Added coherent periodic averaging methods to Measurement
This commit is contained in:
parent
d72a35bfb5
commit
a1e4a63043
@ -21,12 +21,12 @@ this array is not found. Quantities are defaulted to 'Number / Full scale'
|
||||
|
||||
- Datasets:
|
||||
|
||||
'audio': 3-dimensional array of blocks of audio data. The first axis is the
|
||||
'audio': 3-dimensional array of blocks of audio data. The first axis is the
|
||||
block index, the second axis the sample number and the third axis is the channel
|
||||
number. The data type is either int16, int32 or float64 / float32. In case the
|
||||
data is stored as integers. The raw data should be scaled with the maximum value
|
||||
that can be stored for the integer bit depth to get a number between -1.0 and
|
||||
1.0.
|
||||
number. The data type is either int16, int32 or float64 / float32. If raw data
|
||||
is stored as integer values (int16, int32), the actual values should be
|
||||
pre-scaled by its maximum positive number (2**(nb-1) - 1), such that the
|
||||
corresponding 'number' lies between -1.0 and 1.0.
|
||||
|
||||
'video': 4-dimensional array of video frames. The first index is the frame
|
||||
number, the second the x-value of the pixel and the third is the
|
||||
@ -44,40 +44,16 @@ import h5py as h5
|
||||
import numpy as np
|
||||
from .lasp_config import LASP_NUMPY_FLOAT_TYPE
|
||||
from scipy.io import wavfile
|
||||
import os
|
||||
import time
|
||||
import wave
|
||||
from .lasp_common import SIQtys, Qty
|
||||
import os, time, wave, logging
|
||||
from .lasp_common import SIQtys, Qty, getFreq
|
||||
from .device import DaqChannel
|
||||
import logging
|
||||
from .wrappers import AvPowerSpectra, Window, PowerSpectra
|
||||
logger = logging.Logger(__name__)
|
||||
|
||||
|
||||
class BlockIter:
|
||||
"""Iterate over the blocks in the audio data of a h5 file."""
|
||||
|
||||
def __init__(self, f):
|
||||
"""Initialize a BlockIter object.
|
||||
|
||||
Args:
|
||||
f: Audio dataset in the h5 file, accessed as f['audio']
|
||||
"""
|
||||
self.i = 0
|
||||
self.nblocks = f['audio'].shape[0]
|
||||
self.fa = f['audio']
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
"""Return the next block."""
|
||||
if self.i == self.nblocks:
|
||||
raise StopIteration
|
||||
self.i += 1
|
||||
return self.fa[self.i - 1][:, :]
|
||||
|
||||
|
||||
def getSampWidth(dtype):
|
||||
"""Returns the width of a single sample in bytes.
|
||||
"""Returns the width of a single sample in **bytes**.
|
||||
|
||||
Args:
|
||||
dtype: numpy dtype
|
||||
@ -94,17 +70,14 @@ def getSampWidth(dtype):
|
||||
else:
|
||||
raise ValueError('Invalid data type: %s' % dtype)
|
||||
|
||||
|
||||
def scaleBlockSens(block, sens):
|
||||
"""Scale a block of raw data to return raw acoustic pressure data.
|
||||
|
||||
Args:
|
||||
block: block of raw data with integer data type
|
||||
sensitivity: array of sensitivity coeficients for
|
||||
each channel
|
||||
sens: array of sensitivity coeficients for
|
||||
each channel.
|
||||
"""
|
||||
sens = np.asarray(sens)
|
||||
assert sens.ndim == 1
|
||||
assert sens.size == block.shape[1]
|
||||
if np.issubdtype(block.dtype.type, np.integer):
|
||||
sw = getSampWidth(block.dtype)
|
||||
@ -113,6 +86,89 @@ def scaleBlockSens(block, sens):
|
||||
fac = 1.
|
||||
return block.astype(LASP_NUMPY_FLOAT_TYPE) / fac / sens[np.newaxis, :]
|
||||
|
||||
class IterRawData:
|
||||
"""Iterate over stored blocks if the raw measurement data of a h5 file."""
|
||||
|
||||
def __init__(self, f, channels, **kwargs):
|
||||
"""Initialize a BlockIter object.
