lasp/beamforming/c/ascee_math.c

454 lines
13 KiB
C
Raw Normal View History

2018-01-29 15:14:50 +00:00
// si_math.c
//
// last-edit-by: J.A. de Jong
//
// Description:
//
//////////////////////////////////////////////////////////////////////
#define TRACERPLUS (-10)
#include "ascee_assert.h"
#include "ascee_math.h"
#include "tracer.h"
#if ASCEE_USE_BLAS
#include <cblas.h>
#endif
#include <math.h>
#ifdef ASCEE_DEBUG
void print_cmat(const cmat* m) {
size_t row,col;
for(row=0;row<m->n_rows;row++){
for(col=0;col<m->n_cols;col++){
c val = m->data[row+m->n_rows*col];
d rval = creal(val);
d ival = cimag(val);
printf("%c%2.2e%c%2.2ei ",rval< 0 ?'-': ' ', d_abs(rval),ival<0 ? '-' : '+',d_abs(ival) ) ;
}
printf("\n");
}
}
void print_vc(const vc* m) {
TRACE(20,"print_vc");
size_t row;
for(row=0;row<m->size;row++){
d rval = creal(m->data[row]);
d ival = cimag(m->data[row]);
printf("%c%2.2e%c%2.2ei ",rval< 0 ?'-': ' ', d_abs(rval),ival<0 ? '-' : '+',d_abs(ival) ) ;
printf("\n");
}
}
void print_vd(const vd* m) {
TRACE(20,"print_vd");
size_t row;
iVARTRACE(20,m->size);
for(row=0;row<m->size;row++){
d rval = m->data[row];
printf("%c%2.2e ",rval< 0 ? '\r': ' ',rval);
printf("\n");
}
}
void print_dmat(const dmat* m) {
size_t row,col;
for(row=0;row<m->n_rows;row++){
for(col=0;col<m->n_cols;col++){
d val = m->data[row+m->n_rows*col];
printf("%c%2.2e ", val<0?'-':' ' ,d_abs(val));
}
printf("\n");
}
}
#endif
void d_elem_prod_d(d res[],
const d arr1[],
const d arr2[],
const us size) {
#if ASCEE_USE_BLAS
#if ASCEE_DEBUG
if(arr1 == arr2) {
DBGWARN("d_elem_prod_d: Array 1 and array 2 point to the same"
" memory. This results in pointer aliasing, for which"
" testing is still to be done. Results might be"
" unrealiable.");
}
#endif
#if ASCEE_DOUBLE_PRECISION
#define elem_prod_fun cblas_dsbmv
#else
#define elem_prod_fun cblas_ssbmv
#endif
/* These parameters do not matter for this specific case */
const CBLAS_ORDER mat_order= CblasColMajor;
const CBLAS_UPLO uplo = CblasLower;
/* Extra multiplication factor */
const d alpha = 1.0;
/* void cblas_dsbmv(OPENBLAS_CONST enum CBLAS_ORDER order, */
/* OPENBLAS_CONST enum CBLAS_UPLO Uplo, */
/* OPENBLAS_CONST blasint N, */
/* OPENBLAS_CONST blasint K, */
/* OPENBLAS_CONST double alpha, */
/* OPENBLAS_CONST double *A, */
/* OPENBLAS_CONST blasint lda, */
/* OPENBLAS_CONST double *X, */
/* OPENBLAS_CONST blasint incX, */
/* OPENBLAS_CONST double beta, */
/* double *Y, */
/* OPENBLAS_CONST blasint incY); */
elem_prod_fun(mat_order,
uplo,
(blasint) size,
0, // Just the diagonal; 0 super-diagonal bands
alpha, /* Multiplication factor alpha */
arr1,
1, /* LDA */
arr2, /* x */
1, /* incX = 1 */
0.0, /* Beta */
res, /* The Y matrix to write to */
1); /* incY */
#undef elem_prod_fun
#else /* No blas routines, routine is very simple, but here we
* go! */
DBGWARN("Performing slow non-blas vector-vector multiplication");
for(us i=0;i<size;i++) {
res[i] = arr1[i]*arr2[i];
}
#endif
}
void c_elem_prod_c(c res[],
const c arr1[],
const c arr2[],
const us size) {
TRACE(15,"c_elem_prod_c");
uVARTRACE(15,size);
#if ASCEE_USE_BLAS
#if ASCEE_DEBUG
if(arr1 == arr2) {
DBGWARN("c_elem_prod_c: Array 1 and array 2 point to the same"
" memory. This results in pointer aliasing, for which"
" testing is still to be done. Results might be"
" unrealiable.");
}
#endif /* ASCEE_DEBUG */
