Partially done implementation of Octave and one-third octave filterbank.

This commit is contained in:
Anne de Jong 2018-06-14 14:42:52 +02:00 committed by J.A. de Jong - ASCEE
parent a43a76f702
commit 1b21cc1873
18 changed files with 991 additions and 450 deletions

128
lasp/c/dec_filter_4.c Normal file
View File

@ -0,0 +1,128 @@
{0.000000000000000000e+00,
-2.185738981122740943e-06,
-2.794005403671438005e-06,
9.474117030816240549e-06,
4.047683164318276243e-05,
8.159721257084205745e-05,
1.081272986403995632e-04,
8.819754747279720866e-05,
1.292089375486244570e-18,
-1.501119890529942897e-04,
-3.184064926464186956e-04,
-4.310893684346957895e-04,
-4.094689334832080671e-04,
-2.059289266182427725e-04,
1.632175892397718904e-04,
6.039349831684049600e-04,
9.609848668279323634e-04,
1.065386827404308026e-03,
8.003236325878445483e-04,
1.624425171981582980e-04,
-7.076130570048387320e-04,
-1.544654803296158230e-03,
-2.031572983126828796e-03,
-1.908002710205690703e-03,
-1.080539502548179872e-03,
3.071493710103571440e-04,
1.878468916273352439e-03,
3.114730098982527052e-03,
3.515061533711236544e-03,
2.779296151548805299e-03,
9.515559570652546090e-04,
-1.533803816637046430e-03,
-3.936604506597823384e-03,
-5.417051906137869584e-03,
-5.310758368959681876e-03,
-3.387308238052255758e-03,
-2.020189585846376504e-17,
3.941575036075541973e-03,
7.193441582498504364e-03,
8.546931560120834062e-03,
7.242589074154118407e-03,
3.295234447391589671e-03,
-2.391580800508445910e-03,
-8.190127435210622919e-03,
-1.217754814426674249e-02,
-1.272615168819673029e-02,
-9.085393051846636994e-03,
-1.766149937181874050e-03,
7.423829658638344230e-03,
1.575380997299343638e-02,
2.029368152419728719e-02,
1.881247426920701696e-02,
1.060259142796622991e-02,
-3.026237731635000611e-03,
-1.877030360461057201e-02,
-3.192876928283294724e-02,
-3.747119479720732033e-02,
-3.132999667548151679e-02,
-1.158792905301173765e-02,
2.076675004965774715e-02,
6.175096553249778686e-02,
1.050334155991766993e-01,
1.431963133103141828e-01,
1.693251638559906402e-01,
1.785441122547395953e-01,
1.691180120289761668e-01,
1.428459416149487626e-01,
1.046477658307891495e-01,
6.144841153891738433e-02,
2.063940827275027520e-02,
-1.150252035146304662e-02,
-3.106003822342199780e-02,
-3.710127967927729503e-02,
-3.157313813741360886e-02,
-1.853722959527762462e-02,
-2.984746593388511431e-03,
1.044334023900628412e-02,
1.850493210242899755e-02,
1.993456916585750749e-02,
1.545344532020422393e-02,
7.271929013423104535e-03,
-1.727500581384247688e-03,
-8.873383043962101632e-03,
-1.241029376178266405e-02,
-1.185679908045850044e-02,
-7.961640663049178793e-03,
-2.321032949510159950e-03,
3.192604628017779635e-03,
7.004731963719125487e-03,
8.251271964876608425e-03,
6.931579083478471744e-03,
3.790698415906206074e-03,
-1.938928732007791559e-17,
-3.244201578800122790e-03,
-5.075193378062196545e-03,
-5.164847959311490676e-03,
-3.744259045513907962e-03,
-1.455155744093486990e-03,
9.003467998605640694e-04,
2.622284972952067337e-03,
3.306540383383136175e-03,
2.920618605100662978e-03,
1.755414747876200702e-03,
2.859847735621343567e-04,
-1.002153516667671955e-03,
-1.762137666026810951e-03,
-1.867706509456178859e-03,
-1.413021131661008033e-03,
-6.438025163091647607e-04,
1.469135513812169238e-04,
7.190488353391707912e-04,
9.501796827231699877e-04,
8.500266304384044257e-04,
5.292428644636570966e-04,
1.415165912868260117e-04,
-1.763689026852747436e-04,
-3.456944177857647653e-04,
-3.578084944368887165e-04,
-2.589144427740892114e-04,
-1.190202164875697825e-04,
9.922942950529402484e-19,
6.497054701652780085e-05,
7.525727688871557033e-05,
5.231825144807937484e-05,
2.280076622100770170e-05,
4.215016359691300044e-06,
-6.989289499831618075e-07,
-0.000000000000000000e+00}

View File

@ -11,7 +11,10 @@
#include "lasp_alloc.h"
#include "lasp_dfifo.h"
// The Maximum number of taps in a decimation filter
#define DEC_FILTER_MAX_TAPS (128)
// The FFT length
#define DEC_FFT_LEN (1024)
typedef struct {
@ -23,7 +26,7 @@ typedef struct {
static __thread DecFilter DecFilters[] = {
{DEC_FAC_4,4,128,
#include "dec_filter.c"
#include "dec_filter_4.c"
}
};
@ -112,13 +115,14 @@ dmat Decimator_decimate(Decimator* dec,const dmat* samples) {
const us dec_fac = dec->dec_fac;
dbgassert(samples->n_cols == nchannels,"Invalid number of "
"channels in samples");
dbgassert(samples->n_rows > 0,"Number of rows should be >0")
/* Not downsampled, but filtered result */
dmat filtered;
/* Filter each channel and store result in filtered. In first
* iteration the right size for filtered is allocated. */
for(us chan=0;chan<nchannels;chan++) {
vd samples_channel = dmat_column((dmat*)samples,
chan);
@ -131,35 +135,38 @@ dmat Decimator_decimate(Decimator* dec,const dmat* samples) {
vd_free(&samples_channel);
if(chan==0) {
/* Allocate space for result */
filtered = dmat_alloc(filtered_res.n_rows,
nchannels);
if(filtered_res.n_rows > 0) {
if(chan==0) {
/* Allocate space for result */
filtered = dmat_alloc(filtered_res.n_rows,
nchannels);
}
dmat filtered_col = dmat_submat(&filtered,
0,chan,
filtered_res.n_rows,
1);
dbgassert(filtered_res.n_rows == filtered_col.n_rows,
"Not all FilterBank's have same output number"
" of rows!");
dmat_copy_rows(&filtered_col,
&filtered_res,
0,0,filtered_res.n_rows);
dmat_free(&filtered_res);
dmat_free(&filtered_col);
}
else {
filtered = dmat_alloc(0, nchannels);
}
dmat filtered_col = dmat_submat(&filtered,
0,chan,
filtered_res.n_rows,
1);
dbgassert(filtered_res.n_rows == filtered_col.n_rows,
"Not all FilterBank's have same output number"
" of rows!");
dmat_copy_rows(&filtered_col,
&filtered_res,
0,0,filtered_res.n_rows);
dmat_free(&filtered_res);
dmat_free(&filtered_col);
vd_free(&samples_channel);
}
/* Push filtered result into output fifo */
dFifo_push(dec->output_fifo,
&filtered);
if(filtered.n_rows > 0) {
/* Push filtered result into output fifo */
dFifo_push(dec->output_fifo,
&filtered);
}
dmat_free(&filtered);
@ -168,7 +175,7 @@ dmat Decimator_decimate(Decimator* dec,const dmat* samples) {
uVARTRACE(15,dec_fac);
us fifo_size = dFifo_size(dec->output_fifo);
if((fifo_size / dec_fac) > 0) {
filtered = dmat_alloc((fifo_size/dec_fac)*dec_fac,
nchannels);

