & it, UpdateType utype, bool const deleted)
{
// pass down
for (idx_type idx = 0; idx < nargs(); ++idx)
if (cellinfo_[idx].multi != CELL_PART_OF_MULTICOLUMN)
cell(idx).updateBuffer(it, utype, deleted);
}
docstring InsetMathGrid::eolString(row_type row, bool fragile,
bool /*latex*/, bool last_eoln) const
{
docstring eol;
if (!rowinfo_[row].crskip.zero())
eol += '[' + from_utf8(rowinfo_[row].crskip.asLatexString()) + ']';
else if(!rowinfo_[row].allow_newpage)
eol += '*';
// make sure an upcoming '[' does not break anything
if (row + 1 < nrows()) {
MathData const & c = cell(index(row + 1, 0));
if (!c.empty() && c.front()->getChar() == '[')
//eol += "[0pt]";
eol += "{}";
}
// only add \\ if necessary
if (eol.empty() && row + 1 == nrows() && (nrows() == 1 || !last_eoln))
return docstring();
return (fragile ? "\\protect\\\\" : "\\\\") + eol;
}
docstring InsetMathGrid::eocString(col_type col, col_type lastcol) const
{
if (col + 1 == lastcol)
return docstring();
return from_ascii(" & ");
}
void InsetMathGrid::addRow(row_type row)
{
rowinfo_.insert(rowinfo_.begin() + row + 1, RowInfo());
cells_.insert
(cells_.begin() + (row + 1) * ncols(), ncols(), MathData(buffer_));
cellinfo_.insert
(cellinfo_.begin() + (row + 1) * ncols(), ncols(), CellInfo());
}
void InsetMathGrid::delRow(row_type row)
{
if (nrows() == 1)
return;
cells_type::iterator it = cells_.begin() + row * ncols();
cells_.erase(it, it + ncols());
vector<CellInfo>::iterator jt = cellinfo_.begin() + row * ncols();
cellinfo_.erase(jt, jt + ncols());
rowinfo_.erase(rowinfo_.begin() + row);
}
void InsetMathGrid::copyRow(row_type row)
{
addRow(row);
for (col_type col = 0; col < ncols(); ++col) {
cells_[(row + 1) * ncols() + col] = cells_[row * ncols() + col];
// copying the cell does not set the buffer
cells_[(row + 1) * ncols() + col].setBuffer(*buffer_);
}
}
void InsetMathGrid::swapRow(row_type row)
{
if (nrows() == 1)
return;
if (row + 1 == nrows())
--row;
for (col_type col = 0; col < ncols(); ++col)
swap(cells_[row * ncols() + col], cells_[(row + 1) * ncols() + col]);
}
void InsetMathGrid::addCol(col_type newcol)
{
const col_type nc = ncols();
const row_type nr = nrows();
cells_type new_cells((nc + 1) * nr);
vector<CellInfo> new_cellinfo((nc + 1) * nr);
for (row_type row = 0; row < nr; ++row)
for (col_type col = 0; col < nc; ++col) {
new_cells[row * (nc + 1) + col + (col >= newcol)]
= cells_[row * nc + col];
new_cellinfo[row * (nc + 1) + col + (col >= newcol)]
= cellinfo_[row * nc + col];
}
swap(cells_, new_cells);
// copying cells loses the buffer reference
setBuffer(*buffer_);
swap(cellinfo_, new_cellinfo);
ColInfo inf;
inf.skip = defaultColSpace(newcol);
inf.align = defaultColAlign(newcol);
colinfo_.insert(colinfo_.begin() + newcol, inf);
}
void InsetMathGrid::delCol(col_type col)
{
if (ncols() == 1)
return;
cells_type tmpcells;
vector<CellInfo> tmpcellinfo;
for (col_type i = 0; i < nargs(); ++i)
if (i % ncols() != col) {
tmpcells.push_back(cells_[i]);
tmpcellinfo.push_back(cellinfo_[i]);
}
swap(cells_, tmpcells);
// copying cells loses the buffer reference
setBuffer(*buffer_);
swap(cellinfo_, tmpcellinfo);
colinfo_.erase(colinfo_.begin() + col);
}
void InsetMathGrid::copyCol(col_type col)
{
addCol(col+1);
for (row_type row = 0; row < nrows(); ++row) {
cells_[row * ncols() + col + 1] = cells_[row * ncols() + col];
// copying the cell does not set the buffer
cells_[row * ncols() + col + 1].setBuffer(*buffer_);
}
}
void InsetMathGrid::swapCol(col_type col)
{
if (ncols() == 1)
return;
if (col + 1 == ncols())
--col;
for (row_type row = 0; row < nrows(); ++row)
swap(cells_[row * ncols() + col], cells_[row * ncols() + col + 1]);
}
int InsetMathGrid::cellXOffset(BufferView const & bv, idx_type idx) const
{
if (cellinfo_[idx].multi == CELL_PART_OF_MULTICOLUMN)