#if ASCEE_DOUBLE_PRECISION
#define elem_prod_fun cblas_zgbmv
#else
#define elem_prod_fun cblas_cgbmv
#endif
/* These parameters do not matter for this specific case */
const CBLAS_ORDER mat_order= CblasColMajor;
const CBLAS_TRANSPOSE tr = CblasNoTrans;
const c alpha = 1.0;
const c beta = 0.0;
TRACE(15,"Calling " annestr(elem_prod_fun));
elem_prod_fun(mat_order,
tr,
(blasint) size, /* M: Number of rows */
(blasint) size, /* B: Number of columns */
0, /* KL: Number of sub-diagonals */
0, /* KU: Number of super-diagonals */
(d*) &alpha, /* Multiplication factor */
(d*) arr2, /* A */
1, /* LDA */
(d*) arr1, /* x */
1, /* incX = 1 */
(d*) &beta,
(d*) res, /* The Y matrix to write to */
1); /* incY */
#undef elem_prod_fun
#else /* No blas routines, routine is very simple, but here we
* go! */
DBGWARN("Performing slow non-blas vector-vector multiplication");
for(us i=0;i<size;i++) {
res[i] = arr1[i]*arr2[i];
}
#endif
}
void cmv_dot(const cmat* A,const vc* restrict x,vc* restrict b){
assert(A->n_rows == b->size);
assert(A->n_cols == x->size);
#if ASCEE_USE_BLAS == 1
/* typedef enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER; */
/* typedef enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113, CblasConjNoTrans=114} CBLAS_TRANSPOSE; */
/*
void cblas_zgemv(OPENBLAS_CONST enum CBLAS_ORDER order,
OPENBLAS_CONST enum CBLAS_TRANSPOSE trans,
OPENBLAS_CONST blasint m,
OPENBLAS_CONST blasint n,
OPENBLAS_CONST double *alpha,
OPENBLAS_CONST double *a,
OPENBLAS_CONST blasint lda,
OPENBLAS_CONST double *x,
OPENBLAS_CONST blasint incx,
OPENBLAS_CONST double *beta,
double *y,
OPENBLAS_CONST blasint incy);
*/
c alpha = 1.0;
c beta = 0.0;
cblas_zgemv(CblasColMajor,
CblasNoTrans,
A->n_rows,
A->n_cols,
(d*) &alpha, /* alpha */
(d*) A->data, /* A */
A->n_rows, /* lda */
(d*) x->data, /* */
1,
(d*) &beta, /* beta */
(d*) b->data,
1);
#else
size_t i,j;
size_t n_rows = A->n_rows;
vc_set(b,0.0);
iVARTRACE(20,A->n_cols);
iVARTRACE(20,A->n_rows);
for(j=0;j<A->n_cols;j++){
for(i=0;i<A->n_rows;i++) {
c* Aij = &A->data[i+j*n_rows];
b->data[i] += *Aij * x->data[j];
}
}
#endif
}
void kronecker_product(const cmat* a,const cmat* b,cmat* result){
assert(result->n_rows == a->n_rows*b->n_rows);
assert(result->n_cols == a->n_cols*b->n_cols);
c a_rs;
c b_vw;
int r_col;
int r_row;
for(size_t r=0; r< a->n_rows;r++){
for(size_t s=0; s <a->n_cols;s++) {
for(size_t v=0;v < b->n_rows; v++) {
for(size_t w=0;w < b->n_cols;w++) {
a_rs = *getcmatval(a,r,s);
b_vw = *getcmatval(b,v,w);
r_row = b->n_rows*r+v;
r_col = b->n_cols*s+w;
result->data[r_row + r_col * result->n_rows] = a_rs * b_vw;
}
}
}
}
} /* void kronecker_product */
/* #include <lapacke.h> */
/* These functions can be directly linked to openBLAS */
#define lapack_complex_double double _Complex
#define lapack_complex_float float _Complex
#define LAPACK_ROW_MAJOR 101
#define LAPACK_COL_MAJOR 102
#define LAPACK_WORK_MEMORY_ERROR -1010
#define LAPACK_TRANSPOSE_MEMORY_ERROR -1011
typedef int lapack_int;
int LAPACKE_cgelss( int matrix_layout, int m, int n,
int nrhs, lapack_complex_float* a,
int lda, lapack_complex_float* b,
int ldb, float* s, float rcond,
int* rank );
int LAPACKE_zgelss( int matrix_layout, int m, int n,
int nrhs, lapack_complex_double* a,
int lda, lapack_complex_double* b,
int ldb, double* s, double rcond,
int* rank );
lapack_int LAPACKE_zgels( int matrix_layout, char trans, lapack_int m,