View File

@ -15,10 +15,10 @@
typedef struct Decimator_s Decimator;
typedef enum DEC_FAC_e {
DEC_FAC_4 = 0, // Decimate by a factor of 4
DEC_FAC_4 = 0, // Decimate by a factor of 4
} DEC_FAC;
/**
/**
* Create a decimation filter for a given number of channels and
* decimation factor
*

View File

@ -56,6 +56,12 @@ FilterBank* FilterBank_create(const dmat* h,
fb->output_fifo = dFifo_create(nfilters,FIFO_SIZE_MULT*nfft);
fb->input_fifo = dFifo_create(1,FIFO_SIZE_MULT*nfft);
// Initialize the input fifo with zeros.
// dmat init_zero = dmat_alloc(nfft - P, 1);
// dmat_set(&init_zero,0);
// dFifo_push(fb->input_fifo, &init_zero);
// dmat_free(&init_zero);
/* Create a temporary buffer which is going to be FFT'th to
* contain the filter transfer functions.
*/

View File

@ -14,21 +14,21 @@
#include "lasp_assert.h"
/// Dense matrix of floating point values
typedef struct {
us n_rows;
typedef struct {
us n_rows;
us n_cols;
bool _foreign_data;
us stride;
d* _data;
} dmat;
} dmat;
/// Dense matrix of complex floating point values
typedef struct {
us n_rows;
typedef struct {
us n_rows;
us n_cols;
bool _foreign_data;
us stride;
c* _data;
} cmat;
c* _data;
} cmat;
typedef dmat vd;
typedef cmat vc;
@ -44,19 +44,19 @@ typedef cmat vc;
assert_vx(vec); \
dbgassert((((us) index) < (vec)->n_rows),OUTOFBOUNDSVEC); \
(vec)->_data[index] = val;
#define setmatval(mat,row,col,val) \
dbgassert((((us) row) <= mat->n_rows),OUTOFBOUNDSMATR); \
dbgassert((((us) col) <= mat->n_cols),,OUTOFBOUNDSMATC); \
(mat)->data[(col)*(mat)->stride+(row)] = val;
/**
/**
* Return pointer to a value from a vector
*
* @param mat The vector
* @param row The row
*/
/**
/**
* Return a value from a matrix of floating points
*
* @param mat The matrix
@ -69,7 +69,7 @@ static inline d* getdmatval(const dmat* mat,us row,us col){
dbgassert(col < mat->n_cols,OUTOFBOUNDSMATC);
return &mat->_data[col*mat->stride+row];
}
/**
/**
* Return a value from a matrix of complex floating points
*
* @param mat The matrix
@ -85,11 +85,11 @@ static inline c* getcmatval(const cmat* mat,const us row,const us col){
static inline d* getvdval(const vd* vec,us row){
dbgassert(vec,NULLPTRDEREF);
assert_vx(vec);
assert_vx(vec);
return getdmatval(vec,row,0);
}
/**
/**
* Return pointer to a value from a complex vector
*
* @param mat The vector
@ -121,15 +121,15 @@ static inline c* getvcval(const vc* vec,us row){
#define check_overflow_xmat(xmat)
#endif
/**
/**
* Sets all values in a matrix to the value
*
* @param mat The matrix to set
* @param value
* @param value
*/
static inline void dmat_set(dmat* mat,const d value){
dbgassert(mat,NULLPTRDEREF);
if(likely(mat->n_cols && mat->n_rows)) {
if(likely(mat->n_cols * mat->n_rows > 0)) {
for(us col=0;col<mat->n_cols;col++) {
d_set(getdmatval(mat,0,col),value,mat->n_rows);
}
@ -137,15 +137,15 @@ static inline void dmat_set(dmat* mat,const d value){
}
#define vd_set dmat_set
/**
/**
* Sets all values in a matrix to the value
*
* @param mat The matrix to set
* @param value
* @param value
*/
static inline void cmat_set(cmat* mat,const c value){
dbgassert(mat,NULLPTRDEREF);
if(likely(mat->n_cols && mat->n_rows)) {
if(likely(mat->n_cols * mat->n_rows > 0)) {
for(us col=0;col<mat->n_cols;col++) {
c_set(getcmatval(mat,0,col),value,mat->n_rows);
}
@ -153,7 +153,7 @@ static inline void cmat_set(cmat* mat,const c value){
}
#define vc_set cmat_set
/**
/**
* Allocate data for a matrix of floating points
*
* @param n_rows Number of rows
@ -165,12 +165,12 @@ static inline void cmat_set(cmat* mat,const c value){
static inline dmat dmat_alloc(us n_rows,
us n_cols) {
dmat result = { n_rows, n_cols, false, n_rows, NULL};
#ifdef LASP_DEBUG
result._data = (d*) a_malloc((n_rows*n_cols+1)*sizeof(d));
result._data[n_rows*n_cols] = OVERFLOW_MAGIC_NUMBER;
#else
result._data = (d*) a_malloc((n_rows*n_cols)*sizeof(d));
result._data = (d*) a_malloc((n_rows*n_cols)*sizeof(d));
#endif // LASP_DEBUG
#ifdef LASP_DEBUG
@ -180,7 +180,7 @@ static inline dmat dmat_alloc(us n_rows,
return result;
}
/**
/**
* Allocate a matrix of complex floating points
*
* @param n_rows Number of rows
@ -197,7 +197,7 @@ static inline cmat cmat_alloc(const us n_rows,
result._data = (c*) a_malloc((n_rows*n_cols+1)*sizeof(c));
result._data[n_rows*n_cols] = OVERFLOW_MAGIC_NUMBER;
#else
result._data = (c*) a_malloc((n_rows*n_cols)*sizeof(c));
result._data = (c*) a_malloc((n_rows*n_cols)*sizeof(c));
#endif // LASP_DEBUG
#ifdef LASP_DEBUG
@ -206,7 +206,7 @@ static inline cmat cmat_alloc(const us n_rows,
return result;
}
/**
/**
* Allocate data for a float vector.
*
* @param size Size of the vector
@ -217,7 +217,7 @@ static inline vd vd_alloc(us size) {
return dmat_alloc(size,1);
}
/**
/**
* Allocate data for a complex vector.
*
* @param size Size of the vector
@ -229,7 +229,7 @@ static inline vc vc_alloc(us size) {
}
/**
/**
* Creates a dmat from foreign data. Does not copy the data, but only
* initializes the row pointers. Assumes column-major ordering for the
* data. Please do not keep this one alive after the data has been