return 0;
col_type c = col(idx);
int x = colinfo_[c].offset;
char align = displayColAlign(idx);
Dimension const & celldim = cell(idx).dimension(bv);
if (align == 'r' || align == 'R')
x += cellWidth(idx) - celldim.wid;
if (align == 'c' || align == 'C')
x += (cellWidth(idx) - celldim.wid) / 2;
return x;
}
int InsetMathGrid::cellYOffset(BufferView const & bv, idx_type idx) const
{
return rowinfo_[row(idx)].offset[&bv];
}
int InsetMathGrid::cellWidth(idx_type idx) const
{
switch (cellinfo_[idx].multi) {
case CELL_NORMAL:
return colinfo_[col(idx)].width;
case CELL_BEGIN_OF_MULTICOLUMN: {
col_type c1 = col(idx);
col_type c2 = c1 + ncellcols(idx);
return colinfo_[c2].offset
- colinfo_[c1].offset
- displayColSpace(c2)
- colsep()
- colinfo_[c2].lines * vlinesep();
}
case CELL_PART_OF_MULTICOLUMN:
return 0;
}
return 0;
}
bool InsetMathGrid::idxUpDown(Cursor & cur, bool up) const
{
if (up) {
if (cur.row() == 0)
return false;
cur.idx() -= ncols();
} else {
if (cur.row() + 1 >= nrows())
return false;
cur.idx() += ncols();
}
// If we are in a multicolumn cell, move to the "real" cell
while (cellinfo_[cur.idx()].multi == CELL_PART_OF_MULTICOLUMN) {
LASSERT(cur.idx() > 0, return false);
--cur.idx();
}
// FIXME: this is only a workaround to avoid a crash if the inset
// in not in coord cache. The best would be to force a FitCursor
// operation.
CoordCache::Arrays const & arraysCache = cur.bv().coordCache().arrays();
if (arraysCache.has(&cur.cell()))
cur.pos() = cur.cell().x2pos(&cur.bv(), cur.x_target() - cur.cell().xo(cur.bv()));
else
cur.pos() = 0;
return true;
}
bool InsetMathGrid::idxBackward(Cursor & cur) const
{
// leave matrix if at the front edge
if (cur.col() == 0)
return false;
--cur.idx();
// If we are in a multicolumn cell, move to the "real" cell
while (cellinfo_[cur.idx()].multi == CELL_PART_OF_MULTICOLUMN) {
LASSERT(cur.idx() > 0, return false);
--cur.idx();
}
cur.pos() = cur.lastpos();
return true;
}
bool InsetMathGrid::idxForward(Cursor & cur) const
{
// leave matrix if at the back edge
if (cur.col() + 1 == ncols())
return false;
++cur.idx();
// If we are in a multicolumn cell, move to the next cell
while (cellinfo_[cur.idx()].multi == CELL_PART_OF_MULTICOLUMN) {
// leave matrix if at the back edge
if (cur.col() + 1 == ncols())
return false;
++cur.idx();
}
cur.pos() = 0;
return true;
}
idx_type InsetMathGrid::firstIdx() const
{
size_type idx = 0;
switch (v_align_) {
case 't':
//idx = 0;
break;
case 'b':
idx = (nrows() - 1) * ncols();
break;
default:
idx = ((nrows() - 1) / 2) * ncols();
}
// If we are in a multicolumn cell, move to the "real" cell
while (cellinfo_[idx].multi == CELL_PART_OF_MULTICOLUMN) {
LASSERT(idx > 0, return 0);
--idx;
}
return idx;
}
idx_type InsetMathGrid::lastIdx() const
{
size_type idx = 0;
switch (v_align_) {
case 't':
idx = ncols() - 1;
break;
case 'b':
idx = nargs() - 1;
break;
default:
idx = ((nrows() - 1) / 2 + 1) * ncols() - 1;
}
// If we are in a multicolumn cell, move to the "real" cell
while (cellinfo_[idx].multi == CELL_PART_OF_MULTICOLUMN) {
LASSERT(idx > 0, return false);
--idx;
}
return idx;
}
bool InsetMathGrid::idxDelete(idx_type & idx)
{
// nothing to do if we have just one row
if (nrows() == 1)
return false;
// nothing to do if we are in the middle of the last row of the inset
if (idx + ncols() > nargs())
return false;
// try to delete entire sequence of ncols() empty cells if possible
for (idx_type i = idx; i < idx + ncols(); ++i)
if (!cell(i).empty())
return false;
// move cells if necessary
for (idx_type i = index(row(idx), 0); i < idx; ++i)
swap(cell(i), cell(i + ncols()));
delRow(row(idx));
if (idx >= nargs())
idx = nargs() - 1;
// undo effect of Ctrl-Tab (i.e. pull next cell)
//if (idx + 1 != nargs())
// cell(idx).swap(cell(idx + 1));
// we handled the event..