|
||||
|
||||
Args:
|
||||
f: Audio dataset in the h5 file, accessed as f['audio']
|
||||
|
||||
"""
|
||||
assert isinstance(channels, list)
|
||||
fa = f['audio']
|
||||
self.fa = fa
|
||||
self.i = 0
|
||||
|
||||
nblocks = fa.shape[0]
|
||||
blocksize = fa.shape[1]
|
||||
self.blocksize = blocksize
|
||||
nchannels = fa.shape[2]
|
||||
self.channels = channels
|
||||
|
||||
self.istart = kwargs.pop('istart', 0)
|
||||
self.istop = kwargs.pop('istop', blocksize*nblocks)
|
||||
|
||||
self.firstblock = self.istart // blocksize
|
||||
self.lastblock = self.istop // blocksize
|
||||
if self.istop % blocksize == 0:
|
||||
self.lastblock -= 1
|
||||
|
||||
self.firstblock_start_offset = self.istart % blocksize
|
||||
|
||||
if self.istop < 0:
|
||||
self.istop += blocksize*nblocks
|
||||
if self.istop <= self.istart:
|
||||
raise ValueError('Stop index is smaller than start index')
|
||||
|
||||
if self.istop != blocksize*nblocks:
|
||||
self.lastblock_stop_offset = self.istop % blocksize
|
||||
else:
|
||||
self.lastblock_stop_offset = blocksize
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
"""Return the next block."""
|
||||
fa = self.fa
|
||||
|
||||
nblocks_to_return = self.lastblock-self.firstblock+1
|
||||
|
||||
block = self.firstblock + self.i
|
||||
|
||||
if block > self.lastblock:
|
||||
raise StopIteration
|
||||
|
||||
if block == self.firstblock:
|
||||
start_offset = self.firstblock_start_offset
|
||||
else:
|
||||
start_offset = 0
|
||||
|
||||
if block == self.lastblock:
|
||||
stop_offset = self.lastblock_stop_offset
|
||||
else:
|
||||
stop_offset = self.blocksize
|
||||
|
||||
self.i +=1
|
||||
return self.fa[block,start_offset:stop_offset,self.channels]
|
||||
|
||||
class IterData(IterRawData):
|
||||
"""
|
||||
Iterate over blocks of data, scaled with sensitivity and integer scaling
|
||||
between 0 and 1
|
||||
"""
|
||||
def __init__(self, fa, channels, sensitivity, **kwargs):
|
||||
super().__init__(fa, channels, **kwargs)
|
||||
self.sens = np.asarray(sensitivity)[self.channels]
|
||||
assert self.sens.ndim == 1
|
||||
|
||||
def __next__(self):
|
||||
nextraw = super().__next__()
|
||||
return scaleBlockSens(nextraw, self.sens)
|
||||
|
||||
|
||||
|
||||
def exportAsWave(fn, fs, data, force=False):
|
||||
if '.wav' not in fn[-4:]:
|
||||
@ -190,8 +246,12 @@ class Measurement:
|
||||
|
||||
try:
|
||||
qtys_json = f.attrs['qtys']
|
||||
# Load quantity data
|
||||
self._qtys = [Qty.from_json(qty_json) for qty_json in qtys_json]
|
||||
except KeyError:
|
||||
# If quantity data is not available, this is an 'old'
|
||||
# measurement file.
|
||||
logger.debug('Physical quantity data not available in measurement file. Assuming {SIQtys.default}')
|
||||
self._qtys = [SIQtys.default for i in range(self.nchannels)]
|
||||
|
||||
def setAttribute(self, atrname, value):
|
||||
@ -300,92 +360,164 @@ class Measurement:
|
||||
"""Returns the measurement time in seconds since the epoch."""
|
||||
return self._time
|
||||
|
||||
def scaleBlock(self, block):
|
||||
"""When the data is stored as integers, we assume dB full-scale
|
||||
scaling. Hence, when we convert the data to floats, we divide by the
|
||||
maximum possible value.
|
||||
|
||||
Returns:
|
||||
Block of measurement data, scaled using sensitivity values and
|
||||
retured as floating point values
|
||||
"""
|
||||
return scaleBlockSens(block, self.sensitivity)
|
||||
|
||||
@property
|
||||
def prms(self):
|
||||
"""Returns the root mean square of the uncalibrated rms sound pressure
|
||||
level (equivalend SPL).