@ -237,9 +237,9 @@ static inline vc vc_alloc(us size) {
*
* @param n_rows Number of rows
* @param n_cols Number of columns
* @param data
* @param data
*
* @return
* @return
*/
static inline dmat dmat_foreign(dmat* other) {
dbgassert(other,NULLPTRDEREF);
@ -250,7 +250,7 @@ static inline dmat dmat_foreign(dmat* other) {
other->_data};
return result;
}
/**
/**
* Create a dmat from foreign data. Assumes the stride of the data is
* n_rows.
*
@ -258,7 +258,7 @@ static inline dmat dmat_foreign(dmat* other) {
* @param n_cols Number of columns
* @param data Pointer to data storage
*
* @return dmat
* @return dmat
*/
static inline dmat dmat_foreign_data(us n_rows,
us n_cols,
@ -273,7 +273,7 @@ static inline dmat dmat_foreign_data(us n_rows,
data};
return result;
}
/**
/**
* Create a cmat from foreign data. Assumes the stride of the data is
* n_rows.
*
@ -281,7 +281,7 @@ static inline dmat dmat_foreign_data(us n_rows,
* @param n_cols Number of columns
* @param data Pointer to data storage
*
* @return dmat
* @return dmat
*/
static inline cmat cmat_foreign_data(us n_rows,
us n_cols,
@ -296,18 +296,18 @@ static inline cmat cmat_foreign_data(us n_rows,
data};
return result;
}
/**
/**
* Creates a cmat from foreign data. Does not copy the data, but only
* initializes the row pointers. Assumes column-major ordering for the
* data. Please do not keep this one alive after the data has been
* destroyed. Assumes the column stride equals to n_rows.
*
* @param n_rows
* @param n_cols
* @param data
* @param n_rows
* @param n_cols
* @param data
*
* @return
* @return
*/
static inline cmat cmat_foreign(cmat* other) {
dbgassert(other,NULLPTRDEREF);
@ -321,7 +321,7 @@ static inline cmat cmat_foreign(cmat* other) {
/**
/**
* Free's data of dmat. Safe to run on sub-matrices as well.
*
* @param m Matrix to free
@ -332,7 +332,7 @@ static inline void dmat_free(dmat* m) {
}
#define vd_free dmat_free
/**
/**
* Free's data of dmat. Safe to run on sub-matrices as well.
*
* @param m Matrix to free
@ -343,7 +343,7 @@ static inline void cmat_free(cmat* m) {
}
#define vc_free cmat_free
/**
/**
* Copy some rows from one matrix to another
*
* @param to Matrix to copy to
@ -368,7 +368,7 @@ static inline void dmat_copy_rows(dmat* to,const dmat* from,
d_copy(to_d,from_d,nrows,1,1);
}
}
/**
/**
* Allocate a sub-matrix view of the parent
*
* @param parent Parent matrix
@ -397,7 +397,7 @@ static inline dmat dmat_submat(const dmat* parent,
return result;
}
/**
/**
* Allocate a sub-matrix view of the parent
*
* @param parent Parent matrix
@ -428,32 +428,32 @@ static inline cmat cmat_submat(cmat* parent,
return result;
}
/**
/**
* Copy contents of one matrix to another. Sizes should be equal
*
* @param to
* @param from
* @param to
* @param from
*/
static inline void dmat_copy(dmat* to,const dmat* from) {
dbgassert(to && from,NULLPTRDEREF);
dbgassert(to->n_rows==from->n_rows,SIZEINEQUAL);
dbgassert(to->n_cols==from->n_cols,SIZEINEQUAL);
dbgassert(to->n_cols==from->n_cols,SIZEINEQUAL);
for(us col=0;col<to->n_cols;col++) {
d_copy(getdmatval(to,0,col),
getdmatval(from,0,col),
to->n_rows,1,1);
}
}
/**
/**
* Copy contents of one matrix to another. Sizes should be equal
*
* @param to
* @param from
* @param to
* @param from
*/
static inline void cmat_copy(cmat* to,const cmat* from) {
dbgassert(to && from,NULLPTRDEREF);
dbgassert(to->n_rows==from->n_rows,SIZEINEQUAL);
dbgassert(to->n_cols==from->n_cols,SIZEINEQUAL);
dbgassert(to->n_cols==from->n_cols,SIZEINEQUAL);
for(us col=0;col<to->n_cols;col++) {
c_copy(getcmatval(to,0,col),
getcmatval(from,0,col),
@ -461,7 +461,7 @@ static inline void cmat_copy(cmat* to,const cmat* from) {
}
}
/**
/**
* Copy contents of one vector to another
*
* @param to : Vector to write to
@ -470,10 +470,10 @@ static inline void cmat_copy(cmat* to,const cmat* from) {
static inline void vd_copy(vd* to,const vd* from) {
dbgassert(to && from,NULLPTRDEREF);
assert_vx(to);
assert_vx(from);
assert_vx(from);
dmat_copy(to,from);
}
/**
/**
* Copy contents of one vector to another
*
* @param to : Vector to write to
@ -482,12 +482,12 @@ static inline void vd_copy(vd* to,const vd* from) {
static inline void vc_copy(vc* to,const vc* from) {
dbgassert(to && from,NULLPTRDEREF);
assert_vx(to);
assert_vx(from);
assert_vx(from);
cmat_copy(to,from);
}
/**
/**
* Get a reference to a column of a matrix as a vector
*
* @param x Matrix
@ -500,7 +500,7 @@ static inline vd dmat_column(dmat* x,us col) {
return res;
}
/**
/**
* Get a reference to a column of a matrix as a vector
*
* @param x Matrix
@ -513,11 +513,11 @@ static inline vc cmat_column(cmat* x,us col) {
return res;
}
/**
/**
* Compute the complex conjugate of b and store result in a
*
* @param a
* @param b
* @param a
* @param b
*/
static inline void cmat_conj(cmat* a,const cmat* b) {
fsTRACE(15);
@ -530,10 +530,10 @@ static inline void cmat_conj(cmat* a,const cmat* b) {
feTRACE(15);
}
/**
/**
* Take the complex conjugate of x, in place
*
* @param x
* @param x
*/
static inline void cmat_conj_inplace(cmat* x) {
dbgassert(x,NULLPTRDEREF);