return true;
}
// reimplement old behaviour when pressing Delete in the last position
// of a cell
void InsetMathGrid::idxGlue(idx_type idx)
{
col_type c = col(idx);
if (c + 1 == ncols()) {
if (row(idx) + 1 != nrows()) {
for (col_type cc = 0; cc < ncols(); ++cc)
cell(idx).append(cell(idx + cc + 1));
delRow(row(idx) + 1);
}
} else {
idx_type idx_next = idx + 1;
while (idx_next < nargs() &&
cellinfo_[idx_next].multi == CELL_PART_OF_MULTICOLUMN)
++idx_next;
if (idx_next < nargs())
cell(idx).append(cell(idx_next));
col_type oldcol = c + 1;
for (col_type cc = c + 2; cc < ncols(); ++cc)
cell(idx - oldcol + cc) = cell(idx - oldcol + 1 + cc);
cell(idx - c + ncols() - 1).clear();
}
}
InsetMathGrid::RowInfo const & InsetMathGrid::rowinfo(row_type row) const
{
return rowinfo_[row];
}
InsetMathGrid::RowInfo & InsetMathGrid::rowinfo(row_type row)
{
return rowinfo_[row];
}
bool InsetMathGrid::idxBetween(idx_type idx, idx_type from, idx_type to) const
{
row_type const ri = row(idx);
row_type const r1 = min(row(from), row(to));
row_type const r2 = max(row(from), row(to));
col_type const ci = col(idx);
col_type const c1 = min(col(from), col(to));
col_type const c2 = max(col(from), col(to));
return r1 <= ri && ri <= r2 && c1 <= ci && ci <= c2;
}
void InsetMathGrid::normalize(NormalStream & os) const
{
os << "[grid ";
for (row_type row = 0; row < nrows(); ++row) {
os << "[row ";
for (col_type col = 0; col < ncols(); ++col) {
idx_type const i = index(row, col);
switch (cellinfo_[i].multi) {
case CELL_NORMAL:
os << "[cell " << cell(i) << ']';
break;
case CELL_BEGIN_OF_MULTICOLUMN:
os << "[cell colspan="
<< static_cast<int>(ncellcols(i)) << ' '
<< cell(i) << ']';
break;
case CELL_PART_OF_MULTICOLUMN:
break;
}
}
os << ']';
}
os << ']';
}
void InsetMathGrid::mathmlize(MathMLStream & ms) const
{
bool const havetable = nrows() > 1 || ncols() > 1;
if (havetable)
ms << MTag("mtable");
char const * const celltag = havetable ? "mtd" : "mrow";
for (row_type row = 0; row < nrows(); ++row) {
if (havetable)
ms << MTag("mtr");
for (col_type col = 0; col < ncols(); ++col) {
idx_type const i = index(row, col);
if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) {
col_type const cellcols = ncellcols(i);
ostringstream attr;
if (havetable && cellcols > 1)
attr << "colspan='" << cellcols << '\'';
ms << MTag(celltag, attr.str());
ms << cell(index(row, col));
ms << ETag(celltag);
}
}
if (havetable)
ms << ETag("mtr");
}
if (havetable)
ms << ETag("mtable");
}
// FIXME XHTML
// We need to do something about alignment here.
