Implemented alternative smoothing algorithm in tool

This commit is contained in:
Thijs Hekman 2022-10-21 15:41:28 +02:00
parent 6bd03301aa
commit 672dcfee14

View File

@ -30,13 +30,14 @@ where b = 3 for 1/3rd octave, f = frequency, fm = mid-band frequency, g = gain.
Gain is related to magnitude; power is related to gain^2
"""
__all__ = ['SmoothingType', 'smoothSpectralData', 'SmoothingWidth']
__all__ = ['SmoothingType', 'smoothSpectralData', 'SmoothingWidth', 'smoothSpectralDataAlt', 'intHann']
from enum import Enum, unique
import bisect
import copy
import numpy as np
from math import ceil, floor, sin
from numpy import arange, log2, log10, pi
@unique
class SmoothingWidth(Enum):
@ -298,6 +299,77 @@ def smoothSpectralData(freq, M, sw: SmoothingWidth,
# return Psm
def smoothSpectralDataAlt(freq, Mdb, sw: SmoothingWidth):
Noct = 1/sw.value[0]
# M = Mdb
M = 10**(Mdb/20)
f0 = 0
if freq[0] == 0:
f0 += 1
Nfreq = len(freq)
test_smoothed = np.array(M)
ifreq = freq/(freq[1]-freq[0])
ifreq = np.array(ifreq.astype(int))
ifreqMin = ifreq[f0]
ifreqMax = ifreq[Nfreq-1]
sfact = 2**(Noct/2)
maxNkp = ifreqMax - floor((ifreqMax-1)/sfact**2)+1
W = np.zeros(maxNkp)
kpmin = np.floor(ifreq/sfact).astype(int)
kpmax = np.ceil(ifreq*sfact).astype(int)
for ff in range(f0, len(M)):
if kpmin[ff] < ifreqMin:
kpmin[ff] = ifreqMin
kpmax[ff] = ceil(ifreq[ff]**2/ifreqMin)
NoctAct = log2(kpmax[ff]/kpmin[ff])
elif kpmax[ff] > ifreqMax:
kpmin[ff] = floor(ifreq[ff]**2/ifreqMax)
kpmax[ff] = ifreqMax
NoctAct = log2(kpmax[ff]/kpmin[ff])
else:
NoctAct = Noct
kp = arange(kpmin[ff], kpmax[ff]+1)
if NoctAct:
Phi1 = log2((kp - 0.5)/ifreq[ff])/NoctAct
Phi2 = log2((kp + 0.5)/ifreq[ff])/NoctAct
for ii in range(len(kp)):
W[ii] = intHann(Phi1[ii], Phi2[ii])
test_smoothed[ff] = np.dot(M[kpmin[ff]-ifreq[0]:kpmax[ff]-ifreq[0]+1], W[:ii+1])
test_smoothed = 20*log10(test_smoothed)
return test_smoothed
# %% Integrated Hann window
def intHann(x1, x2):
if (x2 <= -1/2) or (x1 >= 1/2):
return 0
elif x1 <= -1/2:
if x2 >= 1/2:
return 1
else:
return sin(2*pi*x2)/(2*pi) + x2 + 1/2
else:
if x2 >= 1/2:
return 1/2 - sin(2*pi*x1)/(2*pi) - x1
else:
return (sin(2*pi*x2) - sin(2*pi*x1))/(2*pi) + (x2-x1)
# %% Test
if __name__ == "__main__":
""" Test function for evaluation and debugging