221
lasp/filter/bandpass_fir.py Normal file
View File

@ -0,0 +1,221 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Description: FIR filter design for octave bands from 16Hz to 16 kHz for a
sampling frequency of 48 kHz, FIR filter design for one-third octave bands
See test/octave_fir_test.py for a testing
"""
from .fir_design import bandpass_fir_design, freqResponse as frsp
import numpy as np
__all__ = ['OctaveBankDesigner', 'ThirdOctaveBankDesigner']
class FilterBankDesigner:
"""
A class responsible for designing FIR filters
"""
G = 10**(3/10)
fr = 1000.
L = 256 # Filter order
fs = 48000. # Sampling frequency
def fm(self, x):
"""
Returns the exact midband frequency of the bandpass filter
Args:
x: Midband designator
"""
# Exact midband frequency
return self.G**(x/self.b)*self.fr
def fl(self, x):
"""
Returns the exact cut-on frequency of the bandpass filter
Args:
x: Midband designator
"""
return self.fm(x)*self.G**(-1/(2*self.b))
def fu(self, x):
"""
Returns the exact cut-off frequency of the bandpass filter
Args:
x: Midband designator
"""
return self.fm(x)*self.G**(1/(2*self.b))
def createFilter(self, fs, x):
"""
Create a FIR filter for band designator b and sampling frequency fs.
Decimation should be obtained from decimation() method.
Returns:
filter: 1D ndarray with FIR filter coefficients
"""
assert np.isclose(fs, self.fs), "Invalid sampling frequency"
fd = fs / np.prod(self.decimation(x))
# For designing the filter, the lower and upper frequencies need to be
# slightly adjusted to fall within the limits for a class 1 filter.
fl = self.fl(x)*self.fac_l(x)
fu = self.fu(x)*self.fac_u(x)
return bandpass_fir_design(self.L, fd, fl, fu)
def freqResponse(self, fs, x, freq):
"""
Compute the frequency response for a certain filter
Args:
fs: Sampling frequency [Hz]
x: Midband designator
"""
fir = self.createFilter(fs, x)
# Decimated sampling frequency [Hz]
fd = fs / np.prod(self.decimation(x))
return frsp(fd, freq, fir)
class OctaveBankDesigner(FilterBankDesigner):
"""
Octave band filter designer
"""
def __init__(self):
pass
@property
def b(self):
# Band division, 1 for octave bands
return 1
@property
def xs(self):
return list(range(-6, 5))
def nominal(self, x):
# Text corresponding to the nominal frequency
nominals = {4: '16k',
3: '8k',
2: '4k',
1: '2k',
0: '1k',
-1: '500',
-2: '250',
-3: '125',
-4: '63',
-5: '31.5',
-6: '16'}
return nominals[x]
def fac_l(self, x):
"""
Factor with which to multiply the cut-on frequency of the FIR filter
"""
if x == 4:
return .995
elif x in (3, 1):
return .99
elif x in(-6, -4, -2, 2, 0):
return .98
else:
return .96
def fac_u(self, x):
"""
Factor with which to multiply the cut-off frequency of the FIR filter
"""
if x == 4:
return 1.004
elif x in (3, 1):
return 1.006
elif x in (-6, -4, -2, 2, 0):
return 1.01
else:
return 1.02
def decimation(self, x):
"""
Required decimation for each filter
"""
if x > 1:
return [1]
elif x > -2:
return [4]
elif x > -4:
return [4, 4]
elif x > -6:
return [4, 4, 4]
elif x == -6:
return [4, 4, 4, 4]
assert False, 'Overlooked decimation'
class ThirdOctaveBankDesigner(FilterBankDesigner):
def __init__(self):
self.xs = list(range(-16, 14))
# Text corresponding to the nominal frequency
self.nominal_txt = ['25', '31.5', '40',
'50', '63', '80',
'100', '125', '160',
'200', '250', '315',
'400', '500', '630',
'800', '1k', '1.25k',
'1.6k', '2k', '2.5k',
'3.15k', '4k', '5k',
'6.3k', '8k', '10k',
'12.5k', '16k', '20k']
@property
def b(self):
# Band division factor, 3 for one-third octave bands
return 3
def nominal(self, x):
# Put the nominal frequencies in a dictionary for easy access with
# x as the key.
index = x - self.xs[0]
return self.nominal_txt[index]
@staticmethod
def decimation(x):
if x > 5:
return [1]
elif x > -1:
return [4]
elif x > -7:
return [4, 4]
elif x > -13:
return [4, 4, 4]
elif x > -17:
return [4, 4, 4, 4]
assert False, 'Bug: overlooked decimation'
@staticmethod
def fac_l(x):
if x in (-13, -7, -1, 5, 11, 12, 13):
return .995
elif x in (-12, -6, 0, 6):
return .98
else:
return .99
@staticmethod
def fac_u(x):
if x in (-14, -13, -8, -7, -1, -2, 3, 4, 5, 10, 11, 12):
return 1.005
elif x in (12, 13):
return 1.003
elif x in (12, -6, 0):
return 1.015
else:
return 1.01