|
||||
def rms(self, channels=None):
|
||||
"""Returns the root mean square values for each channel
|
||||
|
||||
Returns:
|
||||
1D array with rms values for each channel
|
||||
"""
|
||||
#
|
||||
try:
|
||||
return self._prms
|
||||
return self._rms
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
pms = 0.
|
||||
|
||||
meansquare = 0.
|
||||
with self.file() as f:
|
||||
for block in self.iterBlocks(f):
|
||||
block = self.scaleBlock(block)
|
||||
pms += np.sum(block**2, axis=0) / self.N
|
||||
self._prms = np.sqrt(pms)
|
||||
return self._prms
|
||||
for block in self.iterData(channels):
|
||||
meansquare += np.sum(block**2, axis=0) / self.N
|
||||
self._rms = np.sqrt(meansquare)
|
||||
return self._rms
|
||||
|
||||
def rawData(self, block=None, channel=None):
|
||||
"""Returns the raw signal, without any transformations applied
|
||||
def rawData(self, channels=None, **kwargs):
|
||||
"""Returns the raw data as stored in the measurement file,
|
||||
without any transformations applied
|
||||
|
||||
args:
|
||||
block: If specified a certain block is returned
|
||||
channels: list, or tuple of channel numbers to export. If not defined, all
|
||||
channels in the measurement are returned
|
||||
|
||||
returns:
|
||||
Numpy array with data. The first axis is always the time instance,
|
||||
the second axis the channel number.
|
||||
|
||||
"""
|
||||
if block is not None:
|
||||
with self.file() as f:
|
||||
if channel is not None:
|
||||
blocks = f['audio'][block][:, [channel]]
|
||||
else:
|
||||
blocks = f['audio'][block]
|
||||
else:
|
||||
blocks = []
|
||||
with self.file() as f:
|
||||
for block in self.iterBlocks(f):
|
||||
if channel is not None:
|
||||
blocks.append(block[:, [channel]])
|
||||
else:
|
||||
blocks.append(block)
|
||||
if channels is None:
|
||||
channels = list(range(self.nchannels))
|
||||
|
||||
blocks = np.asarray(blocks)
|
||||
rawdata = []
|
||||
|
||||
if channel is None:
|
||||
blocks = blocks.reshape((self.nblocks * self.blocksize,
|
||||
self.nchannels))
|
||||
else:
|
||||
blocks = blocks.reshape((self.nblocks * self.blocksize,
|
||||
1))
|
||||
return blocks
|
||||
with self.file() as f:
|
||||
for block in IterRawData(f, channels, **kwargs):
|
||||
rawdata.append(block)
|
||||
|
||||
def praw(self, block=None):
|
||||
"""Returns the uncalibrated acoustic pressure signal, but the
|
||||
sensitivity is applied, converted to floating point acoustic
|
||||
pressure values [Pa]."""
|
||||
return np.concatenate(rawdata, axis=0)
|
||||
|
||||
print('TODO: THIS SHOULD BE CHANGED, VERY INCONSISTENT AND CONFUSING API')
|
||||
|
||||
blocks = self.rawData(block)
|
||||
def iterData(self, channels, **kwargs):
|
||||
sensitivity = kwargs.pop('sensitivity', self.sensitivity)
|
||||
if channels is None:
|
||||
channels = list(range(self.nchannels))
|
||||
with self.file() as f:
|
||||
for block in IterData(f, channels, sensitivity, **kwargs):
|
||||
yield block
|
||||
|
||||
# Apply scaling (sensitivity, integer -> float)
|
||||
blocks = self.scaleBlock(blocks)
|
||||
return blocks
|
||||
def data(self, channels=None, **kwargs):
|
||||
"""
|
||||
Returns the measurement data, scaled and sensitivity applied.
|
||||
"""
|
||||
data = []
|
||||
for d in self.iterData(channels, **kwargs):
|
||||
data.append(d)
|
||||
|
||||
def iterBlocks(self, opened_file):
|
||||
"""Iterate over all the audio blocks in the opened file.
