Updated octave smoothing function; completely different approach
This commit is contained in:
parent
6f782f237e
commit
8912cb145c
@ -3,19 +3,46 @@
|
||||
"""
|
||||
Author: C. Jansen, J.A. de Jong - ASCEE V.O.F.
|
||||
|
||||
Smooth data in the frequency domain. TODO: This function is rather slow as it
|
||||
Smooth data in the frequency domain.
|
||||
|
||||
TODO: This function is rather slow as it
|
||||
used Python for loops. The implementations should be speed up in the near
|
||||
future.
|
||||
TODO: check if the smoothing is correct: depending on whether the data points
|
||||
are spaced lin of log in frequency, they should be given different weights.
|
||||
TODO: accept data that is not equally spaced in frequency
|
||||
TODO: output data that is log spaced in frequency
|
||||
|
||||
Cutoff frequencies of window taken from
|
||||
http://www.huennebeck-online.de/software/download/src/index.html 15-10-2021
|
||||
math --> ReduceSpectrum.c --> ReduceSpectrum::smoothLogXScale()
|
||||
fl = fcenter / sqrt(2^(1/Noct)) # lower cutoff
|
||||
fu = fcenter * sqrt(2^(1/Noct)) # upper cutoff
|
||||
such that:
|
||||
sqrt(fl * fu) = fcenter
|
||||
fu = 2^(1/Noct) * fl
|
||||
|
||||
Smoothing window taken from
|
||||
https://www.ap.com/technical-library/deriving-fractional-octave-spectra-from-
|
||||
the-fft-with-apx/ 15-10-2021
|
||||
g = sqrt( 1/ ([1+[(f/fm - fm/f)*(1.507*b)]^6]) )
|
||||
where b = 3 for 1/3rd octave, f = frequency, fm = mid-band frequency, g = gain.
|
||||
Gain is related to magnitude; power is related to gain^2
|
||||
"""
|
||||
from enum import Enum, unique
|
||||
|
||||
__all__ = ['SmoothingType', 'smoothSpectralData', 'SmoothingWidth']
|
||||
|
||||
from enum import Enum, unique
|
||||
import bisect
|
||||
import numpy as np
|
||||
|
||||
|
||||
@unique
|
||||
class SmoothingWidth(Enum):
|
||||
none = (0, 'No smoothing')
|
||||
# three = (3, '1/3th octave smoothing')
|
||||
one = (1, '1/1stoctave smoothing')
|
||||
two = (2, '1/2th octave smoothing')
|
||||
three = (3, '1/3rd octave smoothing')
|
||||
six = (6, '1/6th octave smoothing')
|
||||
twelve = (12, '1/12th octave smoothing')
|
||||
twfo = (24, '1/24th octave smoothing')
|
||||
@ -38,6 +65,7 @@ class SmoothingWidth(Enum):
|
||||
def getCurrent(cb):
|
||||
return list(SmoothingWidth)[cb.currentIndex()]
|
||||
|
||||
|
||||
class SmoothingType:
|
||||
levels = 'l', 'Levels'
|
||||
# tf = 'tf', 'Transfer function',
|
||||
@ -48,9 +76,6 @@ class SmoothingType:
|
||||
# TO DO: add possibility to insert data that is not lin spaced in frequency
|
||||
|
||||
|
||||
import numpy as np
|
||||
from scipy.signal.windows import gaussian
|
||||
|
||||
def smoothSpectralData(freq, M, sw: SmoothingWidth,
|
||||
st: SmoothingType = SmoothingType.levels):
|
||||
"""
|
||||
@ -77,13 +102,14 @@ def smoothSpectralData(freq, M, sw: SmoothingWidth,
|
||||
# TODO: Make this function multi-dimensional array aware.
|
||||
|
||||
# Settings
|
||||
tr = 2 # truncate window after 2x std
|
||||
tr = 2 # truncate window after 2x std; shorter is faster and less accurate
|
||||
|
||||
# Safety
|
||||
Noct = sw.value[0]
|
||||
assert Noct > 0, "'Noct' must be absolute positive"
|
||||
if Noct < 1: raise Warning('Check if \'Noct\' is entered correctly')
|
||||
assert len(freq)==len(M), 'f and M should have equal length'
|
||||
if Noct < 1:
|
||||
raise Warning('Check if \'Noct\' is entered correctly')
|
||||
assert len(freq) == len(M), 'f and M should have equal length'
|
||||
|
||||
if st == SmoothingType.ps:
|
||||
assert np.min(M) >= 0, 'absolute magnitude M cannot be negative'
|
||||
@ -93,108 +119,217 @@ def smoothSpectralData(freq, M, sw: SmoothingWidth,
|
||||
# Initialize
|
||||
L = M.shape[0] # number of data points
|
||||
|
||||
P = M
|
||||
if st == SmoothingType.levels:
|
||||
P = 10**(P/10)
|
||||
P = 10**(M/10) # magnitude [dB] --> power
|
||||
else:
|
||||
P = M # data already given as power
|
||||
# TODO: This does not work due to complex numbers. Should be split up in
|
||||
# magnitude and phase.
|
||||
# elif st == SmoothingType.tf:
|
||||
# P = P**2
|
||||
|
||||
# P is power while smoothing. x are indices of P.
|
||||
Psm = np.zeros_like(P) # Smoothed power - to be calculated
|
||||
x0 = 1 if freq[0]==0 else 0 # Skip first data point if zero frequency
|
||||
Psm[0] = P[0] # Reuse old value in case first data..
|
||||
# ..point is skipped. Not plotted any way.
|
||||
df = freq[1] - freq[0] # Frequency step
|
||||
Psm = np.zeros_like(P) # Smoothed power - to be calculated
|
||||
x0 = 1 if freq[0] == 0 else 0 # Skip first data point if zero frequency
|
||||
Psm[0] = P[0] # Reuse old value in case first data..
|
||||
# ..point is skipped. Not plotted any way.
|
||||
|
||||
# Loop through data points
|
||||
for x in range(x0, L):
|
||||
# Find indices of data points to calculate current (smoothed) magnitude
|
||||
fc = freq[x] # center freq. of smoothing window
|
||||
Df = tr * fc / Noct # freq. range of smoothing window
|
||||
|
||||
# desired lower index of frequency array to be used during smoothing
|
||||
xl = int(np.ceil(x - 0.5*Df/df))
|
||||
|
||||
# upper index + 1 (because half-open interval)
|
||||
xu = int(np.floor(x + 0.5*Df/df)) + 1
|
||||
|
||||
# Create window
|
||||
Np = xu - xl # number of points
|
||||
std = Np / (2 * tr)
|
||||
wind = gaussian(Np, std) # Gaussian window
|
||||
|
||||
# Clip indices to valid range
|
||||
#
|
||||
# Indices beyond [0, L] point to non-existing data. This occurs when
|
||||
# the smoothing windows nears the beginning or end of the series.
|
||||
# Optional: if one end of the window is clipped, the other end
|
||||
# could be clipped as well, to prevent an error on magnitude data with
|
||||
# a slope. It however results in unsmoothed looking data at the ends.
|
||||
if xl < 0:
|
||||
rl = 0 - xl # remove this number of points at the lower end
|
||||
xl = xl + rl # .. from f
|
||||
wind = wind[rl:] # .. and from window
|
||||
#
|
||||
# Implicitly, the window is truncated in this implementation, because
|
||||
# of the bisect search
|
||||
fc = freq[x] # center freq. of smoothing window
|
||||
fl = fc / np.sqrt(2**(tr/Noct)) # lower cutoff
|
||||
fu = fc * np.sqrt(2**(tr/Noct)) # upper cutoff
|
||||
xl = bisect.bisect_left(f, fl) # index corresponding to fl
|
||||
xu = bisect.bisect_left(f, fu)
|
||||
|
||||
# rl = 0 - xl # remove this number of points at the lower end
|
||||
# xl = xl + rl # .. from f
|
||||
# xu = xu - rl
|
||||
# wind = wind[rl:-rl] # .. and from window
|
||||
|
||||
if xu > L:
|
||||
ru = xu - L # remove this number of points at the upper end
|
||||
xu = xu - ru
|
||||
wind = wind[:-ru]
|
||||
|
||||
# ru = xu - L # remove this number of points at the upper end
|
||||
# xl = xl + ru
|
||||
# xu = xu - ru
|
||||
# wind = wind[ru:-ru]
|
||||
# Calculate window
|
||||
g = np.zeros(xu-xl)
|
||||
for n, xi in enumerate(range(xl, xu)):
|
||||
fi = f[xi] # current frequency
|
||||
g[n] = np.sqrt( 1/ ((1+((fi/fc - fc/fi)*(1.507*Noct))**6)) )
|
||||
g /= np.sum(g) # normalize: integral=1
|
||||
|
||||
# Apply smoothing
|
||||
wind_int = np.sum(wind) # integral
|
||||
Psm[x] = np.dot(wind, P[xl:xu]) / wind_int # apply window
|
||||
Psm[x] = np.dot(g, P[xl:xu])
|
||||
|
||||
if st == SmoothingType.levels:
|
||||
Psm = 10*np.log10(Psm)
