Merge branch 'splweighting_sos' into slm_c_impl
This commit is contained in:
commit
b5088bef14
@ -7,151 +7,158 @@ Description: Filter design for frequency weighting curves (i.e. A and C
|
||||
weighting)
|
||||
"""
|
||||
from .fir_design import freqResponse, arbitrary_fir_design
|
||||
from scipy.signal import bilinear_zpk, zpk2sos
|
||||
import numpy as np
|
||||
|
||||
__all__ = ['A', 'C', 'A_fir_design', 'C_fir_design',
|
||||
'show_Afir', 'show_Cfir']
|
||||
|
||||
fr = 1000.
|
||||
fL = 10**1.5
|
||||
fH = 10**3.9
|
||||
fLsq = fL**2
|
||||
fHsq = fH**2
|
||||
frsq = fr**2
|
||||
fA = 10**2.45
|
||||
D = np.sqrt(.5)
|
||||
|
||||
b = (1/(1-D))*(frsq+fLsq*fHsq/frsq-D*(fLsq+fHsq))
|
||||
c = fLsq*fHsq
|
||||
f2 = (3-np.sqrt(5.))/2*fA
|
||||
f3 = (3+np.sqrt(5.))/2*fA
|
||||
f1 = np.sqrt((-b-np.sqrt(b**2-4*c))/2)
|
||||
f4 = np.sqrt((-b+np.sqrt(b**2-4*c))/2)
|
||||
f4sq = f4**2
|
||||
__all__ = ['SPLFilterDesigner']
|
||||
|
||||
|
||||
def A_uncor(f):
|
||||
"""
|
||||
Computes the uncorrected frequency response of the A-filter
|
||||
"""
|
||||
fsq = f**2
|
||||
num = f4sq*fsq**2
|
||||
denom1 = (fsq+f1**2)
|
||||
denom2 = np.sqrt((fsq+f2**2)*(fsq+f3**2))*(fsq+f4sq)
|
||||
|
||||
return (num/(denom1*denom2))
|
||||
class SPLFilterDesigner:
|
||||
fr = 1000.
|
||||
fL = 10**1.5
|
||||
fH = 10**3.9
|
||||
|
||||
|
||||
def A(f):
|
||||
"""
|
||||
Computes the linear A-weighting freqency response. Hence, to obtain
|
||||
A-weighted values, the *amplitude* need to be multiplied with this value.
|
||||
Hence, to correct dB levels, the value of 20*log(A) needs to be added to
|
||||
the level
|
||||
fLsq = fL**2
|
||||
fHsq = fH**2
|
||||
frsq = fr**2
|
||||
fA = 10**2.45
|
||||
D = np.sqrt(.5)
|
||||
|
||||
Args:
|
||||
f: Frequency array to compute values for
|
||||
Returns:
|
||||
A(f) for each frequency
|
||||
"""
|
||||
Auncor = A_uncor(f)
|
||||
A1000 = A_uncor(1000.)
|
||||
return Auncor/A1000
|
||||
b = (1/(1-D))*(frsq+fLsq*fHsq/frsq-D*(fLsq+fHsq))
|
||||
c = fLsq*fHsq
|
||||
f2 = (3-np.sqrt(5.))/2*fA
|
||||
f3 = (3+np.sqrt(5.))/2*fA
|
||||
f1 = np.sqrt((-b-np.sqrt(b**2-4*c))/2)
|
||||
f4 = np.sqrt((-b+np.sqrt(b**2-4*c))/2)
|
||||
f4sq = f4**2
|
||||
|
||||
def _A_uncor(self, f):
|
||||
"""
|
||||
Computes the uncorrected frequency response of the A-filter
|
||||
|
||||
Args:
|
||||
f: Frequency (array, float)
|
||||
|
||||
Returns:
|
||||
Linear filter transfer function
|
||||
"""
|
||||
fsq = f**2
|
||||
num = self.f4sq*fsq**2
|
||||
denom1 = (fsq+self.f1**2)
|
||||
denom2 = np.sqrt((fsq+self.f2**2)*(fsq+self.f3**2))*(fsq+self.f4sq)
|
||||
|
||||
return (num/(denom1*denom2))
|
||||
|
||||
|
||||
def C_uncor(f):
|
||||
"""
|
||||
Computes the uncorrected frequency response of the C-filter
|
||||
"""
|
||||
fsq = f**2
|
||||
num = f4sq*fsq
|
||||
denom1 = (fsq+f1**2)
|
||||
denom2 = (fsq+f4**2)
|
||||
return num/(denom1*denom2)
|
||||
def A(self, f):
|
||||
"""
|
||||
Computes the linear A-weighting freqency response. Hence, to obtain
|
||||
A-weighted values, the *amplitude* need to be multiplied with this value.