lapack_int n, lapack_int nrhs,
lapack_complex_double* a, lapack_int lda,
lapack_complex_double* b, lapack_int ldb );
#if ASCEE_FLOAT == 64
#define lapack_gelss LAPACKE_zgelss
#define lapack_gels LAPACKE_zgels
#else
#define lapack_gelss LAPACKE_cgelss
#endif
#define max(a,b) ((a)>(b)?(a):(b))
/* int lsq_solve(const cmat* A,const vc* b,vc* x){ */
/* POOL_INIT(lsq_solve_pool); */
/* int rv; */
/* /\* M: number of rows of matrix *\/ */
/* /\* N: Number of columns *\/ */
/* /\* Norm: L2|b-A*x| *\/ */
/* /\* NRHS: Number of right hand sides: Number of columns of matrix B *\/ */
/* assert(A->n_rows>=A->n_cols); */
/* assert(x->size == A->n_cols); */
/* assert(b->size == A->n_rows); */
/* int info; */
/* size_t lda = max(1,A->n_rows); */
/* size_t ldb = max(lda,A->n_cols); */
/* /\* Make explicit copy of matrix A data, as it will be overwritten */
/* * by lapack_gels *\/ */
/* c* A_data = Pool_allocatec(&lsq_solve_pool,A->n_rows*A->n_cols); */
/* c_copy(A_data,A->data,A->n_cols*A->n_rows); */
/* c* work_data = Pool_allocatec(&lsq_solve_pool,b->size); */
/* c_copy(work_data,b->data,b->size); */
/* /\* Lapack documentation says: *\/ */
/* /\* if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
/* squares solution vectors; the residual sum of squares for the */
/* solution in each column is given by the sum of squares of the */
/* modulus of elements N+1 to M in that column; */
/* *\/ */
/* /\* We always assume one RHS column *\/ */
/* const int nrhs = 1; */
/* /\* General Least Squares Solve *\/ */
/* info = lapack_gels(LAPACK_COL_MAJOR, /\* Column-major ordering *\/ */
/* 'N', */
/* A->n_rows, /\* Number of rows in matrix *\/ */
/* A->n_cols, /\* Number of columns *\/ */
/* nrhs, /\* nrhs, which is number_mics *\/ */
/* A_data, /\* The A-matrix *\/ */
/* lda, /\* lda: the leading dimension of matrix A *\/ */
/* work_data, /\* The b-matrix *\/ */
/* ldb); /\* ldb: the leading dimension of b: max(1,M,N) *\/ */
/* if(info==0){ */
/* c_copy(x->data,work_data,x->size); */
/* rv = SUCCESS; */
/* } */
/* else { */
/* memset(x->data,0,x->size); */
/* WARN("LAPACK INFO VALUE"); */
/* printf("%i\n", info ); */
/* TRACE(15,"Solving least squares problem failed\n"); */
/* rv = FAILURE; */
/* } */
/* Pool_free(&lsq_solve_pool,A_data); */
/* Pool_free(&lsq_solve_pool,work_data); */
/* POOL_EXIT(lsq_solve_pool,15); */
/* return rv; */
/* } */
/* d c_normdiff(const cmat* A,const cmat* B) { */
/* TRACE(15,"c_normdif"); */
/* dbgassert(A->n_cols==B->n_cols,"Number of columns of A and B " */
/* "should be equal"); */
/* dbgassert(A->n_rows==B->n_rows,"Number of rows of A and B " */
/* "should be equal"); */
/* size_t size = A->n_cols*A->n_rows; */
/* vc diff_temp = vc_al[MAX_MATRIX_SIZE]; */
/* c_copy(diff_temp,A->data,size); */
/* c alpha = -1.0; */
/* /\* This routine computes y <- alpha*x + beta*y *\/ */
/* /\* void cblas_zaxpy(OPENBLAS_CONST blasint n, *\/ */
/* /\* OPENBLAS_CONST double *alpha, *\/ */
/* /\* OPENBLAS_CONST double *x, *\/ */
/* /\* OPENBLAS_CONST blasint incx, *\/ */
/* /\* double *y, *\/ */
/* /\* OPENBLAS_CONST blasint incy); *\/ */
/* cblas_zaxpy(size, */
/* (d*) &alpha, */
/* (d*) B->data, */
/* 1, */
/* (d*) diff_temp, */
/* 1 ); */
/* return c_norm(diff_temp,size); */
/* } */
//////////////////////////////////////////////////////////////////////