|
||||
return np.concatenate(data, axis=0)
|
||||
|
||||
def CPS(self, channels=None, **kwargs):
|
||||
"""
|
||||
Compute single-sided Cross-Power-Spectrum of the measurement channels
|
||||
|
||||
Args:
|
||||
opened_file: The h5File with the data
|
||||
channels: Channels to compute for (numbers)
|
||||
|
||||
Optional arguments:
|
||||
nfft: FFT length
|
||||
window: Window type
|
||||
overlap: Overlap percentage (value between 0.0 and up to and
|
||||
including 100.0)
|
||||
weighting:
|
||||
|
||||
Returns:
|
||||
Cross-power-spectra. C[freq, ch_i, ch_j] = C_ij
|
||||
|
||||
"""
|
||||
return BlockIter(opened_file)
|
||||
nfft = kwargs.pop('nfft', 2048)
|
||||
window = kwargs.pop('window', Window.hann)
|
||||
overlap = kwargs.pop('overlap', 50.0)
|
||||
|
||||
if channels is None:
|
||||
channels = list(range(self.nchannels))
|
||||
|
||||
nchannels = len(channels)
|
||||
aps = AvPowerSpectra(nfft, nchannels, overlap, window)
|
||||
freq = getFreq(self.samplerate, nfft)
|
||||
|
||||
for data in self.iterData(channels, **kwargs):
|
||||
CS = aps.addTimeData(data)
|
||||
|
||||
return freq, CS
|
||||
|
||||
def periodicAverage(self, N, channels=None, noiseCorrection=True, **kwargs):
|
||||
"""
|
||||
Return the (coherent) periodic average the measurement. This method is
|
||||
useful for a situation of periodic excitation.
|
||||
|
||||
Args:
|
||||
N: The number of samples in one period. This value should
|
||||
correspond with the period of the excitation!
|
||||
noiseCorrection: whether to apply coherent averaging, according to
|
||||
the Sliding Window correlation method (SWiC): Telle et al.: A Novel
|
||||
Approach for Impulse Response Measurements with Time-Varying Noise.
|
||||
If set to False, just the arithmetic average is used.
|
||||
"""
|
||||
# Create blocks of equal length N
|
||||
Ntot = self.N
|
||||
Nblocks = Ntot//N
|
||||
|
||||
# TODO: This method graps the whole measurement file into memory. Can
|
||||
# only be done with relatively small measurement files.
|
||||
signal = self.data(channels)
|
||||
|
||||
# Estimate noise power in block
|
||||
blocks = [signal[i*N:(i+1)*N] for i in range(Nblocks)]
|
||||
|
||||
if noiseCorrection:
|
||||
enp1 = [blocks[i+1] - blocks[i] for i in range(Nblocks-1)]
|
||||
noise_est_np1 = [np.average(enp1[i+1]*enp1[i]) for i in range(Nblocks-2)]
|
||||
|
||||
# Create weighting coefficients
|
||||
sum_inverse_noise = sum([1/n for n in noise_est_np1])
|
||||
c_np1 = [1/(ni*sum_inverse_noise) for ni in noise_est_np1]
|
||||
else:
|
||||
c_np1 = [1/(Nblocks-2)]*(Nblocks-2)
|
||||
|
||||
assert np.isclose(sum(c_np1), 1.0)
|
||||
|
||||
# Average signal over blocks
|
||||
avg = np.zeros((blocks[0].shape), dtype=float)
|
||||
for i in range(0, Nblocks-2):
|
||||
avg += c_np1[i]*blocks[i+1]
|
||||
return avg
|
||||
|
||||
def periodicCPS(self, N, channels=None, **kwargs):
|
||||
"""
|
||||
Compute Cross-Spectral Density based on periodic excitation. Uses noise
|
||||
reduction by time-averaging the data.
|
||||
"""
|
||||
|
||||
if channels is None:
|
||||
channels = list(range(self.nchannels))
|
||||
|
||||
nchannels = len(channels)
|
||||
window = Window.rectangular
|
||||
ps = PowerSpectra(N, window)
|
||||
|
||||
avg = self.periodicAverage(N, channels, **kwargs)
|
||||
CS = ps.compute(avg)
|
||||
freq = getFreq(self.samplerate, N)
|
||||
|
||||
return freq, CS
|
||||
|
||||
|
||||
@property
|
||||
def sensitivity(self):
|
||||
@ -492,7 +624,6 @@ class Measurement:
|
||||
|
||||
wavfile.write(fn, self.samplerate, data)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def fromtxt(fn,
|
||||
skiprows,
|
||||
|
Loading…
Reference in New Issue
Block a user