View File

@ -0,0 +1,99 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Description: Limit lines for class 1 octave band filter limits according to
the ICS 17.140.50 standard.
"""
__all__ = ['G', 'fr', 'third_octave_band_limits', 'octave_band_limits']
import numpy as np
# Reference frequency
fr = 1000.
G = 10**(3/10)
def third_octave_band_limits(x):
"""
Returns the class 1 third octave band filter limits for filter designator
x.
Args:
x: Filter offset power from the reference frequency of 1000 Hz.
Returns:
freq, ulim, llim: Tuple of Numpy arrays containing the frequencyies,
upper and lower limits of the filter.
"""
b = 3
fm = G**(x/b)*fr
plusinf = 20
f_ratio_pos = [1., 1.02667, 1.05575, 1.08746, 1.12202, 1.12202,
1.29437, 1.88173, 3.05365, 5.39195, plusinf]
f_ratio_neg = [0.97402, 0.94719, 0.91958, 0.89125, 0.89125,
0.77257, 0.53143, 0.32748, 0.18546, 1/plusinf]
f_ratio_neg.reverse()
f_ratio = f_ratio_neg + f_ratio_pos
mininf = -1e300
upper_limits_pos = [.3]*5 + [-2, -17.5, -42, -61, -70, -70]
upper_limits_neg = upper_limits_pos[:]
upper_limits_neg.reverse()
upper_limits = np.array(upper_limits_neg[:-1] + upper_limits_pos)
lower_limits_pos = [-.3, -.4, -.6, -1.3, -5, -5, mininf, mininf,
mininf, mininf, mininf]
lower_limits_neg = lower_limits_pos[:]
lower_limits_neg.reverse()
lower_limits = np.array(lower_limits_neg[:-1] + lower_limits_pos)
freqs = fm*np.array(f_ratio)
return freqs, upper_limits, lower_limits
def octave_band_limits(x):
b = 1
# Exact midband frequency
fm = G**(x/b)*fr
G_power_values_pos = [0, 1/8, 1/4, 3/8, 1/2, 1/2, 1, 2, 3, 4]
G_power_values_neg = [-i for i in G_power_values_pos]
G_power_values_neg.reverse()
G_power_values = G_power_values_neg[:-1] + G_power_values_pos
mininf = -1e300
lower_limits_pos = [-0.3, -0.4, -0.6, -1.3, -5.0, -5.0] + 4*[mininf]
lower_limits_neg = lower_limits_pos[:]
lower_limits_neg.reverse()
lower_limits = np.asarray(lower_limits_neg[:-1] + lower_limits_pos)
upper_limits_pos = [0.3]*5 + [-2, -17.5, -42, -61, -70]
upper_limits_neg = upper_limits_pos[:]
upper_limits_neg.reverse()
upper_limits = np.asarray(upper_limits_neg[:-1] + upper_limits_pos)
freqs = fm*G**np.asarray(G_power_values)
return freqs, upper_limits, lower_limits
if __name__ == '__main__':
from asceefigs.plot import close, Figure
close('all')
freqs, upper_limits, lower_limits = octave_band_limits(0)
f = Figure()
f.semilogx(freqs, lower_limits)
f.semilogx(freqs, upper_limits)
f.ylim(-80, 1)

39
lasp/filter/dec_fir.py Normal file
View File

@ -0,0 +1,39 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Description: Decimation filter design.
"""
import numpy as np
import matplotlib.pyplot as plt
from fir_design import freqResponse, lowpass_fir_design
L = 128 # Filter order
fs = 48000. # Sampling frequency
d = 4 # Decimation factor
fd = fs/d # Decimated sampling frequency
fc = fd/2/1.5 # Filter cut-off frequency
fir = lowpass_fir_design(L, fs, fc)
fig = plt.figure()
ax = fig.add_subplot(111)
freq = np.logspace(1, np.log10(fs/2), 1000)
H = freqResponse(fs, freq, fir)
dBH = 20*np.log10(np.abs(H))
ax.plot(freq, dBH)
ax.axvline(fs/2, color='green')
ax.axvline(fd/2, color='red')
# Index of Nyquist freq
fn_index = np.where(freq <= fd/2)[0][-1]
dBHmax_above_Nyq = np.max(dBH[fn_index:])
print(f"Reduction above Nyquist: {dBHmax_above_Nyq} dB")
plt.show()

86
lasp/filter/fir_design.py Normal file
View File

@ -0,0 +1,86 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Description: Designs octave band FIR filters from 16Hz to 16 kHz for a sampling
frequency of 48 kHz.
"""
# from asceefigs.plot import Bode, close, Figure
__all__ = ['freqResponse', 'bandpass_fir_design', 'lowpass_fir_design',
'arbitrary_fir_design']
import numpy as np
from scipy.signal import freqz, hann, firwin2
def freqResponse(fs, freq, coefs_b, coefs_a=1.):
"""
Computes the frequency response of the filter defined with the filter
coefficients:
Args:
fs: Sampling frequency [Hz]
freq: Array of frequencies to compute the response for
coefs_b: Forward coefficients (FIR coefficients)
coefs_a: Feedback coefficients (IIR)
Returns:
Complex frequency response for frequencies given in array
"""
Omg = 2*np.pi*freq/fs
w, H = freqz(coefs_b, coefs_a, worN=Omg)
return H
def bandpass_fir_design(L, fs, fl, fu, window=hann):
"""
Construct a bandpass filter
"""
assert fs/2 > fu, "Nyquist frequency needs to be higher than upper cut-off"
assert fu > fl, "Cut-off needs to be lower than Nyquist freq"
Omg2 = 2*np.pi*fu/fs
Omg1 = 2*np.pi*fl/fs
fir = np.empty(L, dtype=float)
# First Create ideal band-pass filter
fir[L//2] = (Omg2-Omg1)/np.pi
for n in range(1, L//2):
fir[n+L//2] = (np.sin(n*Omg2)-np.sin(n*Omg1))/(n*np.pi)
fir[L//2-n] = (np.sin(n*Omg2)-np.sin(n*Omg1))/(n*np.pi)
win = window(L, True)
fir_win = fir*win
return fir_win
def lowpass_fir_design(L, fs, fc, window=hann):
assert fs/2 > fc, "Nyquist frequency needs to be higher" \
" than upper cut-off"
Omgc = 2*np.pi*fc/fs
fir = np.empty(L, dtype=float)
# First Create ideal band-pass filter
fir[L//2] = Omgc/np.pi
for n in range(1, L//2):
fir[n+L//2] = np.sin(n*Omgc)/(n*np.pi)
fir[L//2-n] = np.sin(n*Omgc)/(n*np.pi)
win = window(L, True)
fir_win = fir*win
return fir_win
def arbitrary_fir_design(fs, L, freq, amps, window='hann'):
"""
Last frequency of freq should be fs/2
"""
return firwin2(L, freq, amps, fs=fs, window=window)