void InsetMathGrid::htmlize(HtmlStream & os, string const & attrib) const
{
bool const havetable = nrows() > 1 || ncols() > 1;
if (!havetable) {
os << cell(index(0, 0));
return;
}
os << MTag("table", attrib);
for (row_type row = 0; row < nrows(); ++row) {
os << MTag("tr");
for (col_type col = 0; col < ncols(); ++col) {
idx_type const i = index(row, col);
if (cellinfo_[i].multi != CELL_PART_OF_MULTICOLUMN) {
col_type const cellcols = ncellcols(i);
ostringstream attr;
if (cellcols > 1)
attr << "colspan='" << cellcols << '\'';
os << MTag("td", attr.str());
os << cell(index(row, col));
os << ETag("td");
}
}
os << ETag("tr");
}
os << ETag("table");
}
void InsetMathGrid::htmlize(HtmlStream & os) const
{
htmlize(os, "class='mathtable'");
}
void InsetMathGrid::validate(LaTeXFeatures & features) const
{
if (features.runparams().math_flavor == OutputParams::MathAsHTML
&& (nrows() > 1 || ncols() > 1)) {
// CSS taken from InsetMathCases
features.addCSSSnippet(
"table.mathtable{display: inline-block; text-align: center; border: none;"
"border-left: thin solid black; vertical-align: middle; padding-left: 0.5ex;}\n"
"table.mathtable td {text-align: left; border: none;}");
}
InsetMathNest::validate(features);
}
void InsetMathGrid::write(TeXMathStream & os) const
{
write(os, 0, 0, nrows(), ncols());
}
void InsetMathGrid::write(TeXMathStream & os,
row_type beg_row, col_type beg_col,
row_type end_row, col_type end_col) const
{
MathEnsurer ensurer(os, false);
docstring eol;
// As of 2018 (with amendment in LaTeX 2021/06),
// \\ is a robust command and its protection
// is no longer necessary
bool const fragile = os.fragile()
&& !LaTeXFeatures::isAvailable("LaTeX-2021/06/01");
for (row_type row = beg_row; row < end_row; ++row) {
os << verboseHLine(rowinfo_[row].lines);
// don't write & and empty cells at end of line,
// unless there are vertical lines
col_type lastcol = 0;
bool emptyline = true;
bool last_eoln = true;
for (col_type col = beg_col; col < end_col; ++col) {
idx_type const idx = index(row, col);
bool const empty_cell = cell(idx).empty();
if (last_eoln && (!empty_cell || cellinfo_[idx].multi != CELL_NORMAL))
last_eoln = false;
if (!empty_cell || cellinfo_[idx].multi != CELL_NORMAL ||
colinfo_[col + 1].lines) {
lastcol = col + 1;
emptyline = false;
}
}
for (col_type col = beg_col; col < end_col;) {
int nccols = 1;
idx_type const idx = index(row, col);
TexRow::RowEntry const entry = TexRow::mathEntry(id(),idx);
os.texrow().start(entry);
if (col >= lastcol) {
++col;
continue;
}
Changer dummy = os.changeRowEntry(entry);
if (cellinfo_[idx].multi == CELL_BEGIN_OF_MULTICOLUMN) {
size_t s = col + 1;
while (s < ncols() &&
cellinfo_[index(row, s)].multi == CELL_PART_OF_MULTICOLUMN)
s++;
nccols = s - col;
os << "\\multicolumn{" << nccols
<< "}{" << cellinfo_[idx].align
<< "}{";
}
os << cell(idx);
if (os.pendingBrace())
ModeSpecifier specifier(os, TEXT_MODE);
if (cellinfo_[idx].multi == CELL_BEGIN_OF_MULTICOLUMN)
os << '}';
os << eocString(col + nccols - 1, lastcol);
col += nccols;
}
eol = eolString(row, fragile, os.latex(), last_eoln);
os << eol;
// append newline only if line wasn't completely empty
// and the formula is not written on a single line
bool const empty = emptyline && eol.empty();
if (!empty && nrows() > 1)
os << "\n";
}
// @TODO use end_row instead of nrows() ?
