Working on SOS implementation of frequency weighting filters
This commit is contained in:
parent
f10e78ff41
commit
15c8b0d923
@ -7,14 +7,18 @@ Description: Filter design for frequency weighting curves (i.e. A and C
|
|||||||
weighting)
|
weighting)
|
||||||
"""
|
"""
|
||||||
from .fir_design import freqResponse, arbitrary_fir_design
|
from .fir_design import freqResponse, arbitrary_fir_design
|
||||||
|
from scipy.signal import bilinear_zpk, zpk2sos
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
__all__ = ['A', 'C', 'A_fir_design', 'C_fir_design',
|
__all__ = ['SPLFilterDesigner']
|
||||||
'show_Afir', 'show_Cfir']
|
|
||||||
|
|
||||||
|
|
||||||
|
class SPLFilterDesigner:
|
||||||
fr = 1000.
|
fr = 1000.
|
||||||
fL = 10**1.5
|
fL = 10**1.5
|
||||||
fH = 10**3.9
|
fH = 10**3.9
|
||||||
|
|
||||||
|
|
||||||
fLsq = fL**2
|
fLsq = fL**2
|
||||||
fHsq = fH**2
|
fHsq = fH**2
|
||||||
frsq = fr**2
|
frsq = fr**2
|
||||||
@ -29,20 +33,25 @@ f1 = np.sqrt((-b-np.sqrt(b**2-4*c))/2)
|
|||||||
f4 = np.sqrt((-b+np.sqrt(b**2-4*c))/2)
|
f4 = np.sqrt((-b+np.sqrt(b**2-4*c))/2)
|
||||||
f4sq = f4**2
|
f4sq = f4**2
|
||||||
|
|
||||||
|
def _A_uncor(self, f):
|
||||||
def A_uncor(f):
|
|
||||||
"""
|
"""
|
||||||
Computes the uncorrected frequency response of the A-filter
|
Computes the uncorrected frequency response of the A-filter
|
||||||
|
|
||||||
|
Args:
|
||||||
|
f: Frequency (array, float)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Linear filter transfer function
|
||||||
"""
|
"""
|
||||||
fsq = f**2
|
fsq = f**2
|
||||||
num = f4sq*fsq**2
|
num = self.f4sq*fsq**2
|
||||||
denom1 = (fsq+f1**2)
|
denom1 = (fsq+self.f1**2)
|
||||||
denom2 = np.sqrt((fsq+f2**2)*(fsq+f3**2))*(fsq+f4sq)
|
denom2 = np.sqrt((fsq+self.f2**2)*(fsq+self.f3**2))*(fsq+self.f4sq)
|
||||||
|
|
||||||
return (num/(denom1*denom2))
|
return (num/(denom1*denom2))
|
||||||
|
|
||||||
|
|
||||||
def A(f):
|
def A(self, f):
|
||||||
"""
|
"""
|
||||||
Computes the linear A-weighting freqency response. Hence, to obtain
|
Computes the linear A-weighting freqency response. Hence, to obtain
|
||||||
A-weighted values, the *amplitude* need to be multiplied with this value.
|
A-weighted values, the *amplitude* need to be multiplied with this value.
|
||||||
@ -54,36 +63,37 @@ def A(f):
|
|||||||
Returns:
|
Returns:
|
||||||
A(f) for each frequency
|
A(f) for each frequency
|
||||||
"""
|
"""
|
||||||
Auncor = A_uncor(f)
|
Auncor = self._A_uncor(f)
|
||||||
A1000 = A_uncor(1000.)
|
A1000 = self._A_uncor(self.fr)
|
||||||
return Auncor/A1000
|
return Auncor/A1000
|
||||||
|
|
||||||
|
|
||||||
def C_uncor(f):
|
def _C_uncor(self, f):
|
||||||
"""
|
"""
|
||||||
Computes the uncorrected frequency response of the C-filter
|
Computes the uncorrected frequency response of the C-filter
|
||||||
"""
|
"""
|
||||||
fsq = f**2
|
fsq = f**2
|
||||||
num = f4sq*fsq
|
num = self.f4sq*fsq
|
||||||
denom1 = (fsq+f1**2)
|
denom1 = (fsq+self.f1**2)
|
||||||
denom2 = (fsq+f4**2)
|
denom2 = (fsq+self.f4**2)
|
||||||
return num/(denom1*denom2)
|
return num/(denom1*denom2)
|
||||||
|
|
||||||
|
|
||||||
def C(f):
|
def C(self, f):
|
||||||
"""
|
"""
|
||||||
Computes the linear A-weighting freqency response
|
Computes the linear A-weighting freqency response
|
||||||
"""
|
"""
|
||||||
Cuncor = C_uncor(f)
|
Cuncor = self._C_uncor(f)
|
||||||
C1000 = C_uncor(1000.)