View File

@ -6,11 +6,10 @@ Author: J.A. de Jong - ASCEE
Description: Filter design for frequency weightings A and C.
"""
from .fir_design import freqResponse, arbitrary_fir_design
from ..lasp_common import FreqWeighting
import numpy as np
__all__ = ['A','C','A_fir_design','C_fir_design',
'show_Afir','show_Cfir']
__all__ = ['A', 'C', 'A_fir_design', 'C_fir_design',
'show_Afir', 'show_Cfir']
fr = 1000.
fL = 10**1.5
@ -53,7 +52,7 @@ def C_uncor(f):
Computes the uncorrected frequency response of the C-filter
"""
fsq = f**2
num = f4sq*fsq
num = f4sq*fsq
denom1 = (fsq+f1**2)
denom2 = (fsq+f4**2)
return num/(denom1*denom2)
@ -65,83 +64,83 @@ def C(f):
Cuncor = C_uncor(f)
C1000 = C_uncor(1000.)
return Cuncor/C1000
def A_fir_design():
fs = 48000.
freq_design = np.linspace(0,17e3,3000)
freq_design = np.linspace(0, 17e3, 3000)
freq_design[-1] = fs/2
amp_design = A(freq_design)
amp_design = A(freq_design)
amp_design[-1] = 0.
L = 2048 # Filter order
fir = arbitrary_fir_design(fs,L,freq_design,amp_design,
L = 2048 # Filter order
fir = arbitrary_fir_design(fs, L, freq_design, amp_design,
window='rectangular')
return fir
def C_fir_design():
fs = 48000.
freq_design = np.linspace(0,17e3,3000)
freq_design = np.linspace(0, 17e3, 3000)
freq_design[-1] = fs/2
amp_design = C(freq_design)
amp_design = C(freq_design)
amp_design[-1] = 0.
L = 2048 # Filter order
fir = arbitrary_fir_design(fs,L,freq_design,amp_design,
L = 2048 # Filter order
fir = arbitrary_fir_design(fs, L, freq_design, amp_design,
window='rectangular')
return fir
def show_Afir():
from asceefigs.plot import Bode, close, Figure
from asceefigs.plot import close, Figure
close('all')
fs = 48000.
freq_design = np.linspace(0,17e3,3000)
freq_design = np.linspace(0, 17e3, 3000)
freq_design[-1] = fs/2
amp_design = A(freq_design)
amp_design = A(freq_design)
amp_design[-1] = 0.
firs = []
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hamming'))
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hann'))
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hamming'))
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hann'))
firs.append(A_fir_design())
#from scipy.signal import iirdesign
#b,a = iirdesign()
freq_check = np.logspace(0,np.log10(fs/2),5000)
f=Figure()
f.semilogx(freq_check,20*np.log10(A(freq_check)))
# from scipy.signal import iirdesign
# b,a = iirdesign()
freq_check = np.logspace(0, np.log10(fs/2), 5000)
f = Figure()
f.semilogx(freq_check, 20*np.log10(A(freq_check)))
for fir in firs:
H = freqResponse(fs,freq_check, fir)
f.plot(freq_check,20*np.log10(np.abs(H)))
f.fig.get_axes()[0].set_ylim(-75,3)
H = freqResponse(fs, freq_check, fir)
f.plot(freq_check, 20*np.log10(np.abs(H)))
f.fig.get_axes()[0].set_ylim(-75, 3)
def show_Cfir():
from asceefigs.plot import Bode, close, Figure
from asceefigs.plot import close, Figure
close('all')
fs = 48000.
freq_design = np.linspace(0,17e3,3000)
freq_design = np.linspace(0, 17e3, 3000)
freq_design[-1] = fs/2
amp_design = C(freq_design)
amp_design = C(freq_design)
amp_design[-1] = 0.
firs = []
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hamming'))
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hann'))
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hamming'))
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hann'))
firs.append(C_fir_design())
#from scipy.signal import iirdesign
#b,a = iirdesign()
freq_check = np.logspace(0,np.log10(fs/2),5000)
f=Figure()
f.semilogx(freq_check,20*np.log10(C(freq_check)))
# from scipy.signal import iirdesign
# b,a = iirdesign()
freq_check = np.logspace(0, np.log10(fs/2), 5000)
f = Figure()
f.semilogx(freq_check, 20*np.log10(C(freq_check)))
for fir in firs:
H = freqResponse(fs,freq_check, fir)
f.plot(freq_check,20*np.log10(np.abs(H)))
f.fig.get_axes()[0].set_ylim(-30,1)
H = freqResponse(fs, freq_check, fir)
f.plot(freq_check, 20*np.log10(np.abs(H)))
f.fig.get_axes()[0].set_ylim(-30, 1)

View File

@ -1,70 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Description: Designs octave band FIR filters from 16Hz to 16 kHz for a sampling
frequency of 48 kHz.
"""
#from asceefigs.plot import Bode, close, Figure
import numpy as np
from scipy.signal import freqz, hann, firwin2
from matplotlib.pyplot import figure, close
def freqResponse(fs, freq, fir_coefs_b, fir_coefs_a=1.):
"""!
Computes the frequency response of the filter defined with filter_coefs
"""
Omg = 2*np.pi*freq/fs
w, H = freqz(fir_coefs_b,fir_coefs_a,worN = Omg)
return H
def bandpass_fir_design(L,fs,fl,fu, window = hann):
"""
Construct a bandpass filter
"""
assert fs/2 > fu, "Nyquist frequency needs to be higher than upper cut-off"
assert fu > fl, "Cut-off needs to be lower than Nyquist freq"
Omg2 = 2*np.pi*fu/fs
Omg1 = 2*np.pi*fl/fs
fir = np.empty(L, dtype=float)
# First Create ideal band-pass filter
fir[L//2] = (Omg2-Omg1)/np.pi
for n in range(1,L//2):
fir[n+L//2] = (np.sin(n*Omg2)-np.sin(n*Omg1))/(n*np.pi)
fir[L//2-n] = (np.sin(n*Omg2)-np.sin(n*Omg1))/(n*np.pi)
win = window(L,True)
fir_win = fir*win
return fir_win
def lowpass_fir_design(L,fs,fc,window = hann):
assert fs/2 > fc, "Nyquist frequency needs to be higher than upper cut-off"
Omgc = 2*np.pi*fc/fs
fir = np.empty(L, dtype=float)
# First Create ideal band-pass filter
fir[L//2] = Omgc/np.pi
for n in range(1,L//2):
fir[n+L//2] = np.sin(n*Omgc)/(n*np.pi)
fir[L//2-n] = np.sin(n*Omgc)/(n*np.pi)
win = window(L,True)
fir_win = fir*win
return fir_win
def arbitrary_fir_design(fs,L,freq,amps,window='hann'):
"""
Last frequency of freq should be fs/2
"""
return firwin2(L,freq,amps,fs=fs,window=window)