|
||||
|
||||
return Psm
|
||||
|
||||
## OLD VERSION
|
||||
#from scipy.signal.windows import gaussian
|
||||
#def smoothSpectralData(freq, M, sw: SmoothingWidth,
|
||||
# st: SmoothingType = SmoothingType.levels):
|
||||
# """
|
||||
# Apply fractional octave smoothing to magnitude data in frequency domain.
|
||||
# Smoothing is performed to power, using a sliding Gaussian window with
|
||||
# variable length. The window is truncated after 2x std at either side.
|
||||
#
|
||||
# The implementation is not exact, because f is linearly spaced and
|
||||
# fractional octave smoothing is related to log spaced data. In this
|
||||
# implementation, the window extends with a fixed frequency step to either
|
||||
# side. The deviation is largest when Noct is small (e.g. coarse smoothing).
|
||||
# Casper Jansen, 07-05-2021
|
||||
#
|
||||
# Args:
|
||||
# freq: array of frequencies of data points [Hz] - equally spaced
|
||||
# M: array of either power, transfer functin or dB points. Depending on
|
||||
# the smoothing type `st`, the smoothing is applied.
|
||||
#
|
||||
# Returns:
|
||||
# freq : array frequencies of data points [Hz]
|
||||
# Msm : float smoothed magnitude of data points
|
||||
#
|
||||
# """
|
||||
# # TODO: Make this function multi-dimensional array aware.
|
||||
#
|
||||
# # Settings
|
||||
# tr = 2 # truncate window after 2x std; shorter is faster and less accurate
|
||||
#
|
||||
# # Safety
|
||||
# Noct = sw.value[0]
|
||||
# assert Noct > 0, "'Noct' must be absolute positive"
|
||||
# if Noct < 1: raise Warning('Check if \'Noct\' is entered correctly')
|
||||
# assert len(freq)==len(M), 'f and M should have equal length'
|
||||
#
|
||||
# if st == SmoothingType.ps:
|
||||
# assert np.min(M) >= 0, 'absolute magnitude M cannot be negative'
|
||||
# if st == SmoothingType.levels and isinstance(M.dtype, complex):
|
||||
# raise RuntimeError('Decibel input should be real-valued')
|
||||
#
|
||||
# # Initialize
|
||||
# L = M.shape[0] # number of data points
|
||||
#
|
||||
# P = M
|
||||
# if st == SmoothingType.levels:
|
||||
# P = 10**(P/10)
|
||||
# # TODO: This does not work due to complex numbers. Should be split up in
|
||||
# # magnitude and phase.
|
||||
# # elif st == SmoothingType.tf:
|
||||
# # P = P**2
|
||||
#
|
||||
# # P is power while smoothing. x are indices of P.
|
||||
# Psm = np.zeros_like(P) # Smoothed power - to be calculated
|
||||
# x0 = 1 if freq[0]==0 else 0 # Skip first data point if zero frequency
|
||||
# Psm[0] = P[0] # Reuse old value in case first data..
|
||||
# # ..point is skipped. Not plotted any way.
|
||||
# df = freq[1] - freq[0] # Frequency step
|
||||
#
|
||||
# # Loop through data points
|
||||
# for x in range(x0, L):
|
||||
# # Find indices of data points to calculate current (smoothed) magnitude
|
||||
# fc = freq[x] # center freq. of smoothing window
|
||||
# Df = tr * fc / Noct # freq. range of smoothing window
|
||||
#
|
||||
# # desired lower index of frequency array to be used during smoothing
|
||||
# xl = int(np.ceil(x - 0.5*Df/df))
|
||||
#
|
||||
# # upper index + 1 (because half-open interval)
|
||||
# xu = int(np.floor(x + 0.5*Df/df)) + 1
|
||||
#
|
||||
# # Create window, suitable for frequency lin-spaced data points
|
||||
# Np = xu - xl # number of points
|
||||
# std = Np / (2 * tr)
|
||||
# wind = gaussian(Np, std) # Gaussian window
|
||||
#
|
||||
# # Clip indices to valid range
|
||||
# #
|
||||