docstring const s = verboseHLine(rowinfo_[nrows()].lines);
if (!s.empty()) {
if (eol.empty()) {
if (fragile)
os << "\\protect";
os << "\\\\";
}
os << s;
}
}
int InsetMathGrid::colsep() const
{
return 6;
}
int InsetMathGrid::rowsep() const
{
return 6;
}
int InsetMathGrid::hlinesep() const
{
return 3;
}
int InsetMathGrid::vlinesep() const
{
return 3;
}
int InsetMathGrid::border() const
{
return 1;
}
void InsetMathGrid::splitCell(Cursor & cur)
{
if (cur.idx() == cur.lastidx())
return;
MathData ar = cur.cell();
ar.erase(0, cur.pos());
cur.cell().erase(cur.pos(), cur.lastpos());
++cur.idx();
while (cur.idx() << nargs() &&
cellinfo_[cur.idx()].multi == CELL_BEGIN_OF_MULTICOLUMN)
++cur.idx();
cur.pos() = 0;
cur.cell().insert(0, ar);
}
char InsetMathGrid::displayColAlign(idx_type idx) const
{
if (cellinfo_[idx].multi == CELL_BEGIN_OF_MULTICOLUMN) {
// align may also contain lines like "||r|", so this is
// not complete, but we catch at least the simple cases.
if (cellinfo_[idx].align == "c")
return 'c';
if (cellinfo_[idx].align == "l")
return 'l';
if (cellinfo_[idx].align == "r")
return 'r';
}
return colinfo_[col(idx)].align;
}
int InsetMathGrid::displayColSpace(col_type col) const
{
return colinfo_[col].skip;
}
void InsetMathGrid::doDispatch(Cursor & cur, FuncRequest & cmd)
{
//lyxerr << "*** InsetMathGrid: request: " << cmd << endl;
Parse::flags parseflg = Parse::QUIET | Parse::USETEXT;
FuncCode const act = cmd.action();
switch (act) {
// insert file functions
case LFUN_LINE_DELETE_FORWARD:
cur.recordUndoInset();
//autocorrect_ = false;
//macroModeClose();
//if (selection_) {
// selDel();
// break;
//}
if (nrows() > 1)
delRow(cur.row());
if (cur.idx() > cur.lastidx())
cur.idx() = cur.lastidx();
if (cur.pos() > cur.lastpos())
cur.pos() = cur.lastpos();
break;
case LFUN_CELL_SPLIT:
cur.recordUndo();
splitCell(cur);
break;
case LFUN_NEWLINE_INSERT: {
cur.recordUndoInset();
row_type const r = cur.row();
addRow(r);
// split line
for (col_type c = col(cur.idx()) + 1; c < ncols(); ++c)
swap(cell(index(r, c)), cell(index(r + 1, c)));
// split cell
splitCell(cur);
if (ncols() > 1)
swap(cell(cur.idx()), cell(cur.idx() + ncols() - 1));
if (cur.idx() > 0)
--cur.idx();
cur.pos() = cur.lastpos();
cur.forceBufferUpdate();
//mathcursor->normalize();
//cmd = FuncRequest(LFUN_FINISHED_BACKWARD);
break;
}
case LFUN_TABULAR_FEATURE: {
cur.recordUndoInset();
//lyxerr << "handling tabular-feature " << to_utf8(cmd.argument()) << endl;
istringstream is(to_utf8(cmd.argument()));
string s;
is >> s;
if (s == "valign-top")
setVerticalAlignment('t');
else if (s == "valign-middle")
setVerticalAlignment('c');
else if (s == "valign-bottom")
setVerticalAlignment('b');
else if (s == "align-left")
setHorizontalAlignment('l', cur.col());
else if (s == "align-right")
setHorizontalAlignment('r', cur.col());
else if (s == "align-center")
setHorizontalAlignment('c', cur.col());
else if (s == "append-row")
for (int i = 0, n = extractInt(is); i < n; ++i)
addRow(cur.row());
else if (s == "delete-row") {
cur.clearSelection(); // bug 4323
for (int i = 0, n = extractInt(is); i < n; ++i) {
delRow(cur.row());
if (cur.idx() >= nargs())
cur.idx() -= ncols();
}
cur.pos() = 0; // trick, see below
}
else if (s == "copy-row") {
// Here (as later) we save the cursor col/row
// in order to restore it after operation.