View File

@ -1,183 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Description: Designs FIR octave band FIR filters from 16Hz to 16 kHz for a
sampling frequency of 48 kHz.
"""
import numpy as np
from octave_filter_limits import octave_band_limits, G, fr
from matplotlib.pyplot import figure, close
from fir_design import freqResponse, bandpass_fir_design
L = 256 # Filter order
fs = 48000. # Sampling frequency
showfig = False
#showfig = True
maxdec = 3
close('all')
filters = {}
decimation = {}
b = 1
# Text corresponding to the nominal frequency
nominals = {4:'16k',
3:'8k',
2:'4k',
1:'2k',
0:'1k',
-1:'500',
-2:'250',
-3:'125',
-4:'63',
-5:'31.5',
-6:'16'}
# Factor with which to multiply the cut-on frequency of the FIR filter
cut_fac_l = {
4:0.995,
3:0.99,
2:0.98,
1:0.99,
0:0.98,
-1:0.96,
-2:.99,
-3:0.96,
-4:0.96,
-5:0.96,
-6:0.96
}
# Factor with which to multiply the cut-off frequency of the FIR filter
cut_fac_u = {
4:1.004,
3:1.006,
2:1.01,
1:1.006,
0:1.01,
-1:1.02,
-2:1.006,
-3:1.02,
-4:1.02,
-5:1.02,
-6:1.02
}
# Required decimation for each filter
decimation = {
4:[1],
3:[1],
2:[1],
1:[4],
0:[4],
-1:[4],
-2:[4,4],
-3:[4,4],
-4:[4,4,4],
-5:[4,4,4],
-6:[4,4,4,4]
}
# Generate the header file
with open('../c/lasp_octave_fir.h','w') as hfile:
hfile.write("""// lasp_octave_fir.h
//
// Author: J.A. de Jong - ASCEE
//
// Description: This is file is automatically generated from the
// octave_filter_design.py Python file.
//////////////////////////////////////////////////////////////////////
#pragma once
#ifndef LASP_OCTAVE_FIR_H
#define LASP_OCTAVE_FIR_H
#include "lasp_types.h"
#define MAXDEC (%i) /// Size of the decimation factor array
#define OCTAVE_FIR_LEN (%i) /// Filter length
typedef struct {
const char* nominal; /// Pointer to the nominal frequency text
int x; /// 1000*G^x is the exact midband frequency, where G = 10^(3/10)
int decimation_fac[MAXDEC]; // Array with decimation factors that need to be
// applied prior to filtering
d h[OCTAVE_FIR_LEN];
} OctaveFIR;
extern __thread OctaveFIR OctaveFIRs[%i];
#endif // LASP_OCTAVE_FIR_H
//////////////////////////////////////////////////////////////////////
""" %(maxdec,L,len(decimation)))
# Generate the source code file
with open('../c/lasp_octave_fir.c','w') as cfile:
cfile.write("""// octave_fir.c
//
// Author: J.A. de Jong - ASCEE
//
// Description:
// This is an automatically generated file containing filter coefficients
// for octave filter banks.
//////////////////////////////////////////////////////////////////////
#include "lasp_octave_fir.h"
__thread OctaveFIR OctaveFIRs[%i] = {
""" %(len(decimation)))
struct = ''
for x in range(4,-7,-1):
if showfig:
fig = figure()
ax = fig.add_subplot(111)
dec = decimation[x]
d = np.prod(dec)
struct += '\n {"%s",%i, {' %(nominals[x],x)
for i in range(maxdec):
try:
struct += "%i," % dec[i]
except:
struct += "0,"
struct = struct[:-1] # Strip off last,
struct += '},'
fd = fs/d
# Exact midband frequency
fm = G**(x)*fr
# Cut-on frequency of the filter
f1 = fm*G**(-1/(2*b))*cut_fac_l[x]
# Cut-off frequency of the filter
f2 = fm*G**(1/(2*b))*cut_fac_u[x]
fc = fd/2/1.4
fir = bandpass_fir_design(L,fd,f1,f2)
struct += "{ "
for i in fir:
struct += "%0.16e," %i
struct = struct[:-1] + " }},"
freq = np.logspace(np.log10(f1/3),np.log10(fd),1000)
H = freqResponse(fir,freq,fd)
if showfig:
ax.semilogx(freq,20*np.log10(np.abs(H)))
freq,ulim,llim = octave_band_limits(x)
ax.semilogx(freq,ulim)
ax.semilogx(freq,llim)
ax.set_title('x = %i, fnom = %s' %(x,nominals[x]) )
ax.set_ylim(-10,1)
ax.set_xlim(f1/1.1,fd)
ax.axvline(fd/2)
ax.axvline(fc,color='red')
struct+="\n};"
cfile.write(struct)

View File

@ -1,52 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Description: Limit lines for class 1 octave band filter limits according to
the ICS 17.140.50 standard.
"""
__all__ = ['G','fr','octave_band_limits']
import numpy as np
# Reference frequency
fr = 1000.
G = 10**(3/10)
def octave_band_limits(x):
# Exact midband frequency
fm = G**(x)*fr
G_power_values_pos = [0,1/8,1/4,3/8,1/2,1/2,1,2,3,4]
G_power_values_neg = [-i for i in G_power_values_pos]
G_power_values_neg.reverse()
G_power_values = G_power_values_neg[:-1] + G_power_values_pos
mininf = -1e300
lower_limits_pos = [-0.3,-0.4,-0.6,-1.3,-5.0,-5.0]+ 4*[mininf]
lower_limits_neg = lower_limits_pos[:]
lower_limits_neg.reverse()
lower_limits = np.asarray(lower_limits_neg[:-1] + lower_limits_pos)
upper_limits_pos = [0.3]*5 + [-2,-17.5,-42,-61,-70]
upper_limits_neg = upper_limits_pos[:]
upper_limits_neg.reverse()
upper_limits = np.asarray(upper_limits_neg[:-1] + upper_limits_pos)
freqs = fm*G**np.asarray(G_power_values)
return freqs,upper_limits,lower_limits
if __name__ == '__main__':
from asceefigs.plot import close, Figure
close('all')
freqs,upper_limits,lower_limits = octave_band_limits(0)
f = Figure()
f.semilogx(freqs,lower_limits)
f.semilogx(freqs,upper_limits)
f.ylim(-80,1)