|
||||
Hence, to correct dB levels, the value of 20*log(A) needs to be added to
|
||||
the level
|
||||
|
||||
Args:
|
||||
f: Frequency array to compute values for
|
||||
Returns:
|
||||
A(f) for each frequency
|
||||
"""
|
||||
Auncor = self._A_uncor(f)
|
||||
A1000 = self._A_uncor(self.fr)
|
||||
return Auncor/A1000
|
||||
|
||||
|
||||
def C(f):
|
||||
"""
|
||||
Computes the linear A-weighting freqency response
|
||||
"""
|
||||
Cuncor = C_uncor(f)
|
||||
C1000 = C_uncor(1000.)
|
||||
return Cuncor/C1000
|
||||
def _C_uncor(self, f):
|
||||
"""
|
||||
Computes the uncorrected frequency response of the C-filter
|
||||
"""
|
||||
fsq = f**2
|
||||
num = self.f4sq*fsq
|
||||
denom1 = (fsq+self.f1**2)
|
||||
denom2 = (fsq+self.f4**2)
|
||||
return num/(denom1*denom2)
|
||||
|
||||
|
||||
def A_fir_design():
|
||||
fs = 48000.
|
||||
freq_design = np.linspace(0, 17e3, 3000)
|
||||
freq_design[-1] = fs/2
|
||||
amp_design = A(freq_design)
|
||||
amp_design[-1] = 0.
|
||||
|
||||
L = 2048 # Filter order
|
||||
fir = arbitrary_fir_design(fs, L, freq_design, amp_design,
|
||||
window='rectangular')
|
||||
return fir
|
||||
def C(self, f):
|
||||
"""
|
||||
Computes the linear A-weighting freqency response
|
||||
"""
|
||||
Cuncor = self._C_uncor(f)
|
||||
C1000 = self._C_uncor(self.fr)
|
||||
return Cuncor/C1000
|
||||
|
||||
|
||||
def C_fir_design():
|
||||
fs = 48000.
|
||||
freq_design = np.linspace(0, 17e3, 3000)
|
||||
freq_design[-1] = fs/2
|
||||
amp_design = C(freq_design)
|
||||
amp_design[-1] = 0.
|
||||
def A_fir_design(self, fs):
|
||||
|
||||
L = 2048 # Filter order
|
||||
fir = arbitrary_fir_design(fs, L, freq_design, amp_design,
|
||||
window='rectangular')
|
||||
return fir
|
||||
assert int(fs) == 48000
|
||||
freq_design = np.linspace(0, 17e3, 3000)
|
||||
freq_design[-1] = fs/2
|
||||
amp_design = self.A(freq_design)
|
||||
amp_design[-1] = 0.
|
||||
|
||||
L = 2048 # Filter order
|
||||
fir = arbitrary_fir_design(fs, L, freq_design, amp_design,
|
||||
window='rectangular')
|
||||
return fir
|
||||
|
||||
|
||||
def show_Afir():
|
||||
from asceefig.plot import Figure
|
||||
def C_fir_design(self, fs):
|
||||
assert int(fs) == 48000
|
||||
fs = 48000.
|
||||
freq_design = np.linspace(0, 17e3, 3000)
|
||||
freq_design[-1] = fs/2
|
||||
amp_design = C(freq_design)
|
||||
amp_design[-1] = 0.
|
||||
|
||||
fs = 48000.
|
||||
freq_design = np.linspace(0, 17e3, 3000)
|
||||
freq_design[-1] = fs/2
|
||||
amp_design = A(freq_design)
|
||||
amp_design[-1] = 0.