row_type const r = cur.row();
col_type const c = cur.col();
for (int i = 0, n = extractInt(is); i < n; ++i)
copyRow(cur.row());
cur.idx() = index(r, c);
}
else if (s == "swap-row") {
swapRow(cur.row());
// Trick to suppress same-idx-means-different-cell
// assertion crash:
cur.pos() = 0;
}
else if (s == "add-hline-above")
rowinfo_[cur.row()].lines++;
else if (s == "add-hline-below")
rowinfo_[cur.row()+1].lines++;
else if (s == "delete-hline-above")
rowinfo_[cur.row()].lines--;
else if (s == "delete-hline-below")
rowinfo_[cur.row()+1].lines--;
else if (s == "append-column") {
row_type const r = cur.row();
col_type const c = cur.col();
for (int i = 0, n = extractInt(is); i < n; ++i)
addCol(cur.col() + 1);
cur.idx() = index(r, c);
}
else if (s == "delete-column") {
cur.clearSelection(); // bug 4323
row_type const r = cur.row();
col_type const c = cur.col();
for (int i = 0, n = extractInt(is); i < n; ++i)
delCol(col(cur.idx()));
cur.idx() = index(r, min(c, cur.ncols() - 1));
cur.pos() = 0; // trick, see above
}
else if (s == "copy-column") {
row_type const r = cur.row();
col_type const c = cur.col();
copyCol(cur.col());
cur.idx() = index(r, c);
}
else if (s == "swap-column") {
swapCol(cur.col());
cur.pos() = 0; // trick, see above
}
else if (s == "add-vline-left") {
colinfo_[cur.col()].lines++;
if (!colinfo_[cur.col()].special.empty())
colinfo_[cur.col()].special += '|';
}
else if (s == "add-vline-right") {
colinfo_[cur.col()+1].lines++;
if (!colinfo_[cur.col()+1].special.empty())
colinfo_[cur.col()+1].special.insert(0, 1, '|');
}
else if (s == "delete-vline-left") {
colinfo_[cur.col()].lines--;
docstring & special = colinfo_[cur.col()].special;
if (!special.empty()) {
docstring::size_type i = special.rfind('|');
LASSERT(i != docstring::npos, break);
special.erase(i, 1);
}
}
else if (s == "delete-vline-right") {
colinfo_[cur.col()+1].lines--;
docstring & special = colinfo_[cur.col()+1].special;
if (!special.empty()) {
docstring::size_type i = special.find('|');
LASSERT(i != docstring::npos, break);
special.erase(i, 1);
}
}
else {
cur.undispatched();
break;
}
// perhaps this should be FINISHED_BACKWARD -- just for clarity?
//lyxerr << "returning FINISHED_LEFT" << endl;
break;
}
case LFUN_CLIPBOARD_PASTE:
parseflg |= Parse::VERBATIM;
// fall through
case LFUN_PASTE: {
if (cur.currentMode() != MATH_MODE)
parseflg |= Parse::TEXTMODE;
cur.message(_("Paste"));
cap::replaceSelection(cur);
docstring topaste;
if (cmd.argument().empty() && !theClipboard().isInternal())
topaste = theClipboard().getAsText(frontend::Clipboard::PlainTextType);
else {
idocstringstream is(cmd.argument());
int n = 0;
is >> n;
topaste = cap::selection(n, make_pair(buffer().params().documentClassPtr(),
buffer().params().authors()), true);
}
InsetMathGrid grid(buffer_, 1, 1);
if (!topaste.empty())
if ((topaste.size() == 1 && isAscii(topaste))
|| !mathed_parse_normal(grid, topaste, parseflg)) {
resetGrid(grid);
mathed_parse_normal(grid, topaste, parseflg | Parse::VERBATIM);
}
bool hline_enabled = false;
FuncRequest fr = FuncRequest(LFUN_TABULAR_FEATURE, "add-hline-above");
FuncStatus status;
if (getStatus(cur, fr, status))
hline_enabled = status.enabled();
if (grid.nargs() == 1) {
// single cell/part of cell
cur.recordUndoInset();
cur.cell().insert(cur.pos(), grid.cell(0));
cur.pos() += grid.cell(0).size();
if (hline_enabled)
rowinfo_[cur.row()].lines += grid.rowinfo_[0].lines;
else {