154
lasp/lasp_octavefilter.py Normal file
View File

@ -0,0 +1,154 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
Provides the FIR implementation of the octave filter bank
"""
__all__ = ['OctaveFilterBank']
from .filter.bandpass_fir import OctaveBankDesigner, ThirdOctaveBankDesigner
from .wrappers import Decimator, FilterBank as pyxFilterBank
import numpy as np
class FilterBank:
"""
Single channel octave filter bank implementation
"""
def __init__(self, fs, designer):
"""
Initialize a OctaveFilterBank object.
Args:
fs: Sampling frequency of base signal
designer: FIR Filter designer for filterbank
"""
assert np.isclose(fs, 48000), "Only sampling frequency" \
" available is 48 kHz"
self.fs = fs
maxdecimation = designer.decimation(designer.xs[0])
self.decimators = []
for dec in maxdecimation:
self.decimators.append(Decimator(1, dec))
xs_d1 = []
xs_d4 = []
xs_d16 = []
xs_d64 = []
xs_d256 = []
self.filterbanks = []
# Sort the x values in categories according to the required decimation
for x in designer.xs:
dec = designer.decimation(x)
if len(dec) == 1 and dec[0] == 1:
xs_d1.append(x)
elif len(dec) == 1 and dec[0] == 4:
xs_d4.append(x)
elif len(dec) == 2:
xs_d16.append(x)
elif len(dec) == 3:
xs_d64.append(x)
elif len(dec) == 4:
xs_d256.append(x)
else:
raise ValueError(f'No decimation found for x={x}')
xs_all = [xs_d1, xs_d4, xs_d16, xs_d64, xs_d256]
for xs in xs_all:
nominals = []
firs = np.empty((designer.L, len(xs)), order='F')
for i, x in enumerate(xs):
# These are the filters that do not require lasp_decimation
# prior to filtering
nominals.append(designer.nominal(x))
firs[:, i] = designer.createFilter(fs, x)
filterbank = {'fb': pyxFilterBank(firs, 1024),
'xs': xs,
'nominals': nominals}
self.filterbanks.append(filterbank)
# Sample input counter.
self.N = 0
# Filter output counters
self.dec = [1, 4, 16, 64, 256]
Pdec = 128
Pfil = 256
# Initial filtered number
self.Nf = [-Pfil, -(Pdec/4 + Pfil),
-(Pfil + Pdec/4 + Pdec/16),
-(Pfil + Pdec/64 + Pdec/4 + Pdec/16),
-(Pfil + Pdec/256 + Pdec/64 + Pdec/4 + Pdec/16)]
self.delay_set = [False, False, False, False, False]
def filterd(self, dec_stage, data):
"""
Filter data for a given decimation stage
Args:
dec_stage: decimation stage
data: Pre-filtered data
"""
output = {}
if data.shape[0] == 0:
return output
filtered = self.filterbanks[dec_stage]['fb'].filter_(data)
Nf = filtered.shape[0]
if Nf > 0:
dec = self.dec[dec_stage]
fd = self.fs/dec
oldNf = self.Nf[dec_stage]
tstart = oldNf/fd
tend = tstart + Nf/fd
t = np.linspace(tstart, tend, Nf, endpoint=False)
self.Nf[dec_stage] += Nf
for i, nom in enumerate(self.filterbanks[dec_stage]['nominals']):
output[nom] = {'t': t, 'data': filtered[:, i]}
return output
def filter_(self, data):
"""
Filter input data
"""
assert data.ndim == 2
assert data.shape[1] == 1, "invalid number of channels, should be 1"
if data.shape[0] == 0:
return {}
# Output given as a dictionary with x as the key
output = {}
self.N += data.shape[0]
output = {**output, **self.filterd(0, data)}
for i in range(len(self.decimators)):
dec_stage = i+1
if data.shape[0] > 0:
# Apply a decimation stage
data = self.decimators[i].decimate(data)
output = {**output, **self.filterd(dec_stage, data)}
return output
class OctaveFilterBank(FilterBank):
def __init__(self, fs):
designer = OctaveBankDesigner()
super().__init__(fs, designer)
class ThirdOctaveFilterBank(FilterBank):
def __init__(self, fs):
designer = ThirdOctaveBankDesigner()
super().__init__(fs, designer)

View File

@ -304,9 +304,10 @@ cdef class FilterBank:
if self.fb:
FilterBank_free(self.fb)
def filter_(self,d[:] input_):
def filter_(self,d[::1, :] input_):
assert input_.shape[1] == 1
cdef dmat input_vd = dmat_foreign_data(input_.shape[0],1,
&input_[0],False)
&input_[0, 0],False)
cdef dmat output = FilterBank_filter(self.fb,&input_vd)
@ -337,19 +338,22 @@ cdef class Decimator:
self.dec = Decimator_create(nchannels,DEC_FAC_4)
if not self.dec:
raise RuntimeError('Error creating decimator')
def decimate(self,d[::1,:] samples):
assert samples.shape[1] == self.nchannels,'Invalid number of channels'
if samples.shape[0] == 0:
return np.zeros((0, self.nchannels))
cdef dmat d_samples = dmat_foreign_data(samples.shape[0],
samples.shape[1],
&samples[0,0],
False)
cdef dmat res = Decimator_decimate(self.dec,&d_samples)
result = dmat_to_ndarray(&res,True)
dmat_free(&res)
return result
def __dealloc__(self):
if self.dec != NULL:
Decimator_free(self.dec)

66
test/bandpass_test_1.py Normal file
View File

@ -0,0 +1,66 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""!
Author: J.A. de Jong - ASCEE
"""
import numpy as np
from lasp.filter.bandpass_limits import (third_octave_band_limits,
octave_band_limits, G, fr)
from lasp.filter.bandpass_fir import ThirdOctaveBankDesigner, \
OctaveBankDesigner
import matplotlib.pyplot as plt
# Adjust these settings
b = 1 # or three
zoom = False # or True
if b == 3:
bands = ThirdOctaveBankDesigner()
elif b == 1:
bands = OctaveBankDesigner()
else:
raise ValueError('b should be 1 or 3')
for x in bands.xs:
fig = plt.figure()
ax = fig.add_subplot(111)
fs = 48000.
dec = np.prod(bands.decimation(x))
fd = fs/dec
fc = fd/2/1.4
freq = np.logspace(np.log10(1), np.log10(fd), 5000)
H = bands.freqResponse(fs, x, freq)
dBH = 20*np.log10(np.abs(H))
ax.semilogx(freq, dBH)
if b == 1:
freq, ulim, llim = octave_band_limits(x)
else:
freq, ulim, llim = third_octave_band_limits(x)
ax.semilogx(freq, llim)
ax.semilogx(freq, ulim)
ax.set_title(f'x = {x}, fnom = {bands.nominal(x)}')
if zoom:
ax.set_xlim(bands.fl(x)/1.1, bands.fu(x)*1.1)
ax.set_ylim(-15, 1)
else:
ax.set_ylim(-75, 1)
ax.set_xlim(10, fd)
ax.axvline(fd/2)
if dec > 1:
ax.axvline(fc, color='red')
ax.legend(['Filter frequency response',
'Lower limit from standard',
'Upper limit from standard',
'Nyquist frequency after decimation',
'Decimation filter cut-off frequency'], fontsize=8)
plt.show()

37
test/test_bars.py Normal file
View File

@ -0,0 +1,37 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
from lasp.plot import BarScene
from PySide import QtGui
from PySide.QtCore import QTimer
from lasp.lasp_gui_tools import Branding, ASCEEColors
import numpy as np
import PySide.QtOpenGL as gl
def main():
app = QtGui.QApplication(sys.argv) # A new instance of QApplication
app.setFont(Branding.font())
pix = QtGui.QPixmap(':img/img/lasp_logo_640.png')
splash = QtGui.QSplashScreen(pixmap=pix)
splash.show()
mw = QtGui.QGraphicsView()
glwidget = gl.QGLWidget()
mw.setViewport(glwidget)
bs = BarScene(None, np.array([10, 20, 300]), 2, ylim=(0, 1))
mw.setScene(bs)
bs.set_ydata(np.array([[.1, .2],
[.7, .8],
[.9, 1]]))
# timer = QTimer.
print(ASCEEColors.bggreen.getRgb())
mw.show() # Show the form
splash.finish(mw)
app.exec_() # and execute the app
if __name__ == '__main__':
main() # run the main function