|
||||
firs = []
|
||||
L = 2048 # Filter order
|
||||
fir = arbitrary_fir_design(fs, L, freq_design, amp_design,
|
||||
window='rectangular')
|
||||
return fir
|
||||
|
||||
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hamming'))
|
||||
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hann'))
|
||||
firs.append(A_fir_design())
|
||||
# from scipy.signal import iirdesign
|
||||
# b,a = iirdesign()
|
||||
freq_check = np.logspace(0, np.log10(fs/2), 5000)
|
||||
f = Figure()
|
||||
def C_Sos_design(self, fs):
|
||||
"""
|
||||
Create filter coefficients of the C-weighting filter. Uses the bilinear
|
||||
transform to convert the analog filter to a digital one.
|
||||
|
||||
f.semilogx(freq_check, 20*np.log10(A(freq_check)))
|
||||
for fir in firs:
|
||||
H = freqResponse(fs, freq_check, fir)
|
||||
f.plot(freq_check, 20*np.log10(np.abs(H)))
|
||||
Args:
|
||||
fs: Sampling frequency [Hz]
|
||||
|
||||
f.fig.get_axes()[0].set_ylim(-75, 3)
|
||||
Returns:
|
||||
Sos: Second order sections
|
||||
"""
|
||||
|
||||
p1 = 2*np.pi*self.f1
|
||||
p4 = 2*np.pi*self.f4
|
||||
zeros_analog = [0,0]
|
||||
poles_analog = [p1, p1, p4, p4]
|
||||
k_analog = p4**2/self._C_uncor(self.fr)
|
||||
|
||||
z, p, k = bilinear_zpk(zeros_analog, poles_analog, k_analog, fs)
|
||||
sos = zpk2sos(z, p, k)
|
||||
return sos
|
||||
|
||||
def show_Cfir():
|
||||
from asceefig.plot import Figure
|
||||
def A_Sos_design(self, fs):
|
||||
"""
|
||||
Create filter coefficients of the A-weighting filter. Uses the bilinear
|
||||
transform to convert the analog filter to a digital one.
|
||||
|
||||
fs = 48000.
|
||||
freq_design = np.linspace(0, 17e3, 3000)
|
||||
freq_design[-1] = fs/2
|
||||
amp_design = C(freq_design)
|
||||
amp_design[-1] = 0.
|
||||
firs = []
|
||||
Args:
|
||||
fs: Sampling frequency [Hz]
|
||||
|
||||
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hamming'))
|
||||
# firs.append(arbitrary_fir_design(fs,L,freq_design,amp_design,window='hann'))
|
||||
firs.append(C_fir_design())
|
||||
# from scipy.signal import iirdesign
|
||||
# b,a = iirdesign()
|
||||
freq_check = np.logspace(0, np.log10(fs/2), 5000)
|
||||
f = Figure()
|
||||
Returns:
|
||||
Sos: Second order sections
|
||||
"""
|
||||
# Poles of A-filter
|
||||
p1 = 2*np.pi*self.f1
|
||||
p2 = 2*np.pi*self.f2
|
||||
p3 = 2*np.pi*self.f3
|
||||
p4 = 2*np.pi*self.f4
|
||||
|
||||
f.semilogx(freq_check, 20*np.log10(C(freq_check)))
|
||||
for fir in firs:
|
||||
H = freqResponse(fs, freq_check, fir)
|
||||
f.plot(freq_check, 20*np.log10(np.abs(H)))
|
||||
zeros_analog = [0,0,0,0]
|
||||
poles_analog = [p1, p1, p2, p3, p4, p4]
|
||||
k_analog = p4**2/self._A_uncor(self.fr)
|
||||
|
||||
z, p, k = bilinear_zpk(zeros_analog, poles_analog, k_analog, fs)
|
||||
sos = zpk2sos(z, p, k)
|
||||
return sos
|
||||
|
||||
f.fig.get_axes()[0].set_ylim(-30, 1)
|
||||
|
@ -5,7 +5,7 @@ Weighting and calibration filter in one
|
||||
@author: J.A. de Jong - ASCEE
|
||||
"""
|
||||
from .lasp_common import FreqWeighting
|
||||
from .filter import (A, C, arbitrary_fir_design, freqResponse as frp)
|
||||
from .filter import SPLFilterDesigner
|
||||
from lasp.lasp_config import ones, empty
|
||||
from .wrappers import FilterBank
|
||||
import numpy as np
|
||||
|
Loading…
x
Reference in New Issue
Block a user