# # Indices beyond [0, L] point to non-existing data. This occurs when
|
||||
# # the smoothing windows nears the beginning or end of the series.
|
||||
# # Optional: if one end of the window is clipped, the other end
|
||||
# # could be clipped as well, to prevent an error on magnitude data with
|
||||
# # a slope. It however results in unsmoothed looking data at the ends.
|
||||
# if xl < 0:
|
||||
# rl = 0 - xl # remove this number of points at the lower end
|
||||
# xl = xl + rl # .. from f
|
||||
# wind = wind[rl:] # .. and from window
|
||||
#
|
||||
# # rl = 0 - xl # remove this number of points at the lower end
|
||||
# # xl = xl + rl # .. from f
|
||||
# # xu = xu - rl
|
||||
# # wind = wind[rl:-rl] # .. and from window
|
||||
#
|
||||
# if xu > L:
|
||||
# ru = xu - L # remove this number of points at the upper end
|
||||
# xu = xu - ru
|
||||
# wind = wind[:-ru]
|
||||
#
|
||||
# # ru = xu - L # remove this number of points at the upper end
|
||||
# # xl = xl + ru
|
||||
# # xu = xu - ru
|
||||
# # wind = wind[ru:-ru]
|
||||
#
|
||||
# # Apply smoothing
|
||||
# wind_int = np.sum(wind) # integral
|
||||
# Psm[x] = np.dot(wind, P[xl:xu]) / wind_int # apply window
|
||||
#
|
||||
# if st == SmoothingType.levels:
|
||||
# Psm = 10*np.log10(Psm)
|
||||
#
|
||||
# return Psm
|
||||
|
||||
|
||||
# %% Test
|
||||
if __name__ == "__main__":
|
||||
""" Test function for evaluation and debugging
|
||||
|
||||
Note: make a distinction between lin and log spaced (in frequency) data
|
||||
points. They should be treated and weighted differently.
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
# Initialize
|
||||
Noct = 6 # 1/6 oct. smoothing
|
||||
Noct = 6 # Noct = 6 for 1/6 oct. smoothing
|
||||
|
||||
# Create dummy data
|
||||
fmin = 3e3 # [Hz] min freq
|
||||
# Create dummy data set 1: noise
|
||||
fmin = 3e3 # [Hz] min freq
|
||||
fmax = 24e3 # [Hz] max freq
|
||||
Ndata = 200 # number of data points
|
||||
|
||||
Ndata = 200 # number of data points
|
||||
f = np.linspace(fmin, fmax, Ndata) # frequency points
|
||||
M = abs(1+0.4*np.random.normal(size=(Ndata,)))+0.01 #
|
||||
dB = False
|
||||
M = 20*np.log10(M)
|
||||
dB = True
|
||||
|
||||
|
||||
# M = f+1 # magnitude
|
||||
# dB = False # True if M is given in dB
|
||||
|
||||
# # Create dummy data set 2: dirac delta
|
||||
# fmin = 3e3 # [Hz] min freq
|
||||
# fmax = 24e3 # [Hz] max freq
|
||||
# Ndata = 200 # number of data points
|
||||
# f = np.linspace(fmin, fmax, Ndata) # frequency points
|
||||
# M = 0 * abs(1+0.4*np.random.normal(size=(Ndata,))) + 0.01 #
|
||||
# M[int(Ndata/5)] = 1
|
||||
# M = 20*np.log10(M)
|
||||
|
||||
# Apply function
|
||||
Msm = oct_smooth(f, M, Noct, dB)
|
||||
class sw:
|
||||
value = [Noct]
|
||||
st = SmoothingType.levels # so data is given in dB
|
||||
|
||||
Msm = smoothSpectralData(f, M, sw, st)
|
||||
fsm = f
|
||||
|
||||
# Plot
|
||||
|
||||
# Plot - lin frequency
|
||||
plt.figure()
|
||||
# plt.semilogx(f, M, '.b')
|
||||
# plt.semilogx(fsm, Msm, 'r')
|
||||
plt.plot(f, M, '.b')
|
||||
plt.plot(fsm, Msm, 'r')
|
||||
plt.xlabel('f (Hz)')
|
||||
plt.ylabel('magnitude')
|
||||
plt.xlim([100, fmax])
|
||||
plt.title('lin frequency')
|
||||
|
||||
# Plot - log frequency
|
||||
plt.figure()
|
||||
plt.semilogx(f, M, '.b')
|
||||
plt.semilogx(fsm, Msm, 'r')
|
||||
plt.xlabel('f (Hz)')
|
||||
plt.ylabel('magnitude')
|
||||
plt.xlim([100, fmax])
|
||||
plt.title('log frequency')
|
||||
|
Loading…
Reference in New Issue
Block a user