2018-01-29 16:14:50 +01:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
|
|
Created on Mon Jan 15 19:45:33 2018
|
|
|
|
|
|
|
|
@author: anne
|
|
|
|
"""
|
|
|
|
import numpy as np
|
2018-02-09 11:56:49 +01:00
|
|
|
from beamforming import Fft, PowerSpectra, cls
|
|
|
|
cls
|
|
|
|
nfft=2048
|
2018-01-29 16:14:50 +01:00
|
|
|
print('nfft:',nfft)
|
2018-02-06 12:01:27 +01:00
|
|
|
#print(nfft)
|
|
|
|
nchannels = 2
|
2018-01-29 16:14:50 +01:00
|
|
|
|
|
|
|
t = np.linspace(0,1,nfft+1)
|
|
|
|
# print(t)
|
|
|
|
x1 = (np.cos(4*np.pi*t[:-1])+3.2*np.sin(6*np.pi*t[:-1]))[:,np.newaxis]+10
|
|
|
|
x = np.vstack([x1.T]*nchannels).T
|
|
|
|
# Using transpose to get the strides right
|
|
|
|
x = np.random.randn(nchannels,nfft).T
|
|
|
|
print("strides: ",x.strides)
|
|
|
|
# x.strides = (8,nfft*8)x
|
|
|
|
# print("signal:",x)
|
|
|
|
|
|
|
|
xms = np.sum(x**2,axis=0)/nfft
|
|
|
|
print('Total signal power time domain: ', xms)
|
|
|
|
|
|
|
|
X = np.fft.rfft(x,axis=0)
|
|
|
|
# X =np.fft.fft(x)
|
|
|
|
#X =np.fft.rfft(x)
|
|
|
|
|
|
|
|
# print(X)
|
|
|
|
Xs = 2*X/nfft
|
|
|
|
Xs[np.where(np.abs(Xs) < 1e-10)] = 0
|
|
|
|
Xs[0] /= np.sqrt(2)
|
|
|
|
Xs[-1] /= np.sqrt(2)
|
|
|
|
# print('single sided amplitude spectrum:\n',Xs)
|
|
|
|
|
|
|
|
|
|
|
|
power = Xs*np.conj(Xs)/2
|
|
|
|
|
|
|
|
# print('Frequency domain signal power\n', power)
|
|
|
|
print('Total signal power', np.sum(power,axis=0).real)
|
|
|
|
|
|
|
|
pstest = PowerSpectra(nfft,nchannels)
|
|
|
|
ps = pstest.compute(x)
|
|
|
|
|
|
|
|
fft = Fft(nfft,nchannels)
|
|
|
|
fft.fft(x)
|
|
|
|
|
|
|
|
ps[np.where(np.abs(ps) < 1e-10)] = 0+0j
|
|
|
|
|
|
|
|
print('our ps: \n' , ps)
|
|
|
|
|
|
|
|
print('Our total signal power: ',np.sum(ps,axis=0).real)
|