for (unsigned int l = 0; l < grid.rowinfo_[0].lines; ++l) {
cur.cell().insert(0,
MathAtom(new InsetMathUnknown(from_ascii("\\hline"))));
cur.pos()++;
}
}
} else {
// multiple cells
cur.recordUndoInset();
col_type startcol = col(cur.idx());
row_type startrow = cur.row();
col_type oldncols = ncols();
col_type numcols =
min(grid.ncols(), ncols() - startcol);
row_type const numrows =
min(grid.nrows(), nrows() - cur.row());
for (row_type r = 0; r < numrows; ++r) {
for (col_type c = 0; c < numcols; ++c) {
idx_type i = index(r + startrow, c + startcol);
pos_type const ipos = min(cur.pos(), pos_type(cell(i).size()));
cell(i).insert(ipos, grid.cell(grid.index(r, c)));
}
if (hline_enabled)
rowinfo_[r].lines += grid.rowinfo_[r].lines;
else {
for (unsigned int l = 0; l < grid.rowinfo_[r].lines; ++l) {
idx_type i = index(r + startrow, 0);
cell(i).insert(0,
MathAtom(new InsetMathUnknown(from_ascii("\\hline"))));
}
}
// append columns for the left over horizontal cells
for (col_type c = numcols; c < grid.ncols(); ++c) {
addCol(c + startcol);
idx_type i = index(r + startrow, min(c + startcol, ncols() - 1));
cell(i).append(grid.cell(grid.index(r, c)));
++numcols;
}
}
// amend cursor position if cols have been appended
cur.idx() += startrow * (ncols() - oldncols);
// append rows for the left over vertical cells
idx_type i = nargs() - 1;
for (row_type r = numrows; r < grid.nrows(); ++r) {
row_type crow = startrow + r;
addRow(crow - 1);
for (col_type c = 0; c < grid.ncols(); ++c)
cell(index(min(crow, nrows() - 1), min(c + startcol, ncols() - 1))).append(grid.cell(grid.index(r, c)));
if (hline_enabled)
rowinfo_[crow].lines += grid.rowinfo_[r].lines;
else {
for (unsigned int l = 0; l < grid.rowinfo_[r].lines; ++l) {
cell(i).insert(0,
MathAtom(new InsetMathUnknown(from_ascii("\\hline"))));
}
}
}
}
cur.clearSelection(); // bug 393
// FIXME audit setBuffer calls
cur.inset().setBuffer(*buffer_);
cur.forceBufferUpdate();
cur.finishUndo();
break;
}
case LFUN_LINE_BEGIN:
cur.screenUpdateFlags(Update::Decoration | Update::FitCursor);
// fall through
case LFUN_LINE_BEGIN_SELECT:
cur.selHandle(act == LFUN_WORD_BACKWARD_SELECT ||
act == LFUN_WORD_LEFT_SELECT ||
act == LFUN_LINE_BEGIN_SELECT);
cur.macroModeClose();
if (cur.pos() != 0) {
cur.pos() = 0;
} else if (cur.idx() % cur.ncols() != 0) {
cur.idx() -= cur.idx() % cur.ncols();
cur.pos() = 0;
} else if (cur.idx() != 0) {
cur.idx() = 0;
cur.pos() = 0;
} else {
cmd = FuncRequest(LFUN_FINISHED_BACKWARD);
cur.undispatched();
}
break;
case LFUN_LINE_END:
cur.screenUpdateFlags(Update::Decoration | Update::FitCursor);
// fall through
case LFUN_LINE_END_SELECT:
cur.selHandle(act == LFUN_WORD_FORWARD_SELECT ||
act == LFUN_WORD_RIGHT_SELECT ||
act == LFUN_LINE_END_SELECT);
cur.macroModeClose();
cur.clearTargetX();
if (cur.pos() != cur.lastpos()) {
cur.pos() = cur.lastpos();
} else if ((cur.idx() + 1) % cur.ncols() != 0) {
cur.idx() += cur.ncols() - 1 - cur.idx() % cur.ncols();
cur.pos() = cur.lastpos();
} else if (cur.idx() != cur.lastidx()) {
cur.idx() = cur.lastidx();
cur.pos() = cur.lastpos();
} else {
cmd = FuncRequest(LFUN_FINISHED_FORWARD);
cur.undispatched();
}
break;
default:
InsetMathNest::doDispatch(cur, cmd);
}
}
bool InsetMathGrid::getStatus(Cursor & cur, FuncRequest const & cmd,
FuncStatus & status) const
{
switch (cmd.action()) {
case LFUN_TABULAR_FEATURE: {
string s = cmd.getArg(0);
if (&cur.inset() != this) {
// Table actions requires that the cursor is _inside_ the
// table.