|
C1000 = self._C_uncor(self.fr)
|
||||||
return Cuncor/C1000
|
return Cuncor/C1000
|
||||||
|
|
||||||
|
|
||||||
def A_fir_design():
|
def A_fir_design(self, fs):
|
||||||
fs = 48000.
|
|
||||||
|
assert int(fs) == 48000
|
||||||
freq_design = np.linspace(0, 17e3, 3000)
|
freq_design = np.linspace(0, 17e3, 3000)
|
||||||
freq_design[-1] = fs/2
|
freq_design[-1] = fs/2
|
||||||
amp_design = A(freq_design)
|
amp_design = self.A(freq_design)
|
||||||
amp_design[-1] = 0.
|
amp_design[-1] = 0.
|
||||||
|
|
||||||
L = 2048 # Filter order
|
L = 2048 # Filter order
|
||||||
@ -92,7 +102,8 @@ def A_fir_design():
|
|||||||
return fir
|
return fir
|
||||||
|
|
||||||
|
|
||||||
def C_fir_design():
|
def C_fir_design(self, fs):
|
||||||
|
assert int(fs) == 48000
|
||||||
fs = 48000.
|
fs = 48000.
|
||||||
freq_design = np.linspace(0, 17e3, 3000)
|
freq_design = np.linspace(0, 17e3, 3000)
|
||||||
freq_design[-1] = fs/2
|
freq_design[-1] = fs/2
|
||||||
@ -104,6 +115,29 @@ def C_fir_design():
|
|||||||
window='rectangular')
|
window='rectangular')
|
||||||
return fir
|
return fir
|
||||||
|
|
||||||
|
def C_Sos_design(self, fs):
|
||||||
|
"""
|
||||||
|
Create filter coefficients of the C-weighting filter. Uses the bilinear
|
||||||
|
transform to convert the analog filter to a digital one.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fs: Sampling frequency [Hz]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Sos: Second order sections
|
||||||
|
"""
|
||||||
|
|
||||||
|
p1 = 2*np.pi*self.f1
|
||||||
|
p4 = 2*np.pi*self.f4
|
||||||
|
zeros_analog = [0,0]
|
||||||
|
poles_analog = [p1, p1, p4, p4]
|
||||||
|
k_analog = p4**2/self._C_uncor(self.fr)
|
||||||
|
|
||||||
|
z, p, k = bilinear_zpk(zeros_analog, poles_analog, k_analog, fs)
|
||||||
|
sos = zpk2sos(z, p, k)
|
||||||
|
return sos
|
||||||
|
# return z, p, k
|
||||||
|
# return zeros_analog, poles_analog, k_analog
|
||||||
|
|
||||||
def show_Afir():
|
def show_Afir():
|
||||||
from asceefig.plot import Figure
|
from asceefig.plot import Figure
|
||||||
@ -155,3 +189,4 @@ def show_Cfir():
|
|||||||
f.plot(freq_check, 20*np.log10(np.abs(H)))
|
f.plot(freq_check, 20*np.log10(np.abs(H)))
|
||||||
|
|
||||||
f.fig.get_axes()[0].set_ylim(-30, 1)
|
f.fig.get_axes()[0].set_ylim(-30, 1)
|
||||||
|
|
||||||
|
@ -5,7 +5,7 @@ Weighting and calibration filter in one
|
|||||||
@author: J.A. de Jong - ASCEE
|
@author: J.A. de Jong - ASCEE
|
||||||
"""
|
"""
|
||||||
from .lasp_common import FreqWeighting
|
from .lasp_common import FreqWeighting
|
||||||
from .filter import (A, C, arbitrary_fir_design, freqResponse as frp)
|
from .filter import SPLFilterDesigner
|
||||||
from lasp.lasp_config import ones, empty
|
from lasp.lasp_config import ones, empty
|
||||||
from .wrappers import FilterBank
|
from .wrappers import FilterBank
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
Loading…
Reference in New Issue
Block a user