status.setEnabled(false);
status.message(from_utf8(N_("Cursor not in table")));
return true;
}
if (nrows() <= 1 && (s == "delete-row" || s == "swap-row")) {
status.setEnabled(false);
status.message(from_utf8(N_("Only one row")));
return true;
}
if (ncols() <= 1 &&
(s == "delete-column" || s == "swap-column")) {
status.setEnabled(false);
status.message(from_utf8(N_("Only one column")));
return true;
}
if ((rowinfo_[cur.row()].lines == 0 &&
s == "delete-hline-above") ||
(rowinfo_[cur.row() + 1].lines == 0 &&
s == "delete-hline-below")) {
status.setEnabled(false);
status.message(from_utf8(N_("No hline to delete")));
return true;
}
if ((colinfo_[cur.col()].lines == 0 &&
s == "delete-vline-left") ||
(colinfo_[cur.col() + 1].lines == 0 &&
s == "delete-vline-right")) {
status.setEnabled(false);
status.message(from_utf8(N_("No vline to delete")));
return true;
}
if (s == "valign-top" || s == "valign-middle" ||
s == "valign-bottom" || s == "align-left" ||
s == "align-right" || s == "align-center") {
status.setEnabled(true);
char const ha = horizontalAlignment(cur.col());
char const va = verticalAlignment();
status.setOnOff((s == "align-left" && ha == 'l')
|| (s == "align-right" && ha == 'r')
|| (s == "align-center" && ha == 'c')
|| (s == "valign-top" && va == 't')
|| (s == "valign-bottom" && va == 'b')
|| (s == "valign-middle" && va == 'c'));
return true;
}
if (s == "append-row" || s == "delete-row" ||
s == "copy-row" || s == "swap-row" ||
s == "add-hline-above" || s == "add-hline-below" ||
s == "delete-hline-above" || s == "delete-hline-below" ||
s == "append-column" || s == "delete-column" ||
s == "copy-column" || s == "swap-column" ||
s == "add-vline-left" || s == "add-vline-right" ||
s == "delete-vline-left" || s == "delete-vline-right") {
status.setEnabled(true);
} else {
status.setEnabled(false);
status.message(bformat(
from_utf8(N_("Unknown tabular feature '%1$s'")),
from_utf8(s)));
}
return true;
}
case LFUN_CELL_SPLIT:
status.setEnabled(cur.idx() != cur.lastidx());
return true;
case LFUN_CELL_BACKWARD:
case LFUN_CELL_FORWARD:
status.setEnabled(true);
return true;
default:
break;
}
return InsetMathNest::getStatus(cur, cmd, status);
}
char InsetMathGrid::colAlign(HullType type, col_type col) const
{
switch (type) {
case hullEqnArray:
return "rcl"[col % 3];
case hullMultline:
return 'c';
case hullGather:
LASSERT(isBufferValid(),
LYXERR0("Buffer not set correctly. Please report!");
return 'c';);
if (buffer().params().is_math_indent)
return 'l';
else
return 'c';
case hullAlign:
case hullAlignAt:
case hullXAlignAt:
case hullXXAlignAt:
case hullFlAlign:
return "rl"[col & 1];
case hullUnknown:
case hullNone:
case hullSimple:
case hullEquation:
case hullRegexp:
return 'c';
}
// avoid warning
return 'c';
}
//static
int InsetMathGrid::colSpace(HullType type, col_type col)
{
int alignInterSpace = 0;
switch (type) {
case hullUnknown:
case hullNone:
case hullSimple:
case hullEquation:
case hullMultline:
case hullGather:
case hullRegexp:
return 0;
case hullEqnArray:
return 5;
case hullAlign:
alignInterSpace = 20;
break;
case hullAlignAt:
alignInterSpace = 0;
break;
case hullXAlignAt:
alignInterSpace = 40;
break;
case hullXXAlignAt:
case hullFlAlign:
alignInterSpace = 60;
break;
}
return (col % 2) ? alignInterSpace : 0;
}
} // namespace lyx